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The semiclassical WKB approximation method is reexamined in the context of nonrelativistic
quantum-mechanical bound-state problems with broken supersymmetry (SUSY). This gives rise to an
alternative quantization condition (denoted by BSWKB) which is difFerent from the standard WKB
formula and also difFerent from the previously studied supersymmetric (SWKB) formula for unbroken
SUSY. It is shown that to leading order in h, the BSWKB condition yields exact energy eigenvalues
for shape-invariant potentials with broken SUSY (harmonic oscillator, Poschl-Teller I and II) which

are known to be analytically solvable. Further, we show explicitly that the higher-order corrections
to these energy eigenvalues, up to sixth order in 5, vanish identically. We also consider a number of
examples of potentials with broken supersymmetry that are not analytically solvable. In particular,
for the broken SUSY superpotential W = Ax, [A ) 0, d =(integer)], we evaluate contributions up
to the sixth order and show that these results are in excellent agreement with numerical solutions
of the Schrodinger equation. While the numerical BSWKB results in lowest order are not always
better than the corresponding WKB results, they are still a considerable improvement because they
guarantee equality of the corresponding energy eigenvalues for the supersymmetric partner potentials
U+ and U . This is of special importance in those situations where these partner potentials are not
related by parity.

PACS number(s): 03.65.Sq, 03.65.Ge, 11.30.Pb

I. INTHODU CTION

During the past few years there has been a revival of
interest in semiclassical approximation schemes as ap-
plied to nonrelativistic quantum-mechanical problems.
In 1985, using the framework of supersymmetric quan-
tum mechanics (SUSYQM) [1], Comtet, Bandrauk, and
Campbell [2] proposed a leading-order quantization con-
dition similar to the well-known WKB formula [3—5] for
the case where supersymmetry is unbroken. This for-
mula, which we refer to as the SWKB quantization con-
dition, was shown to provide exact spectra [6—9] for all
shape-invariant potentials [10]. Additional desirable fea-
tures of the SWKB scheme are the following: the eigen-
value degeneracy relation of the unbroken supersymme-
try (SUSY) is preserved by construction and, for spher-
ically symmetric three-dimensional problems, the artifi-
cial Langer modification needed for restoring the thresh-
old behavior of the WKB wave function is built in. By
explicit calculation, Adhikari et al. [9] proved that cor-
rections to the energy eigenvalues (up to sixth order in
h ) are zero for all shape-invariant potentials. This obvi-
ously suggests that all higher-order corrections must also

vanish. This was demonstrated for the Rosen-Morse po-
tential by Raghunathan, Seetharaman, and Vasan [11].
Recently, Barclay and Maxwell [12] proved quite gen-
erally that shape-invariant potentials have zero higher-
order SWKB corrections. For non-shape-invariant poten-
tials, for which exact analytic solutions are not obtain-
able, it has been observed [9] that, where the superpo-
tential is available, better accuracy in predicting energy
eigenvalues, compared to the usual WKB calculations [4,
5], is obtained by using the higher-order SWKB quantiza-
tion condition [13]. However, all these calculations were
concerned with examples of unbroken supersymmetry.

Relatively little attention has been paid so far to study
problems involving broken SUSY. This is perhaps due to
the fact that in the majority of examples cited in the
literature, the supersymmetric partner potentials are re-
lated to each other by the parity operation since they are
constructed from a symmetric superpotential and thus
the energy degeneracy between the two partner poten-
tials follows trivially. Furthermore, for the broken SUSY
case, neither the ground-state energy nor the ground-
state wave function are known in general. Chuan [14],
Ralchenko and Semenov [15], and others [16, 17] have
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discussed the possibility of finding connections between
quantum-mechanical systems with broken and unbroken
supersymmetry. Very recently we have made a critical
study [18] of these aspects. We have been able to con-
struct several analytically solvable examples of broken
supersymmetry. Our examples are motivated by shape-
invariant potentials obeying unbroken SUSY [19—21] and
are obtained from them by changing the domains of the
parameters which appear in the potentials via suitable
mapping procedures.

In analogy to the situation of unbroken supersymme-
try, one may ask at this point whether there exists a new
quantization condition which reproduces the exact ana-
lytic eigenvalues for shape-invariant potentials with bro-
ken SUSY. If so, one might further expect that higher-
order corrections to the leading-order term should also
vanish as is the case for unbroken supersymmetry. In
this paper, we examine these possibilities in detail. To
the best of our knowledge, no elaborate investigation
of broken supersymmetric WKB (BSWKB) calculations
has been made so far, except the work of Inomata and
Junker [22] in which the leading-order BSWKB quanti-
zation condition was obtained from a path integral ap-
proach. However, a difFiculty with their approach is that
it is quite complicated to derive higher-order terms ex-
plicitly. In this paper, we follow the method given in Ref.
[9]

In Sec. II we give a summary of the algebraic structure
of SUSYQM. Specifically, we discuss conditions on the
superpotential which lead to broken supersymmetry. In
Sec. III our calculation of the semiclassical quantization
condition up to sixth order for broken supersymmetry is
presented. (We only consider the usual situation of two
classical turning points. ) In Sec. IV we show that the
leading-order BSWKB quantization condition yields ex-
act energy eigenvalues for the known shape-invariant po-
tentials with broken SUSY (harmonic oscillator, Poschl-
Teller I and II) [18]. We also demonstrate that the higher-
order corrections to the leading-order energy eigenvalues,
up to sixth order in h, vanish identically. It is important
to notice that our scheme preserves the energy degen-
eracy relation for the partner potentials at each order
of the BSWKB approximation. This is not the case for
the higher-order standard WKB method. Our numeri-
cal analyses for three broken SUSY non-shape-invariant
potentials are presented in Sec. V.

For these potentials, we have compared the results
from BSWKB and WKB approximations, both in low-
est order, and we find that with the noted exception of
the ground state, BSWKB does much better than the
usual WKB method. For a superpotential of the form
W = Ax2" (A ) 0, d = 1) the BSWKB contributions to
order 6 have been computed analytically. These results
are found to be in excellent agreement with numerical so-
lutions of the Schrodinger equation. Concluding remarks
are presented in Sec. VI.

II. SUP ERSYM METRIC
QUANTUM MECHANICS

acterized by the supercharge operators Q; (i = 1, 2, ..., N)
which are self-adjoint (i.e. , Q; = Q, ) and satisfy the fol-
lowing graded algebra:

[q* H] =0 (q* Q2) = H ~'2

where H is the supersymmetric Hamiltonian. The alge-
bra implies that the spectrum of H is positive semidefi-
nite. For the understanding of unbroken and/or broken
supersymmetry, we consider the simplest nontrivial case,
N = 2. In terms of Q = (Qi + iqq)/i/2 and its ad-

joint Qt = (Qi —iq2)/~2, the algebra governing this
supersymmetric system is given by

H =(q, qt), q'=o, (qt)'=o. (2)

Obviously,

[Q, H] = [Q', H] = 0.

For SUSY to be a good symmetry it is necessary that

Q io) = Qt io) = 0, (4)

where ~0) denotes the ground state.
A simple realization of the algebra defined by Eq. (2)

can be achieved by considering

&001Q=
I Ao (00)'

where A is a linear operator and A~ is its adjoint:

h d + W(x), At = — + ~(x).h, d

v'2m d* i/2m d* (6)

with

h d2
H =AtA= — +V (x),2m dx2 (8)

h d2
H+ —AA' = — + V+(x),

2m dx2 (9)

V~(x) = W (x) + W'(x).
2m

(Io)

The potentials V+ and V are called supersymmetric
partner potentials and W(x) is referred to as the super-
potential.

The eigenstates of the Hamiltonian H are doublets

t'y(-) l~.(*) =

where vP satisfy the eigenvalue equations

Equations (2)—(6) lead to the supersymmetric Hamilto-
nlan

&H 0

Supersymmetric quantum mechanics is well developed
by now [23]. According to Witten [1], SUSYQM is char- y( —) E(—) @(—) H y(+) —@(+)q(+) (12)
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If Eo ——0 is an eigenvalue of H, then Ago ——0.(—) ~ ~ (—)

It then follows from Eq. (6) that

——exp —v 2m, h W(x') dx'

If SUSY is an unbroken symmetry, one wants @0 to(—)

be an acceptable wave function. It must be quadratically
integrable and satisfy the correct boundary conditions,
that is, it must vanish at xL, and x~ which denote the
left and right end points of the variable x. In this case
one gets the energy degeneracy relation

E(—) E(+) (14)

On the other hand, if 1/@0 vanishes at the end points,
then the roles of V and V+ are reversed. Consequently,
the ground-state energy of V+, i.e. , Eo+ ——0, whereas

~ (+)

now E() g 0.
If neither @o nor I/go vanish at the end points,

that is, neither V nor V+ has a zero energy bound state,
we have the situation of broken SUSY. From here on
we consider only cases where W(x) is nonzero and of
definite sign as x m xL, and as x m xR. For unbroken
SUSY to hold. , the boundary conditions require the wave

function @0
l to vanish at both ends. This happens in

Eq. (13) if W(x) is such that IR = J "W(x) dx = +oo
and Il, = f ' W(x) dx = —oo for any xo such that

xo & x~. Under our assumptions this can only
hold if W(xl, ) and W(xR) are of opposite sign.

However, even if W(xl, ) and W(x~) are of opposite

III. THE BSWKB QUANTIZATION CONDITION

Some time ago, Adhikari et al. [9] have derived the
SWKB quantization condition to order 6 in the case
where SUSY is unbroken. In this section, we follow their
method but only indicate the steps that require modifi-
cation in the situation where SUSY is broken.

I et us start with the Schrodinger equation

d + V(x) —E g(x) = 0 (16)

for any one-dimensional potential V(x). We only con-
sider the usual case of two classical turning points
xq and x2 (& xq) given by

E —V(x) = 0.

On inserting the WKB wave function

g(x) = exp
~

— S(y)dy
~

rq h
(18)

into Eq. (16) and following the steps of Ref. [9], one can
show that the WKB quantization condition to order 6
is given by [3—5]

sign, unbroken SUSY is not guaranteed, since I~ or Il,
may be finite. In this case @I) does not satisfy the
boundary conditions and one has broken SUSY. However,
if W(xl. ) and W(xR) have the same sign one definitely
has broken SUSY. In this case, the spectra of both H
and H+ begin at positive values and are degenerate, that
1s)

@(—) — E(+)

&2m
h, d

(E —V) 2 dx-
24$2m dE

V (E —V) 2dx

h.
4

2880(2m) & dEs )2(V ) —5V V' j(E —V) *dT)

n' d4

725 760(2m) ~ dE
216(V"') (E —V) 2 dx

95)V"j —224V'V"V'"+55(V') V'"' (E —V) 'dzj = (n+ &)z5. (19)

We begin with this form of the WKB quantization con-
dition and obtain an alternative series expansion in the
BSWKB approximation. In particular, we apply Eq. (19)
to the SUSY potential V (x) as given in Eq. (10). On
substituting W (x) —&"=W'(x) in place of V in Eq. (19)
and expanding the left-hand side in powers of 6 one ob-
tains

/2m E„—TV~dx +-h W'(x)dx
2 ~ E()

+ 9 ~ ~

1= (n+ )vrh, —
2

(20)

where the turning points a, b are the solutions of the equa-
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tion

El-l —W'(*) = 0. (21)

Note that the turning points, xq and x2, of the U partner
potential are different from a and 6 since they are the
solutions of the equation

El-l —W'(*) + 6
W'(x) = 0.

2m
(22)

~ (W(x) )(

(23)

It is at this stage that the difference between broken and

It is worth noting that in obtaining the higher-order
BSWKB integrals one would expect contributions to dif-
ferent orders in h due to the change of the limits from
xq, x2 ~ a, 6, as well as from terms coming from the
expansion of the integrands in powers of h. Following
Ref. [9], one can show that the contributions due to the
change in the limits cancel in the h expansion.

The order h term on the left-hand side of Eq. (20) can
be integrated immediately to yield

W(a) = —W(b) = —QE„. (24)

However, if W(x) has the same sign at the two turning
points, this corresponds to the broken SUSY case, and

W(a) = W(b) = +QE„, (25)

where both can be positive or both negative (see our ex-
amples below). As a result, unlike in the unbroken case,
the order h contribution in the BSWKB integral Eq. (20)
vanishes. One can easily show that, apart from this cru-
cial difference, all higher-order terms in the h, expansion
in broken and in unbroken SWKB are identical. Follow-

ing Ref. [9], the BSWKB quantization condition to order

is given by (note that here E corresponds to E )
6 ~ ~ (—)

unbroken SWKB manifests itself. We now assume that
W(x) retains the same sign from the left classical turn-
ing point a out to xl, and from the right classical turning
point 6 out to x~. This is reasonable since a change of
sign in W would introduce additional oscillations in TV,
resulting in more than two turning points. In the un-
broken SUSY case W(x) has opposite signs at the two
turning points

(2m) 2

b h E d
(E —W ) 2dx —, (W') (E —W ) ~ dx

6(2m)-' dE'

h4
+725(2zz)'/* I dE'

d3

+dE3

30W'W"'(E —W ) ~ dx

b
—5(W ) —51(W') WW" + 7W (W") —5W W'W"' (E —W ) dz)

d3

90720(2m) & dE
378(W"') (E —W ) 2dx

d4

dE4

d'
dE5

[
—2160WW'W" W"' + 1674(W') (W") —108W (W"') ] (E —W ) 2 dx

96(W ) —1119W(W') W" + 729W (W') (W") + 399W (W') W"'

—22W'(W")'4-224W'W'W"W"' —55W'(W')'W"" (E —W ) *dz)= (z+ —,')z5.

(26)

Thus the only difference between the broken and the un-
broken SWKB quantization schemes is the right-hand
side term (n + )7rh in the —broken case and n7rh in the
unbroken scheme, while the left-hand sides in both cases
are identical.

It is worth pointing out here that if instead of E
one is interested in obtaining a quantization formula for
E [i.e. , the energy eigenvalues of the SUSY partner(+)

potential Vj (x)], one needs to replace " W'(x) by/2m
W'(x), which is equivalent to replacing h by —h

in the left-hand side of Eq. (26). It immediately follows
that, unlike the unbroken case, the BSWKB quantiza-

tion condition for E + is also given by the same formula

(26), proving that all higher-order BSWKB calculations
will also retain the degeneracy relation, Eq. (15), which
is a consequence of broken supersymmetry.

For exactly the same reason as in the SWKB scheme,
in the BSWKB quantization scheme one also obtains the
correct threshold behavior of the radial wave function
for spherically symmetric problems without the need for
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any Langer-type modifications [9]. In that sense both the broken and the unbroken SWKB schemes are superior to
the WKB approach.

IV. APPLICATION TO BROKEN SUSY SHAPE-INVARIANT POTENTIALS

How good is the BSWKB quantization scheme. To that end we apply the quantization condition, Eq. (26), to
the three analytically solvable shape-invariant potentials with broken SUSY. Using units where 6 = 2m =1, the
corresponding superpotentials are [18] as follows.

Harmonic oscillator:

W = (ur/2 —(l + 1)/r (u & 0, l ) 0,
0&r&oo u)0, l& —2.

Poschl- Teller I:

(27a)
(27b)

Wp~i(A, B,n) = A tan (ax) —B(cot ax) A & —1,B ) I
0 & x & ~/2 A ) 1,B & —1.

Poschl- Teller II:

(28a)
(28b)

Wpgii(A, B,n) = A tanh (nr) —B coth (nr) A +B + 1 & 0, B ) 1

0& r & oo A+B —1&OB & —l.
(29a)
(29b)

The indicated conditions on the different parameters assure broken SUSY and the existence of degenerate energy
levels for the partner potentials V+ and V . Because the last potential has a finite well height, only a finite number
of eigenstates are allowed for given values of A and B. We should perhaps remark here that among all known
shape-invariant potentials, these are the only examples of broken SUSY [18] where both V and V+ simultaneously
can hold bound states. The Scarf superpotential Ws(A, B,a):——A cot(nx) + Bcosec(nx) and the superpotential
Wz (A, B,n)—:—A coth(nr) + Bcosech(nr), are also examples of broken SUSY, but can be shown to be equivalent
to the Poschl-Teller I (Wp~i) and Poschl-Teller II (Wpgii) superpotentials, respectively, by suitable redefinition of
parameters. In particular,

Ws(A, B,n) = —A cot(ax) + Bcosec(nx)
(A+BI (ax) (A —Bl (n2:)

) 2 0 2 )
(A+B A —B n)

PTI
I 2

' 2 '2)
Similarly,

It turns out that in all three cases, the leading-order BSWKB quantization condition [which is just the first term
on the left-hand side of Eq. (26), with h = 2m =1]

b

gE —W' dx = (n+ —,')~

yields exact energy eigenvalues, namely,

' —w (2n + 2l + 3) for (27a)
w (2n —2l —1) for (27b)

(+) ( ) (A —B —1 —2n) 2 —(A + B)2 for (28a)
(A —B + 1 + 2n) —(A + B)~ for (28b)
—(A + B + 2n + 1) + (A —B) for (29a)

, —(A + B —2n —1) + (A —B) for (29b)

The above energies correspond to the simple choice o.=1
in TVp~y and Wp~yy. We have explicitly computed the or-
der 5 to h correction terms as given by Eq. (26) and
find that for all the above superpotentials these correc-
tions vanish identically.

Before ending this section, we would like to point out

I

one curious fact about the three shape-invariant poten-
tials given by Eqs. (27)—(29). It turns out that in all
three cases, the corresponding potential can be equally
well described by either unbroken or broken SUSY and
the corresponding lowest-order SWKB or BSWKB ap-
proximations yield exact eigenvalues. For example, the
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Poschl- Teller I superpotential Wp T~ (A, B,o. = 1)
A tanx —Bcotx gives the potential

V. NON-SHAPE-INVARIANT POTENTIALS
WITH BROKEN SUSY

El ' = (A+ B+2n)' —(A+ B)', (32)

which can be obtained analytically. The SWKB condi-
tion also gives the exact answer.

Alternatively, the potential V (x) can also be rewritten
as

V (x) = V (x)+ [(A+B)' —(A —B+1)'],
where

V (x) = A(A —l)sec x + B(B—l)cosec x —(A + B)
B = 1 —B. (34)

Clearly, V (x) corresponds to the broken SUSY Poschl-
Teller I superpotential given in Eq. (28b), since A &1
and B ( 0. Its eigenvalues are E = (A — B + 2n+
1)2 —(A+ B), and as discussed before, can be obtained
analytically or from the BSWKB quantization condition.
Using Eq. (33) and E, one gets the eigenvalues E given
in Eq. (32). A similar treatment [18] is also applicable
to the other two shape-invariant potentials given in Eqs.
(27) and (29). It is intriguing that for all three broken
SUSY shape-invariant potentials [Eqs. (27)—(29)], both
broken as well as unbroken lowest-order SWKB formulas
reproduce the exact bound-state spectrum (while WKB
does not do so). A deeper reason for this presumably
does exist but as of now it has not been brought out.
Note that even though the eigenvalues are reproduced
exactly, semiclassical wave functions are known to be not
exact [24—27]. In particular, they diverge at the classical
turning points. Also, the transmisson and re8ection co-
efBcients T and R are not fully given by the semiclassical
methods [28].

V (x) = A(A —1)sec x+B(B—1)cosec x —(A+B)2.
(31)

For A ) 1,B ) 1, we have unbroken SUSY and the exact
energy eigenvalues are [17]

In the preceding section, we have discussed three
shape-invariant potentials with parameters consistent
with broken SUSY conditions. In this section, we deal
with a few non-shape-invariant potentials which do not
admit exact analytic solutions. First, we give a simple
one-dimensional example where the partner potentials
are related to each other by a parity operation. This
trivially implies that the energy eigenvalues of the part-
ner potentials are identical. For this example we give the
broken SUSY quantization formula explicitly to sixth or-
der in h. Our second one-dimensional potential leads to
partner potentials which are no longer related to each
other by parity and the degeneracy of the spectra be-
comes a nontrivial consequence of broken SUSY. For the
third example we have selected a spherically symmet-
ric superpotential. Again, the degeneracy of the spectra
of the partners is an interesting consequence of broken
SUSY.

To begin with, let us consider the broken SUSY super-
potential

W(x) = Ax ", (35)

E„= [A'~ G„/(2m)] 2&+', (37)

where G is given by the following equation which, for
given values of d and the quantum number n, can be
solved numerically

which generates the supersymmetric partner potentials

V~ ——Ax" + 2Ad
h

2m

From Fig. 1, one may note that these partner potentials
are related to each other by parity transformations and
consequently the degeneracy of the energy eigenvalues

E = E„+ is trivially guaranteed. Using (35) in (26)
and evaluating the integrals explicitly, one obtains for the
energy eigenvalues

—16d2 —31d(2d —1) + —(2d —1) —5(2d —l)(d —1)
2

(2d + 5) (6d + 5) I' (',„')
29O3O4O d2 G' r ~'"-')

4d

(s"+~) 12 G I' (2" ~) 1440 O' I' ('"—')

x 60(2d —1)(d —1) +
2d

x 6048d(2d —1)2(d —1)2 + 54(2d —1) (4d —5)(—160d(d —1) + 124d —8(d —1) )

+(8d —5)(4d —5) 384d —2238d (2d —1) + 729d(2d —1)

+798d(d —1)(2d —1) ——(2d —1) + 224(d —1)(2d —1)
2

—35(d —1)(2d —1)(2d —3) =
~

n + —
~

vrh.
2) (38)
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It is amusing to note that the left-hand side of Eq. (38)
can be simply obtained from Eq. (4.3) of Ref. [9] by
the replacement of d by d —2. This is because the
higher-order corrections in both SWKB and in BSWKB
are formally the same and in Ref. [9] the superpoten-
tial TV = Ax "+, corresponding to unbroken SUSY, was
considered.

Since, for these potentials, the Schrodinger equation
cannot be solved analytically, we compare the BSWKB
energy eigenvalues with numerical results which we have
obtained from the Schrodinger equations using a Runge-
Kutta integration routine. In all our numerical work we
use units in which 6 = 2m = 1. Therefore in all our

figures and tables we give dimensionless quantities E, V,
and x (or r). These quantities can then be obtained in
any desired units by multiplying V and E by the factor
5 /(2mro), where ro is the desired unit of length.

For concreteness, we take A = 1, and d = 1 in Eq. (35).
Our results are presented in Table I. For numerical com-
parisons, we also show the percentage errors, defined
as 100x[E(approx) —E(num)]/E(num). First we com-
pare our leading-order BSWKB values with the leading-
order WKB method. The tabulated results indicate that,
except for the ground state, the lowest-order BSWKB
eigenvalues are of comparable accuracy as the standard
WKB eigenvalues. In Table I, we have given all entries to
three places after the decimal, which is enough to indi-
cate the difFerences with lowest-order WKB results which
is all that we have available. The higher-order BSWKB
results are of very high accuracy. The percentage errors,
also given in the table, show that the SWKB values for

j.0 I I

)
I

8 —.

N

~ W

0
0

4—

2

—2—2
g I i I s i I i

FIG. 1. The potentials V+ (dotted), V (dashed),
W (solid) associated with the superpotential W
Az ", A = 1, d = 1. The figure clearly shows how the two
partner potentials are related by a parity operation and there-
fore trivially have the same spectrum.

the higher-lying states (n & 2) are actually accurate to
five places after the decimal point, an overall accuracy
of seven digits. Also, the exact degeneracy of the spec-
tra of V+ and of V does not follow from the standard
WKB scheme, but is evident from our BSWKB formula-
tion which preserves this degeneracy order by order. For
this potential, the WKB values for V+ and for U are
trivially equal because they are mirror images of each
other. For the ground state, the WKB value is some-

TABLE I. Comparison of energy eigenvalues computed up to order 5 from the BSWKB quantization condition [Eq. (26)]
with leading-order ordinary WKB results corresponding to the superpotential W = Ax ", A = 1, d = 1 in units of 2m = h, =1.
The last column contains the values obtained by numerical integration of the Schrodinger equation. The numbers in parentheses
below each value indicate the percentage error in comparison to the numerical value.

0

10

0( 5')
0.867
(56)

3.752
(1.159)
7.414

(0.556)
11.612
(0.285)
16.234
(0.173)
21.214
(0.118)
26.506
(0.083)
32.078
(0.062)
37.904
(0.048)
43.964
(0.039)
50.240
(0.032)

O(h2)
0.731
(32)

3.692
(-0.458)

7.372
(-0.014)
11.578

(-0.009)
16.205

(-0.006)
21.189
(0.000)
26.484
(0.000)
32.058
(0.000)
37.886
(0.000)
43.947
(0.000)
50.224
(0.000)

BSWKB
O(h')
0.848
(53)

3.698
(-0.297)
7.373

(0.000)
11.579
(0.000)
16.206
(0.000)
21.189
(0.000)
26.484
(0.000)
32.058
(0.000)
37.886
(0.000)
43.947
(0.000)
50.224
(0.000)

O(h')
0.963
(74)

3.699
(-0.270)

7.373
(0.000)
11.579
(0.000)
16.206
(0.000)
21.189
(0.000)
26.484
(0.000)
32.058
(0.000)
3?.886
(0.000)
43.947
(0.000)
50.224
(0.000)

WKB
O( 5')
0.522
(-5)

3.628
(-2.184)

7.329
(-0.597)
11.544

(-0.302)
16.177

(-0.179)
21.164
(-0.118)
26.462

(-0.083)
32.038

(-0.062)
37.867

(-0.050)
43.929
(-0.041)
50.208

(-0.032)

Numerical

0.554

3.709

7.373

11.579

16.206

21.189

26.484

32.058

37.886

43.947

50.224
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FIG. 2. TheThe potentials V+ (dotted), V (dashed)
&

W (solid) associated with the superpotential W = x + 32:

This superpotential is again positive at both end points
(x = +oo) and obeys broken supersymmetry. It has the
two partner potentials

(40)

which are not related to each th bo er y a parity oper-
ation. The degeneracy of the spectra of these partner
potentia s is therefore a nontrivial consequence of broken
supersymmetry.

We have evaluated the spectra of V~ by three methods:
using t e broken SUSY quantization condition Eq. (26),
by the usual WKB method using V d Vsing + an separately,
all in lowest-order onl an
the Sch-

y; an y numerical integration of

ble II.
ro inger equation. The results h

e . We observe that for this potential the lowest-order

TABLE II. EnerEnergy eigenvalues corresponding to the
asymmetric broken SUSY superpotential W = x +3x, as ob-
tained b the ny e numerical method, the broken SUSY method,
the WKB method for V, and the WKB method for V+, all
in leading order only.

n
0
1
2
3

5
6
7
8
9

Numerical
0.362
6.121
12.111
19.159
27.760
37.620
48.600
60.667
73.677
87.656

BSWKB

6.09
11.82
19.14
27.80
37.66
48.63
60.65
73.64
87.57

WKB.V

5.96
11.61
18.91
27.57
37.43
48.41
60.43
73.43
87.36

WKB:V+

6.18
11.71
18.97
27.61
37.46
48.43
60.45
73.44
87.38

what bet ter than the BSWKB value, but for this state
none of the methods appears to work satisfactorily. This
is not unexpected for a semiclassical approach.

The second superpotential (Fig. 2) which we consider
is

R' = +4+3+.

FIG. 3. Thehe spherically symmetric potentials V+ (dotted),
V (dashed& W solid ~ associated with the superpotential
W= —2r —r.. ~he spectra of the two partner potentials are

egenerate, a nontrivial consequen f b kce o ro en supersymme-
try.

The results of numerical evaluation of the Sch "d'

equation, use of the BSWKB method, and of the ordi-

in Table III. It is noted that for this potential, again the
roken SUSY method is more accurate than the standard

WKB. While the broken SUSY method is consistently
just slightly too high and gives the same values for both
V and V+, the WKB method for both V and for V+ is
too low and gives differing values.

TABLE III. Energy eigenvalues for the partner poten-
tials derived from the sp+erically symmetric superpotential
W= —2r —r , as obtained by the numerical method, the
broken SUSY method, the WKB method for V, and the
WKB method for V+.

0
1
2
3
4
5
6
7

Numerical
13.34
23.39
34.58
46.74
59.73
73.45
87.84
102.83

BSWKB
13.46
23.46
34.64
46.78
59.76
73.48
87.86
102.86

WKB.V
12.85
22.88
34.05
46.17
59.13
72.83
87.19
102.16

WKB:V+
13.07
23.09
34.27
46.40
59.37
73.08
87.45
102.44

broken SUSY
WKB m

SY method is always more accur t th th
method, again with the exception of the ground

e II) with a numerical eigenvalue of 0.362, none of the
semiclassical methods work. In fact, the broken SUSY
method cannot even be applied to the ground state be-
cause this eigenvalue is in a region where the superpo-
tential has four classical turning points.

Our third example (Fig. 3) of broken SUSY is the
spherically symmetric superpotential

W(r) = 2/r —r2—
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VI. CONCLUDING REMARKS

In this paper, we have explicitly obtained the WKB
quantization condition to order h for broken super-
symmetric quantum-mechanical problems. Similar to the
earlier observations for the SWKB quantization condition
for the case of unbroken supersymmetry, our leading-
order BSWKB formula, Eq. (30), yields exact spectra
for all shape-invariant potentials with broken SUSY and
higher-order corrections turn out to be identically zero.
We are not aware of any profound reason for this. A
significant feature of the BSWKB formula, Eq. (26), as
compared to the standard WKB formula is that it pre-
serves the exact degeneracy relation, Eq. (15), at each
order of the approximation. Note that for the poten-
tials in Eqs. (40) and (41), the WEB predictions for
V+ and V are indeed difFerent. In this regard, the
BSWKB method certainly has an advantage over the
standard WKB method. Our numerical illustrations for
three analytically not solvable broken SUSY potentials
indicate that the lowest-order BSWKB quantization con-
dition gives energy eigenvalues with accuracy compara-
ble to the WKB predictions in lowest order. However,
the inclusion of terms of higher order such as 5 and h,
which may only be possible because of the specific form
of the B(SWKB) integrand, leads to almost exact results,
which means that in these situations the BSWKB series
is highly convergent. As expected for all semiclassical

methods, the BSWKB results for highly excited states
are substantially better than those for low-lying bound
states. The BSWKB prediction for the ground-state en-
ergy is not that accurate in the three cases studied here.
In fact, for our first potential, the BSWKB result to any
order is even worse than the lowest-order WKB value. It
is worth noting that the SWKB condition for unbroken
SUSY guarantees the exact result Eo ——0 by construc-(—)

tion. However, a similar constraint is not available for
the BSWKB quantization condition.

In order to be able to use the SWKB or the BSWKB
quantization conditions, one needs to know the super-
potential W(x). Equivalently, if the ground-state wave
function gp(x) or any other nodeless solution P(x) of the
Schrodinger equation for V is known, then a nonsingu-
lar superpotential TV(x) is easily determined [29]. How-
ever, very often one only knows V . In this case the
ordinary WKB method may be preferable since there is,
in general, no easy way to determine W(x).
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