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General method for determining the Floquet states of the forced rotor
and other anharmonic systems
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An approximate analytical solution is developed for the Floquet states of a quantum-mechanical rigid
rotor subject to an arbitrary periodically-time-dependent driving force. The rotor Hamiltonian is ex-
panded in powers of the rotational "anharmonicity" about the angular-momentum state

~ jo ) and a per-
turbative Lie algebraic form of the evolution operator is derived. Except in special cases, the resulting
Floquet states are localized. The localization length shows a sharp transition from narrow to broad for
those Floquet states in the vicinity of a resonance with one of the Fourier components of the driving
field. The special case of the periodically kicked rotor is also discussed, which, because of its unbounded

frequency spectrum, can lead to delocalized Floquet states.

PACS number(s): 03.65.—w, 05.45.+b, 33.90.+h

I. INTRODUCTION

The past decade has seen considerable interest in ex-
ploring the quantum-mechanical analogs of classically
chaotic systems. One class of these comprises periodical-
ly driven systems. Within this class the kicked rotor
[1—7] and the microwave ionization of hydrogen atoms
[8—15] stand out as two topics which have received a
great deal of experimental and theoretical attention. As a
result of these investigations there is a growing consensus
that quantum mechanics suppresses chaotic behavior
[16]; however, the degree to which some manifestations
of chaos survive in the quantum realm is not yet entirely
understood.

A wealth of information about the dynamics of strong-
ly perturbed systems has come from studies of the kicked
rotor. Classically, kick strengths below a critical value
lead to trajectories bounded by Kolmogorov-Arnold-
Moser [17] tori, whereas above the critical value the
momentum grows diffusively. Numerical investigations
have shown that this diffusive growth is mimicked for a
finite time by the quantum kicked rotor, after which it is
suppressed [18] via a dynamical interference, shown by
Fishman and co-workers [2,6], to have a deep underlying
connection with Anderson localization [19].

The localization phenomenon is intimately related to
the quasienergy spectrum and Floquet eigenstates of the
quantum kicked rotor, as discussed in a series of recent
papers by Dittrich and Smilansky [20]. Thus, a rational
ratio between the kick and natural rotor frequency leads
to extended Floquet states and continuous quasienergy
spectra, whereas an irrational ratio yields localized states
and quasiperiodic motion [21]. The importance of the
quasienergy operator is also apparent in the study of oth-
er forced anharmonic systems. For example, Blumel and
Smilansky [14] based their analysis of the microwave ion-
ization of hydrogen on the existence of broad Floquet
states, which act as "ionization windows, " and Tanner
and Maricq [22] pursued a similar approach to explore
the infrared dissociation of a Morse oscillator.

While a considerable effort has gone into the study of
the kicked rotor, much less is known about how other
types of periodic forces affect the quantum rigid rotor.
Bliimel, Fishman, and Smilansky [23] have extended the
kicked rotor analysis to consider finite-duration mi-
crowave pulses, and find that the mechanism of Anderson
localization continues to take place. Lin and Reichl [24]
have computed quasienergies and Floquet states for a ro-
tor in the presence of two nonlinear resonances and have
examined the relationship between the localization length
of the Floquet states and the nature of the corresponding
classical trajectories. The purpose of the present paper is
to derive a general analytical expression for the Floquet
eigenstates of a forced rotor, where the applied force is
periodic in time but otherwise arbitrary. Such a problem
does not permit an exact solution; however, an approxi-
mate solution is possible using an algebraic framework
recently introduced to calculate rotational transition
probabilities [25].

The solution for the Floquet states is based on mapping
the forced-rotor Hamiltonian onto the Lie algebra gen-
erated by a number operator and the associated raising
and lowering operators. This mapping is exact under the
two approximations that the local energy-level structure
is linear in rotational quantum number and that the in-
teraction operator between rotor and driving field is a
linear combination of operators which raise and lower
the total angular momentum by an integer number of
quanta. With these approximations, an exact solution to
the exponential form of the evolution operator becomes
feasible and yields the Floquet eigenstates. The Floquet
states of the real rotor are determined by introducing the
"anharmonicity" in the rotational energy levels as a per-
turbation. The first-order corrections both significantly
improve the theoretical predictions and elucidate the role
of discrete and unevenly spaced energy levels on the rota-
tional dynamics.

The solution of the forced-rotor problem shows that
the Floquet states are in general localized, with a locali-
zation length which grows with the strength of the driv-
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ing force and shrinks with the extent of detuning between
the local free-rotor energy-level spacing and the driving
frequency, as has been observed in numerical simulations
[24]. Delocalized states arise in the "linearized" rotor
when the level spacing is resonant with the fundamental
frequency of the external force or one of its harmonic
components. These are, in general, effectively suppressed

by the "anharmonicity" of a real rotor; yet even in this
case there is a sharp transition from narrow to much
broader Floquet states in the vicinity of the resonance. A
series of infinitely sharp kicks contains a sufFicient num-
ber of harmonic frequencies to ensure that all or nearly
all the rotor levels fall into these resonance regions and
thereby produces delocalized Floquet states even though
the rotor is anharmonic [26].

The body of the paper is organized as follows. Section
II reviews the algebraic formalism and necessary approxi-
mations that are used in the analytical treatment of the
forced rotor. The equations for the Lie coefficients
governing the exponential solution to the time-dependent
Schrodinger equation are developed Sec. III. A perturba-
tive solution to these equations for the case of the forced
rotor is presented in Sec. IV and the results are compared
to exact numerical calculations.

II. ALGEBRAIC PRELIMINARIES

The Hamiltonian for a rigid rotor subject to a time-
dependent external force,

&=Aj +f(t)cos8, (2.1)

depends on two noncommuting operators, j and cosO
(with units 8=1), with 8 representing position and j the
conjugate momentum. The Floquet eigenstates are found
from the evolution operator U(r) that propagates the
system forward one period in time. Because of the non-
commutativity of j and cos8, an exact solution for U(r)
is not feasible. The approximate solution proceeds by
mapping the forced-rotor Hamiltonian onto the algebra
of raising and lowering operators familiar from the har-
monic oscillator [25]. This section describes how the
Hamiltonian is rewritten in terms of this algebra and the
approximations that are invo1ved.

The first approximation consists of linearizing the rota-
tional kinetic energy about a state

~ jo) and treating the
"anharmonicity" in the rotational energy levels as a per-
turbation. Linear approximations of this sort have previ-
ously been used for a semiclassical treatment of rotation-
ally inelastic scattering [25), to analyze spectral line
broadening [27], and to investigate rotational excitation
by high-intensity laser fields [28]. Let n =j—jo define
the number of "incremental" rotor quanta with respect to
the expansion point jp ~ Then we can write the rotational
kinetic energy in terms of n as

n
ljo+ n &

=n
Ij,+ n &, the rotational kinetic-energy

operator to first order in n becomes

Qj =(Q,n+Co) . (2.2)

[n i8] i8

[n
—i8] e

—i8

(2.4a)

(2.4b)

The two phase operators almost commute with each oth-
er; that is, the matrix elements of the commutators are

(J,m
I
[e', e '

]Ij,m ) =0 (2.5a)

for all j' and j except when j'=j= ~m~, in which case

(/mf, m /[e'8, e '8]//m /, m ) =I (2.5b)

An exact representation of cos8 in terms of the phase
operators is given by

cos8=C (j)e ' +e' C (j), (2.6)

where C (j) is an operator function. However, because
of the weak-j dependence of C (j) we can make the ap-
proximation that

cos8=C (jo)(e' +e ' ), (2.7)

with C (jo) now treated as a scalar. The net result of the
above two approximations is that it permits us to express
the forced-rotor Hamiltonian as

The second approximation concerns the operator cos8.
Because cose is diagonal in azimuthal quantum number,
we can think of it as operating in a one-dimensional space
but with a parametric dependence on m. This depen-
dence adds no complexity to the ensuing discussion and is
kept for the sake of generality. By examining the action
of cos8 on the spherical harmonics, Y (8,$), one easily
verifies that it has matrix elements [29]

(j'm '~cos8~ jm )

=[C (j+1)5, ~, +C (j)5', ]5 ~, (2.3)

with the definition C (j):—(j —m )' (4j —1)
The simpler form, C (j)= —,'(1 —m /j )'~, affords an ex-
ce11ent approximation except at the very lowest values of
total angular momentum and is used throughout the
remainder of this paper. Note that for the planar rotor
m =0 and Co(j)= —,

' is independent of j. Even when
m WO, C (j) remains only weakly dependent on j, except
when j=~m~.

One can take advantage of the weak-j dependence of
C (j) by introducing the phase operators e' and e
These are defined by e' jj)=

~j—1) and
e

~j ) =
~j + 1). Their commutation relations with the

number operator are

Qj ~ jo+n ) =(Co+A, n+O, X,n )
~jo+n ),

where 0, —:(2jo+l)Q, Q,X, =Q, and CO=Qjo(jo+I).
For jo))0 and ~n ~ ((jo, the term proportional to n is
much smaller than the linear term and will be treated as a
perturbation. Thus, upon defining the number operator

with

&=&0+&,+Co,

&0=0,n+f(t)C (jo)(e'8+e '8),

&i=A,X, n

(2.8)

(2.9a)

(2.9b)
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The advantage of this form is that the unperturbed Ham-
iltonian is written entirely in terms of operators belong-
ing to a Lie algebra,

XD= [n, e', e (2.10)

which is approximately closed under the commutation
product [i.e., ignoring the nonzero commutator matrix
elements given by Eq. (2.5b), which is valid for ja ))

~
m ~].

The structure of XD permits an exact solution for the Flo-
quet Hamiltonian of the "linearized" rotor. By including
the "anharmonicity" of the rotational energy levels, &„
as a perturbation, an approximate expression for the Flo-
quet Hamiltonian of a real forced rotor can be found.

III. LIE ALGEBRAIC SOLUTION
FOR THE FLOQUET HAMILTONIAN

=H(t)U
dt

(3.1)

for the exponential form of the propagator, U(t) =e
and setting HF=iQ(r)/r The so.lution for Q(t) that is
presented takes advantage of the algebraic properties of
the operators comprising H(t) in a procedure analogous
to one used by Wei and Norman [31] to develop a prod-
uct representation of U(t).

Let X= Ix; ] denote the Lie algebra which is spanned
by the elements x; and is closed under the commutator
product; that is,

[X;,XJ ] =C;~ 'x, (3.2)

where the elements of c;. are defined as the structure con-
stants of the algebra. If H ( t) can be expressed in terms of
the x;, then Q(t) is an element of X, and we can define
quantities h; and g; such that

H(t)=gh, (t)x, =h x, (3.3)

Q(t)=g x .

According to a formula due to Wilcox [32],

de~ ~ „~dneu e u aue
dt o dt

(3.4)

(3.5)

provides a means of differentiating the exponential propa-
gator. By combining this expression with Eqs. (3.1), (3.3),
and (3.4), one obtains

dg ' un —unh x= - - e"~xe u"du .
dt o

(3.6)

The symmetry in time which occurs for a periodically-
time-dependent Hamiltonian, with period ~, implies the
existence [30] of a linear transformation, itself time in-
dependent, which maps state vectors at time t onto those
at time t +~. Because it preserves vector norms and an-
gles, the transformation is unitary; therefore,

~y(t+7. ) & =exp( i' 7)—~q(t) &.,

where IIF is defined as the Floquet Hamiltonian. In this
section we will determine HF by solving the Schrodinger
equation

The completeness of L implies that the integrand is an
element ofX, whereby

e unxe un— (3.7)

Owing to the property that L is closed, it is possible to
define a matrix S such that

[Q,x]=Sx; (3.8)

thus S is a function of the Lie coefficients g, (t) and the
structure constants c,". Upon differentiating Eq. (3.7)
with respect to u, one finds that dA /du =SR. Because S
is independent of u, this equation is easily integrated and
yields A =e" . After substituting Eq. (3.7) into Eq. (3.6)
and integrating with respect to u, we arrive at a
differential equation for the components of II(t) in terms
of those of H(t),

d =h(e —1) 'S,
dt

(3.9)

subject to the initial condition g(0) =0. Note that the ma-
trices (e —1) ' and S operate to the left on h. This is a
consequence of the convention chosen in Eqs. (3.3) and
(3.4) of writing h and g to the left of x.

The eigenstates of S would ordinarily provide a con-
venient basis in which to expand Eq. (3.9). Unfortunate-
ly, they are not necessarily complete, since S is not gen-
erally a normal matrix. This difficulty can be overcome
by employing a basis formed by the generalized [33]
eigenvectors of S, with the kth-order eigenvector corre-
sponding to the eigenvalue s, being defined by

( (k)~(S )k () (3.10)

Inserting the expansion h=g;b; (s, ~
of the Hamiltonian

in terms of the basis of generalized eigenvectors into Eq.
(3.9) and writing (e —1) 'S in a power series about s,
yields

s; +
e' —1

S. S.e' —1 —s;e'
(S —s )+I

(e ' —1)

(3.11)
Owing to the definition of the generalized eigenvectors,
Eq. (3.10), the series in brackets truncates at the (k —l)th
term for an eigenvector of order k. The advantage of Eq.
(3.11) over Eq. (3.9) is that the operator function present
in the latter is converted into a numerical function of the
eigenvalues of S.

Equation (3.9) is nonlinear due to the dependence of
the matrix S on the functions g;. Singularities appear in
this equation whenever an eigenvalues of S equals im 2~
for m&0. The singularities arise from constraining the
evolution operator to an exponential form, as pointed out
by Magnus [34] in his original paper on the exponential
solution to Eq. (3.1). A well-defined solution always ex-
ists for t sufficiently close to zero because
det[(e —1) 'S]~1 as t —+0. However, a well-behaved
global solution is generally not possible [35]. In particu-
lar, series expansions of Q(t) will at some time t )0 fail
to converge because of the singularities. The forced ro-
tor, however, is a special case. Under the approximations
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introduced in Sec. II, %0 is an element of Xo, and for this
algebra an analytic solution to Eq. (3.9) is feasible.

IV. FLOQUET STATES
OF THE FORCED ROTOR

A. Zeroth order

This section applies the algebraic formalism developed
in the preceding section to the forced rotor and solves the
differential equations for the Lie coefficients g;. The
forced rotor, to zeroth order in the "anharmonicity, "
evolves under the Hamiltonian &0 (given by Eq. (2.9a).
Because %o is an element of the three-dimensional alge-
bra Xo, the matrix S, defined by Eq. (3.8), has the form

times. By the definition H~ =iII(r)/r, the Floquet Ham-
iltonian for the forced rotor to zeroth order in X, is

HF() =Q, (n+iGe's iG—*e 'e), (4.4)

where 6=[1—exp( —iII, ~)] 'F(r) and ~ is the time for
one period of the driving force.

The form of the Floquet Hamiltonian derived in Eq.
(4.4) is essentially the same as that of the Hamiltonian for
a charged harmonic oscillator in a static electric field
[36]. Only the minor difference exists that the interaction
with the field in the case of the harmonic oscillator de-
pends on raising and lowering operators, whereas phase
operators appear in Eq. (4.4). The analogy suggests that
the states defined via

~J )=e" "+ ' )~j, +n) (4.5)

S= 0 —gi 0

0 0 g)

(4.1)
are the Floquet eigenstates for the "linearized" forced ro-
tor. It is readily verified, using the commutation rela-
tions

Its eigenvalues and the corresponding eigenvectors (all of
order 1) are

[n,f(e —' )]=+e 'df/(d—e ' ),
[f(e' ),g(e ' ))=0

(4.6)

(4.7)

s1=0 (sl~=(gl g2 g3)

s~ = —g„(s2~ =(0, 1,0),
s3=g„(s3~ =(0,0, 1) .

dgi
dt

dg2 1
=g2 iA t

e 1

C f(t)Q, t
iQ t

e 1

(4.2a)

(4.2b)

for the Lie coefficients of Q(t), with the initial condition
that g, (0)=gz(0) =0. The equation for g& is redundant,
because the Hamiltonian is Hermitian and g3 = —g2. Al-
though nonlinear in general, Eq (3.9) ha. s uncoupled for
Xo to yield a set of first-order ordinary differential equa-
tions. The solutions are obtained by standard procedures
and are given by

The solution of Eq. (3.11) also requires the coefficients b,
used to expand the Hamiltonian in the basis operators of

Upon setting h x=H(t) = i&0, the—coefficients are
obtained from h x=g;b, (s, ~

x (the values are listed as
b, b3 in Ap—pendix A). Inserting s;, (s;~, and b; into Eq.
(3.11) yields the nested sequence of coupled differential
equations,

for arbitrary functions f and g, that

HFO~J~) =(C, +n&, ) J+), (4.8)

oo

,
«Jo+n'I(Ge "+G*e ")kj~0+n )0k!

~ k~ e ( k —5n ) /2 6 ( k + (i n ) /2l G

0 [(k+5,n )/2]![(k b,n )/2]!—

where the constant term in the expansion of the rotation-
al kinetic energy, Eq. (2.2), has been included.

It is important to keep in mind that the Floquet states
are labeled by n, the displacement from the state

~ jo)
about which the kinetic energy is expanded and, there-
fore, that the labeling of states will depend on the choice
of j0. The net result is that to zeroth order in X, the lo-
cal quasienergies about any state

~ jo ) are the same as the
free-rotor energy levels; however, it should be recalled
that the quasienergies are only uniquely defined modulo
2m /r.

The Floquet eigenstates, in contrast, differ markedly
from the free-rotor states. The assumed commutativity
between the two phase operators permits an exact calcu-
lation of the overlap between Floquet and free-rotor
eigenstates; thus,

g&= —iQ, t,
Q, t

,„,F(t),
e

where

(4.3a)

(4.3b)

where An =—n' —n. Changing the index of summation
from k to l =

—,'(k —~b, n
~ ) produces a series which is, ex-

cept for a constant factor, identical to the series represen-
tation of the ~b, n ~-order cylindrical Bessel function [37];
thus,

F(t)—:C (jo)f dt'f(t')e
0

is the component of the driving force at frequency 0, .
Combining these solutions via U(t)=ex "provides the ex-'
ponential form of the evolution operator for arbitrary

(j on+'( J)F=e ' "'~ 'J „(2(6(), (4 9)

where the phase ((() is defined by e'~=6/~6 ~.

Figure 1 compares the overlap of the Floquet eigen-
states with the angular-momentum basis vectors that is
predicted by Eq. (4.9) to exact numerical values deter-
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FIG. 1. Comparison of the zeroth-order approximate Flo-
quet eigenstates to exact numerical results for a real rotor. The
rotational constant is 0=0.5 cm ' and m =0. (a) v=500
cm ', co= 100 cm ', and jp =Jp =75. (b) E =400 cm
co=27. 5 cm ', and jp= JF=50.

FIG. 2. Comparison between zeroth-order and exact Floquet
state widths for the sinusoidally driven rotor. jp is set equal to
Jz for each width determination. The rotational constant is
0=0.5 cm ' and rn =0. (a) c.=500 cm ' and co=100 cm
(b) v=400 cm ' and co=27. 5 cm

mined by the procedure described in Appendix B. The
example in Fig. 1 is that of a sinusoidally driven rotor;
thus, f(t)=E sin(cot) and G=C ceo/(co —0, ). In both
cases, JF is chosen to be removed from the resonance
condition, i.e., when the local rotor energy-level spacing
equals the driving frequency.

The widths of the zeroth-order Floquet states, defined
by

(4.10)

are plotted in Fig. 2 for the example of a sinusoidally
driven oscillator. The agreement with exact numerical
results is very good away from the resonance condition.
The singularity in the width at resonance is a conse-
quence of the linear approximation for the local rotor
energy-level spacing. While the singularity is absent, the
exact widths show a pronounced increase in the reso-
nance region. This behavior has also been observed in
the numerical studies of quantum resonance overlap by
Lin and Reichl [24].

While the zeroth-order approximation yields Floquet
states in good qualitative agreement with those of a true
rigid rotor, it falls short in a number of ways. The pre-
dicted quasienergies are identical (modulo 2'/r) to the
eigenvalues of a free rotor, a situation which is not sup-
ported by exact numerical calculations. The Bessel-
function distribution of angular-momentum states ob-
tained in zeroth order is symmetric in An, whereas the
exact Floquet states exhibit a distinct asymmetry. The
Floquet states of Eq. (4.9) exhibit singularities absent

from the exact counterparts. Perhaps foremost, the spe-
cial nature of the "linearized" rotor invites criticism that
the good agreement between zeroth-order and exact Flo-
quet states might be fortuitous.

B. First-order correction for the anharmonicity

X =[ne' e ' n e'(2n —1)

(2n —1)e ', (e' ),(e ' ),1], (4.1 1)

In order to improve the quality of the analytical pre-
dictions and to investigate the role of the rotational
"anharmonicity, " the present section derives a Lie alge-
braic solution for the Floquet Hamiltonian that includes,
to first order, the quadratic nature of the energy-level
spacing of a true rigid rotor. To incorporate the anhar-
monicity, Xo must be expanded so that ~,=Q,X,n2 can
be written in terms of its elements. Because the magni-
tude of &, relative to that of &0 is roughly
X, =(2jo+I) ', let us temporarily attach the expansion
parameter X, to n . Simply adding X,n to Xo leaves it
open; in fact, an infinite number of multiple commutators
of the form [. . . [X,n, a],b. . . ] are needed to close it,
where a, b, . . . are either X,n or elements of Xo. Howev-
er, only a finite subset of such commutators is propor-
tional to X,'. Thus, the forced-rotor Hamiltonian,
&=&0+&,+Co, is an element of the algebra
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which is closed to first order in X, (for simplicity the fac-
tor X, is no longer attached to the operators).

The Floquet Hamiltonian for the forced rotor, to first
order in X„ is obtained by applying to X& the Lie alge-

braic solution for the exponential form of the evolution
operator developed in Sec. III. The interested reader is
directed to Appendix A for an outline of the solution of
Eq. (3.11) for the Lie coefficients g, (t). The result is

g4= —iA, X,t,
A,X, t

F(t) 1—
e

'Qet dF(t)+A,

(4.12a)

(4.12b)

2A, X, t
F(t)f F(t')dt' f—F2(t')dt'

e

iQ,X, t F (t)

(1 'ne')2 sinQ, t Q, t
(4.12c)

g, = i2—X, .Q, f ~F(t')~'dt'— Q, tF(t)
—iO t

1 e

sinA, t

1 —cosA, t
2

A, t

A, t
+A, Em

I —cosA, t
F(t)f F*(t')dt'

0
(4.12d)

The solutions for g1, g2, and g3 are identical to those ob-
tained for zeroth order in X, and are given by Eqs. (4.3a)
and (4.3b). Upon defining h~, =g, (r)/( i r) the—Floquet
Hamiltonian of a rigid rotor driven by a general time-
dependent potential of the form f(t}cos9 is

HF, —hF X (4.13)

i Ie' [G+b(2n —1)]+[G +b (2n —l)]e
1
—e (4.14)

c i[c(e'~) +c+(e t8)2]
S2 =e

where b and c are assumed to have magnitude of order
X, . The evaluation of HF, ~ J~ & proceeds by factoring S,
and S2 into products of exponential operators and then
interchanging the operator ordering of n, and n, with
each of the factors; thus

51 =ec ie' [G+b(2n —1)] i[G +b (2n —1)]e ' i[2(Gb +G b)]

using the approximation that

[e' (G+b(2n —1)),(G*+b'(2n —1))e '
]

=2Gb *+2G*b

to first order in X,. The operator reordering is accom-

to first order in the "anharmonicity, " X, . Although the
term hF91 ordinarily contributes only an additive con-
stant to the quasienergies, it should be kept in the present
circumstances, because this constant depends on the
point jo chosen for expanding the kinetic energy.

Two approaches can be taken to calculate the eigenval-
ues and eigenvectors of HF, : in this section an approxi-
mate unitary transformation is found which diagonalizes
the Floquet Hamiltonian to first order to X, . An exact
numerical diagonalization of HF1, is presented in the fol-
lowing section.

Let us generalize the Floquet states defined by Eq. (4.5)
by introducing the unitary transformation

~ J~ & =s,s, ~J', +n &,

+i [G*+b*(2n—1)]e

i2c(e'—) +i2c*(e '
)

—2(Gb*+G*b )]S(S2~j,+n &,

n
~ J~ & =[n iGe' (—2n 1)+iG—*(2n—1)e

+G (e' ) +G* (e '
)

—2GG*]S, S~j2o+n & .

(4.15)

(4.16)

A comparison of Eqs. (4.15}and (4.16) to HF& ~ JF & reveals
that by choosing

G = —ihF2/Ae ~

b =( ihF5 Q, X—,G)/Q—, ,

c = i(hF7+—Q, X,G )/(2Q, ),

(4.17)

(4.18)

(4.19)

the terms proportional e —' and (e —'s)2 in Eqs. (4.15) and
(4.16) cancel with the corresponding terms in HF„ leav-
ing

HF, iJ~&=[CO+nQ, +n Q,X, +hF9
—2Q,X,GG* —2Q, (Gb*+G "b)]

~ Jp &,

(4.20)
which is diagonal in the

~ J~ & basis. The basis vectors are
labeled by n, the displacement from the state j0 about
which the rotational kinetic energy is expanded. The fac-
tor G is identical with its previous definition in Sec. EV a.
Appendix C lists the quantities hF;, G, b, and c for the
sinusoidally driven and kicked rotors.

The term in brackets on the right side of Eq. (4.20)

plished by repeated application of Eqs. (4.6) and (4.7),
keeping in mind that in the spirit of the first-order treat-
ment only terms proportional to X, and X, are kept. The
result is that

n~ JF &
= [n ie' [G—+b(2n —1)]
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represents the quasienergy. The sum of the first three
terms reproduces the free-rotor energy levels. The final
two terms represent the inhuence of the periodic driving
force on the quasienergies, which was absent in the
zeroth-order treatment. Away from any resonances,
these quasienergies are in very good agreement, modulo
2~/~, with the exact values; at resonance, the first-order
quasienergies given by Eq. (4.20) exhibit singularities.

The impact of the first-order correction on the approxi-
mate Floquet eigenstates is evident from the comparison
made in Fig. 3 to the exact states. The projection onto
the free-rotor basis states is obtained from an extension of
the corresponding zeroth-order quantities, Eq. (4.9), via

&j 'I JF &
=& & jo+~'l~

~ I jo+ k & & jo+k l&~ l~~ &

k

J(, k) [2I G+ b(rt '+ k )
I ]

k

The effect of the "anharmonicity" can also be seen by
comparing the first-order average rotational kinetic ener-
gy, of the Floquet states given by

=Co+ Q, [n +2(Gb *+G*b ) ]

+A,X,(n +2GG*), (4.22)

to the corresponding exact values. This is illustrated in
Fig. 4 for the sinusoidally driven and kicked rotors (dot-
ted lines). The agreement is very good except in the re-
gions for which the "resonance" condition A, ~=m2m is
nearly met. In the latter regions, the analytical predic-
tions diverge, whereas the exact calculations reveal a sud-
den onset to a region in which the average kinetic ener-
gies of the Floquet states are nearly degenerate.

—i($2 —m/2)(k —n )/2
X c (k —n)/2 (4.21)

C. Removing the singularities

where the operator n in the exponent of S1 has been re-
placed by ( n '+ k + 1 ) /2 and the phase factors are
defined, respectively, by exp(iP, ) = [G+ b(n '+ k ) ]/
IG+b(n'+k)l and exp(i/2)=c/ cl (values of G, b, and c
are given in Appendix C). The contrast between the
first-order states in Fig. 3 and the corresponding zeroth-
order states in Fig. 1 shows that the correction for the ro-
tational "anharmonicity" introduces the required asym-
metry about the state j'=JF and provides very good
agreement with the exact numerical results.

A persistant problem with both the zeroth- and first-
order Floquet Hamiltonians is the presence of the singu-
larities arising under the "resonance" condition. These
are not simply theoretical artifacts, since they occur in
situations where the exact calculations reveal a significant
broadening of the Floquet eigenstates. This section ex-
plores a unitary transformation of the forced-rotor Ham-
iltonian into an interaction representation that, at least

I ' ' ' ' I ' ' ' ' I

1 st order Eq. (4.21)
exact

0.10 —
(o

~ ~
~ ~

~ ~
~ ~

I

J =75F
o 10

0.05
V

W
V

50 100 150 BOO

0.00 (=——
60 80 20

1 st ord
1 st ord
exact

I

er, Eq. {4.22)
er, num. diag.

0.20

0. 15 - (b) 0

I I

. "-~--1 st order Eq. (4.21)
exact

I

J =50
F

o 10

(b)

R.
0.10

V
0.05

04

V
0

0 50 100
J

I

150 200

0.00 ~ ——
40 50

j

FIG. 3. Comparison of the first-order approximate Floquet
eigenstates to exact numerical results for a sinusoidally driven
rotor. (a) The parameters are jp=75, 0=0.5 cm ', m =0,
v=500 cm ', and co=100 crn '. (b) The parameters are jp =50,
0=0.5 cm ', m =0, v=400 cm ', and co=27. 5 cm

FIG. 4. Comparison of exact average kinetic energies for
I JF & to predictions from Eq. (4.22) and to values obtained from
numerical diagonalization of 0». The rotational constant is
0=0.5 cm ' and m =0. (a) Sinusoidally driven rotor with
c, =500 cm ' and co=100 cm '. (b) Periodically kicked rotor
with 0=m and ~= —ps. Constant values of 2 X 10 and 4 X 10
cm ' have been added to the numerical first- and analytical
first-order traces, respectively, in order to separate the traces.
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locally, removes the singularities and provides a Floquet
Hamiltonian that remains finite.

In order to make use of Floquet's theorem, the trans-
formation must be chosen so as to produce a
periodically-time-dependent Hamiltonian in the interac-
tion frame. The unitary operator

Ut =exp( im cont ), (4.23)

&t=(Q, —me@)n+Q, X,n

+f (t)c (j )(e '~~ e' e+e'~~ e 's) (4.24)

The interesting feature about this result is that the
forced-rotor Hamiltonian in the interaction frame has a
form very similar to the original Schrodinger frame ver-
sion; one needs only to make the replacements

Q, ~(Q, —mes),

X,—+Q, /(Q, —m co)X, ,

f(t)~e ' 'f (t)

(4.25a)

(4.25b)

(4.25c)

to convert from one frame to the other ( —and + are
used when making replacements into g; for lowering and
raising operators, respectively). The implication of this is
that the interaction frame Floquet Hamiltonian, to either
zeroth or first order, can be obtained simply by making
the above replacements in the Lie coefficients hF; derived
in Secs. IV a and IV b.

An important consequence of the above frame trans-
formation is that it has no material effect on the quasien-
ergies or on the approximate Floquet eigenstates. An ex-
amination of the quantities 6, b, and c given by Eqs.
(4.17)—(4.19) reveals that they are invariant to the re-
placements made in Eqs. (4.25a) —(4.25c). Because these
quantities define the approximate Floquet eigenstates
JF ), these states are invariant to the frame transforma-

tion. Introducing the replacements of Eqs. (4.25a) —(4.25c)
into the zeroth- and first-order quasienergies reveals that
these quantities are shifted by an amount mao in energy.
Thus, modulo co, they too are invariant to the transfor-
mation.

The frame transformation produces the zeroth-order
Floquet Hamiltonian

IIto=(Q, mes)(n+iGe—' iG "e ' )—(4.26)

where r=2n/co represents the period of the driving
force, fulfills this requirement. Because e —' are "eigen-
operators" of n under the commutation product, the
phase operators transform into

+i8y-pf +impost +i8ale ml —e

in the interaction frame, and the forced-rotor Hamiltoni-
an & becomes

2
(4.27)

in the basis of angular momentum states. Note that these
Floquet states are labeled by the continuous index P and
that they are infinitely broad. They are not normalizable
in the ordinary sense; rather

g. -'"'~-~'= gS(y —y —2~k ),1

2' k k

requiring that P and P' be constrained to the interval
(0, 2m ). The corresponding quasienergies are given by

lim Eto= —Re(Fe'~) .=2
co—+0 /m

Such a transition from discrete to continuous quasiener-
gies is cited as signaling the onset of quantum chaos [21].
Indeed, a linearized rotor initially in state jo will under
resonance eventually spread to all other angular-
momentum states.

The advantage of the interaction frame Floquet Hami1-
tonian is that it remains finite even when the resonance
condition mco=Q, is met. This allows numerical diago-
nalization of the first-order Floquet Hamiltonian [ob-
tained by substituting Eq. (4.25) into Eq. (4.13)]. Figure 5
compares the exact overlap probability of

~ JF =70) with
the free-rotor basis states to the first-order predictions.
Expanding the rotor kinetic energy about jo =80 gives

10

10

10

10

frame we find that, under the "resonance" condition, the
Floquet states become eigenstates of the phase operators,
1.e.,

in the interaction frame. Unlike its Schrodinger frame
counterpart, Hzo remains finite as co~A, /m; in fact,

60 70 BO

lim Hto= (Fe' +F'e ' ), —1

co~A /m 7
(4.26a)

where I' is the component of the driving force at 0, . In-
stead of the singularities observed in the Schrodinger

FIG. 5. Comparison of exact and first-order values for the
overlap probability of

~
JF=70) with the free-rotor basis ob-

tained by numerical diagonalization of 0». Three values of the
expansion point jo are illustrated. The parameters are 0=0.5

cm ', m =0, and m=500 cm ', co=100 cm
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FIG. 6. Widths of the Floquet states predicted from numeri-
cal diagonalization of H» vs exact values for the sinusoidally
driven rotor. The rotational constant is 0=0.5 cm ' and
m =0. (a) c=SOO cm ', co=100 cm ', and jo=100 for all Jz.
(b) v=400 cm ', ~=27.5 cm ', and jo =50 for all JF.

excellent agreement with the exact values. The accuracy
of the predictions slowly decreases as the expansion point
is chosen further from the center of the Floquet state;
even at j0=120 a qualitatively accurate picture of the
Floquet state remains.

The question of what effect the anharmonicity has on
the widths and energies of the Floquet states is addressed
by Figs. 4, 6, and 7. In each case, numerical diagonaliza-
tion of Hl, yields a qualitatively correct prediction of the
exact results. When Q,

&mcus,

the average kinetic energy
of the Floquet states is essentially the same as for the
free-rotor states. These Floquet states are relatively lo-
calized, but their widths increase as a resonance is ap-
proached. As Q, —+men, assuming that the driving force
has a nonzero Fourier component at frequency men, the
kinetic energy reaches a plateau [38]. Concomitantly, the
Floquet states undergo a dramatic increase in width (Fig.
6). If multiple resonance regions exist, as they do for the
kicked rotor, then corresponding to each region there is a
plateau in the average kinetic energy (Fig. 4) and a sharp
transition to delocalized Floquet states (Fig. 7). Precisely
the same characteristics were observed in the numerical
studies of I.in and Reichl [24]. These results can be ex-
plained as follows. In the harmonic case, a resonance re-
gion would engulf the entire free-rotor basis. This delo-
calization of Floquet states is suppressed by the anhar-
monicity, which limits the delocalized states to the reso-
nance regions. The size of these regions is, in turn,
governed by the strength of the driving field [39] relative
to the magnitude of the anharmonicity. When the reso-

15 I

exact
— —— Num. diag. of H 11
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II

II I
I I

I

I4 li I, I

I

I /I

I

I i(lll
I
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I I II II
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I

'

IIII I
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I
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I

I
II I

0
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FIG. 7. Widths of the Floquet states predicted from numeri-
cal diagonalization of H» vs exact values for the periodically
kicked rotor. The rotational constant is 0=0.5 cm ', m =0,
0=m, and ~= —ps. The first-order predictions are made in

three intervals with jo = 50, 100, and 150, respectively.

nance regions are sufficiently close together and the driv-
ing field is sufficiently intense, the resonance regions can
overlap to yield delocalized Floquet states.

V. CONCLUSION

This paper has presented an analytical solution for the
Floquet eigenstates and quasienergies of a rigid rotor sub-
ject to an arbitrary time-dependent force by introducing a
perturbation expansion in the anharmonicity of the rota-
tional energy-level spacing. Within this scheme both the
forced rotor and its associated Floquet Hamiltonian be-
come elements of a finite-dimensional Lie algebra. A sys-
tem of differential equations for the Lie coefficients of the
Floquet Hamiltonian is derived from the time-dependent
Schrodinger equation by assuming an exponential form
for the evolution operator. Although nonlinear in gen-
eral, these equations admit analytical solutions to both
zeroth- and first-order in X, for the forced-rotor problem.

To zeroth order, the J~th Floquet state is composed of
a Bessel-function distribution, Jz„(2~6~), of free-rotor
states. This state is, in general, exponentially localized
for large

~

An ~, leading to a quasiperiodic motion. At res-
onance, however, the quasienergy spectrum becomes con-
tinuous and the Floquet states are completely delocalized.

The first-order correction for the anharmonicity in ro-
tational energy levels introduces a number of new
features. The symmetry in the zeroth-order Bessel func-
tion distribution is replaced by an asymmetry which ac-
curately reproduces the exact Floquet states. Away from
a resonance region, the Floquet states are relatively nar-
row. As resonance is approached, there is a sharp transi-
tion to much broader states, with nearly degenerate aver-
age kinetic energies. These states are remnants of the
delocalized states that exist for the harmonic system, but
are suppressed by the anharmonicity. When multiple res-
onance regions exist, a group of broad Floquet states is
associated with each region and relatively narrow states
are found in between. As the separation between reso-
nance regions decreases, these regions will begin to
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coalesce, leading to delocalized Floquet states.
The emphasis of the present paper has been on the Flo-

quet eigenstates of the forced rotor. In two respects, a
more general problem has actually been solved. For
deriving the Floquet Hamil tonian, a periodic driving
force was assumed and attention was directed to the evo-
lution operator over one period. In fact, the evolution
operator e ' ", derived in Sec. IV, is valid even when the
driving force is aperiodic and at arbitrary time. Second-
1y, the perturbation expansion in the anharmonicity that
has been presented can be applied equally well to other
anharmonic systems.

APPENDIX A

This appendix provides a solution for g; ( t ), the Lie
coefficients used to expand 0( t) in the exponential evolu-
tion operator, to first order in the anharmonicity. The
commutation relations between the basis elements of X,
to zeroth order in X, are identical to those for Xo, and

are given by Eqs. (2.4) and (2.5). Nonzero commutators
to first order in X, are given by

[n', e'e] = —e' (2n —1 ),
[n2, e 'e]=(2n —1 )e

[n, e'e(2n —1 )]=—e' (2n —1 ),
[n, (2n —1 )e ' ]=(2n —1 )e

[e', e' (2n —1 )]=2(e' )

[e', (2n —1 )e ' ]=2,
[e ', e' (2n —1 )]=—2,
[e 'e, (2n —1 )e ' ]=—2(e '

)

Using these commutation relations one constructs the
matrix S from Eq. (3.8) and the expansion
0( t) =g,.g, ( t)x;, where x; are the basis elements of X„
with the result that

0 g 2 g3 0gsg62g7 —2g8 0

0 0

0 0 0

0 0

0 g ~

0 —g $ 0 0 g 4

g4

0 —2g 5

0 2g 6

0

2g 6

2g g

0

S= 0 0 0 —g ) 0

0

0 0 0 0 0

0 0 0 0 0

2g p

0

2g )

2g 3

—2g 3 2g z

0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 2g )

0

Because it is an upper triangular matrix, the eigenvalues and generalized eigenvectors of S are easily obtained. The re-
sult is

(si l =(gi, g2, g3 g4 g5 g6 g7 gs

sz = —g„(s2 l

= [0, 1,0, 0, 0,0, 2(g2g4 —g, g5 )/g i,0, 2(gig6 —
g3g& )/gi ], order 2,

$3 =g„(s3 l

= [0,0, 1,0,0,0, 0, 2(g3g4 —g, g6 )/g i, 2(g, g5
—

gzg4 )/g, ], order 2,
s4 =0, ( s4 l

= ( 0, 0,0, 1,g 2 /g „g3 /g „g2 /g „g3 /g i, 0 ), order 1,
ss = —g„(s5 l

= (0,0, 0, 0,g„0,2g2, 0, 2g3 ), order 1,
s6 =g, , (s6l =(0,0, 0, 0,0,g„0,2g„2gz ), order 1,
s7= —2g„(s7l =(0,0, 0,0, 0, 0, 1,0, 0), order 1,
s& =2gi, (ss l

=(0,0,0,0,0, 0,0, 1,0), order 1,
s9 =0, (s9 l

=(0,0,0, 0, 0,0, 0, 0, 1 ), order 1,
where the eigenvectors have not been normalized. The solution of Eq. (3.1 1 ) for the functions g; ( t) also requires the
coefticients b; used to expand the Hamiltonian in terms of the generalized eigenvectors of S, i.e.,

i (&o+&—, ) =h .x=g,. b; (s; l
x. These coefficients are given by

l Qe /g )

b2 = i(C f——Q,g2/gi ),
b3 i ( C f—Q, g—3 /g, ),
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b4 = —i ( Q,X, —Q,g4/g 1 ),
b5 =i(Q,g5+Q, X,gz

—Q, g4gz lg 1 )/g 1

b6=i(Q, g6+Q, X,g3 Q g4g3/g, )/gi

b7 = i—[Q Xegez —Q, gig7+Q, g„gz/g, —2(gzg4 —g, g5)Cm f ]/g,

bS = 'I. Q X g'3 gig8+Q g4g3/gi 2(g3g4 g'ig6)C f l/gi

b9 1 l Q gzg3 2C f(gig5 g2g4 g3g4+glg6 ) +4Q (g ig 3g5 2g2g3g4+g 1g2g6 )/gi ]/g 1

to first order in X, . Coefficients b& —b3 are the same as those used to solve for the zeroth-order Floquet states in Sec.
IV a. The substitution of s, , (s;~, and iz; into Eq. (3.11) yields a nested sequence of nine coupled differential equations
for g, The first three are identical to Eqs. (4.2a) and (4.2b) and negative the complex conjugate of Eq. (4.2b), respective-
ly. Of the remaining six, two are redundant because the Hermiticity of the Hamiltonian guarantees that g6 = —g5 and

g8 = —g7. Thus, the four equations needed to complete the first-order treatment are

dg4 = —iO, ,X, ,

dg5 1
iQ t

e ' —1

iO t iA t
e ' —1 —iO, te

+Q,X,(C tf (t) ig, )—
(e ' —1)'

i20,
i2A t

e

2X~g 2 1+ +2iC f (t)(X,gz
—g5)

e +1

+2X gz +iC f(t)
iQ t iQ t

,
e ' —1 —iQ, te

e 1)2

dg9 g2=2i Im 2iX,gz +iC f(t)
dt ' t

iQ t
O, te

. (e ' —1)

4Re(gzg5)+2iC tf(t)g5

t(e ' 1)—
2C f(t)Q, t(g5 —X,gz) —i2Q, X,gzgz +i4Q, gzg5

0 te

It is interesting to note that the equations for gz and g5
are related by dg ~ /dt =Q,X,d g2/dt d 0, As found in

the zeroth-order case, the equation for dg, /dt depends

only on those g with j ~ i; therefore, the above equations
uncouple. While the procedure is cumbersome, these
equations can be solved and yield the functions g;(t) list-

ed in Eqs. (4.3a) and (4.3b) and Eqs. (4.12a)—(4.12d).

APPENDIX B

Exact Floquet eigenstates are determined by numerical
integration of the time-dependent Schrodinger equation
for the forced rotor. The evolution operator over one cy-
cle is computed using the split propagator method
[40—42],

~e —inJ ht/2

k
t QJ2gt /2Xexp i f d—t'f(t')cos& e
k

and its eigenvalues and eigenvectors are determined via
standard numerical procedures. By the relation
U( r ) =exp( iH~r), these eige—nvectors are identical to
those of HF. Because of the ambiguity modulo 2m/~ in

the quasienergies, however, there remains the question of
how to match the numerical Floquet eigenvectors to the
corresponding analytic solutions developed in Sec. IV.
This is accomplished by comparing the average rotational
kinetic energy of the exact

~ JF ), computed from

(E„,) =Q, Qj (j +1)
~ (j ~ JF ) ~, to (E„,), defined by

Eq. (4.22) and associating those states with nearly equal
kinetic energies.

APPENDIX C

Table I lists the Lie coeKcients h~,- and the quantities
G, b, and c for the examples of the sinusoidally driven ro-
tor and the kicked rotor. These have been evaluated
from Eqs. (4.3) and (4.12), assuming that f (t)=c, sin(cot)
and f (t)=0+13(t (2k+ i)r/2), respectiv—ely, with the
definition that hF,

= ig;( )/r—rN ote that the replacements
given by Eqs. (4.25a) —(4.25c) cannot be introduced
directly into the expressions in Table I in order to obtain
the interaction frame counterparts hI;. Instead, these
substitutions must be inserted into Eqs. (4.3a) and (4.3b)
and Eqs. (4.12a)—(4.12d) and these equations reevaluated
in order to derive the interaction frame Floquet Hamil-
tonian.
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TABLE I. The Lie coefficients hF; and the quantities G, b, and c for the examples of the sinusoidally
driven and kicked rotors.

Coefficient f (t) =e sin(cut ) f (t) =9g 5(t —(2k+1)r/2)
k=0

hFi

hF2 ——hF3

hF4

F5 —hF6

hF7 ——hF8

hF9

i cC cuQ,

CO Qe

Q,X,
i ~C.~n, X,(~'+ n', )

(co —Q, )

2C2 2~ X (3 2+~2)
2(co —0 )

c C 0 X (3' +6' 0 —O, )

(co —0, )'

E, Cm co

CO Qe

2mC coQ,X,
(~2 O2 )2

(~2+ 3g )

4(co —0, )

Q,
OC 0,

2 sin(Q, ~/2)

O,X,
OC Q,X,(2—2cosQ, ~—Q, ~sinQ, ~

8 sin'(Q, ~/2)

Cm +eXe (single & +e &)

4 sin (Q, ~/2)sinAe7

0 C Q,X,(2—2cosA, ~—Q, ~sinQ, 1

4sin Q, ~/2
—iOC

2 sin(Q, ~/2)

&OC O, ,X,~sinQ, ~

4 sin (Q, ~/2)
iO C O,,X~

8 sinO, ~ sin'(0, r/2)
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