
PHYSICAL REVIEW A VOLUME 48, NUMBER 1 JULY 1993

Multireference relativistic configuration-interaction calculations for (d +s)" transition-metal
atomic states: Application to Zr II hyperfine structure
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Our relativistic configuration-interaction (RCI) methodology has been extended to multireference
cases, and improved to permit the construction of angular-momentum functions of arbitrary size, and to
minimize the number of vectors needed with each configuration. We report RCI calculations on the fine

(fs) and hyperfine (hfs) structure for the (d+s) J=0.5 and 1.5 levels of ZrII. The average fs error is
0.075 eV, and 17% for hfs, when compared to available experiment. These results indicate that it is pos-
sible to correctly position all levels of (d +s)" configurations in the transition-metal atoms.

PACS number(s): 31.30.Gs, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Transition-metal atoms are technologically important
due to their role in catalysis, as deep level traps in semi-
conductors, and as impurities in plasma fusion devices.
Properties of the (d+s)" states of the transition-metal
atoms are not very will understood theoretically —errors
of 1 eV in the position of d" energies are frequent in non-
relativistic many-body treatments [1,2], independent-
particle hyperfine structure (hfs), relativistic and nonrela-
tivistic, can have the wrong sign [2—4], and nonrelativis-
tic many-body hfs can exhibit large errors [5].

Because differential relativistic effects on energy
difFerences can be as large [6] as several tenths of an eV,
and can be of the same order as the observed [7]
differences, relativistic effects must be introduced into
any comprehensive theoretical treatment from the start.
Since it is well known that inclusion of many-body effects
is also essential for accurate results, one needs to apply a
general open shell relativistic many-body theory.

Due to the strong interactions among the various
(d +s)" configurations, the methodology will have to be a
multireference one. The presence of open d subshell elec-
trons also means it must be capable of dealing with large
numbers (several hundreds) of n-electron angular-
momentum functions associated with a single "nonrela-
tivistic manifold" of relativistic configurations. Depend-
ing on the theory chosen, it may also be necessary to han-
dle the possible few thousands of determinants associated
with some of these manifolds. Additionally, as we shall
see, in representing many-body effects, one needs orbital
symmetries at least through l =4, and has to in-
clude some shallow core-valence and shallow core-core
many-body effects. These requirements are very substan-
tial demands to place on any of the existing ab initio
many-body approaches [8—13]. In our own case, we have
had to make several improvements in our relativistic
configuration-interaction (RCI) method [14—17], which
we now report.

In order to carry out our calculations, we have made
three substantial improvements in the RCI methodology.

(1) A relativistic variant of the Bartlett-Condon-Beck
procedure (BCB) [18] is introduced. This allows rapid
formation of n-electron J and J, eigenfunctions for basis
sets consisting of several thousand determinants, by split-
ting configurations into two or more parts during con-
struction. (2) We generalize our relativistic REDuCE pro-
cedure [15] to apply to multireference function cases, and
also specialize it to allow greater efficiencies when many-
body effects are largely nonrelativistic, as they are for
ZrII. By rotating the, up to several hundred, n-electron
eigenvectors associated with a single nonrelativistic mani-
fold, one can create a new manifold, such that only
=10% of the new eigenvectors interact with the mul-
tireference zeroth-order function. (3) The large-order
multiroot diagonalization algorithm of Weber, Lacroix,
and Wanner [19] is introduced to deal with the RCI ma-
trices which are typically of order =1000 and from
which ten or more roots are desired. We also note an im-
provement of a factor of 5 in the efficiency of the original
diagonalizer [20]. We discuss all these improvements in
Sec. II.

To illustrate the method, we carry out extensive calcu-
lations (see Sec. III) on the fine (fs) and hyperfine struc-
ture (hfs) of 15 (4d +5s) levels of Zr n having J =0.5 or
1.5. All calculated fs and hfs results are in excellent
agreement with available experimental results [7,21,22].
Because this is the first time such accuracies (0.075 eV fs;
17% for hfs) have been simultaneously achieved for all
(d +s)" fs and hfs, and much work is still to be done [1,2]
on these species, we provide a detailed listing of the indi-
vidual configurational contributions.

II.THEORY

To generate the fs wave functions, as a Hamiltonian we
use the one-electron Dirac Hamiltonians and the two-
electron electrostatic interaction [14]. Two-electron rela-
tivistic eff'ects are treated using the Breit operator [14]
and first-order perturbation theory. Formally, the wave
function is split up into a perturbation theory hierarchy;
within each order, the wave function is calculated using
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the energy variational principle. For reasons of
efficiency, all n- and one-electron functions must be
orthonormal. A zeroth-order function must be as accu-
rate as possible (to reduce the importance of higher-order
corrections), yet be capable of being generated with ease
for a great variety of cases. The (multiconfigurational)
Dirac-Fock approximation, as implemented by the com-
puter program of Desclaux [23], is our choice to do this.
Since we must deal with up to ten (J =1.5) levels simul-
taneously, we have a multireference (multiple zeroth-
order functions) situation, i.e., no unique way of generat-
ing a multiconfiguration Dirac-Fock (MCDF) solution.
Because our initial interest was in (4d ) P hfs, we chose
to generate the 1s. . .4d3/2 4d5/2 spinors from a MCDF
calculation for this level; the 5s spinor was obtained from
a MCDF calculation on the nearby 4d 5s P level, fol-
lowed by reorthogonalization to the ls-4s spinors of (4d) .
Now it is well known [24] that the 4d (and to a lesser ex-
tent Ss, 4p, 4s, . . . ) spinors of 4d, 4d Ss, and 4d5s can
differ substantially. Due to the requirements of orthonor-
mality, this difference must be accounted for in higher
perturbation theory orders. Principally, this is done in
first order through the presence of symmetry preserving
(e.g. , 4d~ ~dj) single excitations from 4d Ss and 4dSs~
which we call "Brillouin excitations"; for the core (e.g.,
4p. ~p ), these are restricted to the single core coupling
J, =O. Such excitations vanish according to Brillouin's
theorem [25], when a fully self-consistent set of MCDF
spinors are used.

By definition, many-body effects first appear in a first-
order wave function, which is formed from the zeroth-
order function through single and double excitation into
unoccupied spinors. Our nonrelativistic CI work [26]
suggests these spinors should ha~e their radial parts
represented as simple analytic functions of a single pa-
rameter (Z~ ), to be adjusted (iterated) during, the CI pro-
cess. To avoid variational collapse into the positron sea,
we must properly "connect" the major and minor corn-
ponent radial spaces; we do this by using [15] relativistic
screened (Z') hydrogenic functions. We have found re-
stricting the principle quantum number, n =l + 1 (l of
the major component) to be most effective [27].

Formally, the second-order function can be generated
by single and double excitations from the first-order func-
tion. This brings in configurations which are triple, qua-
druple, or higher excitations from all of the zeroth-order
functions. In this work, we find only a few such excita-
tions, from the valence (4d, Ss) space, to be important.

In order to minimize the size of the CI matrix, we use
n-electron functions which are eigenstates of J, J„and
parity; each also has a common configurational "mani-
fold, " i.e., all relativistic configurations present in the
function approach the same nonrelativistic function as
v —+c. Formerly, we have been producing these func-
tions, which can include restricting subgroups of elec-
trons to specific values of J, by direct diagonalization
(e.g., 26). However, the present problem and many future
problems can require obtaining several hundred eigenval-
ues of a matrix of order several thousand —a time-
consuming process. Instead, here we introduce a relativ-
istic variant of the BCB method [18] to remove this

—MJ

X~X,(n, J,M, )&

X XII(n2J2MJ )) .

This procedure is an order of magnitude more efficient
than direct diagonalization for matrices of order 200; the
efficiency gain for problems of order 2000 is even greater
(construction times on a Spare 10 workstation are no
more than a few seconds). To illustrate, in one case, part
1 was (4p3/p) 4d3/24d5/2 and part 2 was vd5/Qvf7/p,
where v indicates a virtual function. The final assembled
product has 430 determinants and 52 eigenvectors for
J =1.5.

In the present application, as many as 300 eigenvectors
can arise from a single manifold: if all these were kept
throughout, the CI matrix would be of order 3000 for
Zr II, and considerably larger for more complicated
species (e.g. , higher n). By creating and applying a mul-
tireference, specialized version of the first-order algo-
rithm [15] REDUCE, the number of eigenvectors per mani
fold can be reduced as much as tenfold.

The energy matrix element between a reference func-
tion 4 and a relativistic configurational function X, in
first order, may be written formally as

m

(N~H~X(i)) = g a'R '(a bi;c~.dj. ), (2)

where the 8 are radial integrals and the a's are con-
stants determined by angular-momentum theory. The
index i permits p eigen vectors for the relativistic
configurations; in many cases, p=3m. Thus we can
create a new basis X'(i) =QJ'=, b'X(j ), such that the first

p —m X' have a zero matrix element with N. Consistent
with a first-order approximation, these can be discarded,
leaving m X'.

For the multireference function case, we carry this out
for each of the @ (up to ten, here). Since a given X may
have a nonzero matrix element with more than one @, a
set of nonorthogonal X' may result. This situation is
resolved by simply reorthogonalizing the final set of X'.
At this stage, the original set of X has been reduced to a

bottleneck.
In the BCB method the configurational manifold is

split into two (or more) parts. Because of the Pauli prin-
ciple, all spinors "associated" with the same nonrelativis-
tic subshell must be in the same part. For each part,
eigenstates of J and J,=+J are created by diagonaliza-
tion methods [26]; if these are nonunique, a labeling sub-
script, n, (n2) is used. Due to the split, these diagonali-
zations occur very efficiently; if not, a further split is
used. Eigenvectors for other values of J, are generated,
for each part, by applying the step-down operator, J
This maintains the proper relative phase. The set of
eigenvectors for the original manifold is constructed ac-
cording to the formula
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TABLE I. REDUcE applied to 4p 4d' for J= 1.5. The first number gives the number of eigenvectors
associated with the 4p 4d' configuration, and the second number gives the number of di8'erent radial
integrals in the matrix element ( 4~H~X ). Both numbers depend on "origin, " i.e., on @.

Correlation function
X (occupancy) Reference function N

4p &/2 4p3/2 3/p 4d 5/2 3/2
3 4d 5/2 4d 3/$4d 5/2 4d 3/24d 5/2 {0) 4d 3/24d 5/2 {2)

1 2 1

9 2b 9
2b

9 2
1 2

2
2b

2b
9

15
9

2b

2b

2

9
15
9

2b

2b

2

2 2
12 1

2
12

21 1 21
12 2
2 1

12
21
12

12
21
12

2 1

3 1 3

Relativistic total
Nonrelativistic total

26 8 62 11 63
7 2 8 2 9

11
2

82
10

12
2

82
10

12
2

'The number in parentheses indicates the J for 4d, /~.
"Due to linear dependence, only one eigenvector survives.

set about —,
' its size.

Table I illustrates an application of REDUCE for
the (4p) (4d) manifold with J= 1.5. Since this
configuration interacts only with the (4d) reference func-
tions, just the five of them are shown. The application of
REDUcE has decreased the original 91 eigenvectors requal
to the total number of eigenvectors from each of the 14
(4p) (4d) relativistic configurations, counted once only]
to 44.

While the reduction is considerable, the CI matrices
are still quite large (order =2000 for Zru). A further
gain can be made by realizing that Zr II is still substan-
tially a non relativistic system, insofar as many-body
efFects are concerned. Practically, we make use of this by
assuming that the radial integrals are independent of j.

In the above case, this means that instead of 20 radial in-
tegrals, there are only two. When the REDUCE process is
applied to each reference function separately, the 44
parents become only ten.

We have made two general tests of the validity of this
assumption. First, we have examined the radial integrals
directly to see how they do vary with j; variations of
+5% around an average value seem typical. For unoccu-
pied spinors, two points need to be emphasized: (1) the
Z* for Ul. for Ul~. + &~

need to be "kept close" during the
iterating process (2) ul. and ul~ +, ~

must have a common
overall phase convention. We accomplish this by requir-
ing that the major components be positive at the origin.
Both requirements arise because as U ~c, we need
ul. ~ul~j+, ~

in order to implement this form ("nonrela-

TABLE II. Testing REDUCE on {d+s) +4p 4d' for ZrII J= 2. Energies {in a.u. ); di6'erences (in

crn '): add —3596 a.u. to get total energy. 0.01 a.u. =2195 cm '=0.2721 eV. A and B hfs constants
diff'er in fourth significant figure.

Root No.

1

2
3

5
6
7
8
9

10
Average

Full

—0.765 387 53
—0.786 971 89
—0.822 125 25
—0.837 932 95
—0.864 656 49
—0.883 503 6
—0.891 281 66
—0.898 1644
—0.910067 87
—0.923 003 42

REDUCE

—0.765 377 57
—0.786 967 66
—0.822 11950
—0.837 924 26
—0.864 656
—0.883 471 10
—0.891 271 78
—0.898 152 79
—0.910067 59
—0.922 798 61

Error

2.0
0.9
1.0
2.0
0.1

7.0
2.0
3.0
0.06
1.0
1.9

Nonrelativistic
REDUCE

—0.765 360 28
—0.786 963 24
—0.822 11063
—0.837 915 44
—0.864 656 27
—0.883 458 93
—0.891 259 84
—0.898 141 67
—0.910067 24
—0.922 987 65

Error

6.0
2.0
3.0
4.0
0.05

10.0
5.0
5.0
0.06
1.0
3.8
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ti»stic") of REDUCE. Second, in Table II we compare all
three methods for a small CI calculation involving the
ten (4d+5s) reference functions and the (4p) (41)
manifold. The differences between the methods are very
small —only a few cm ' at most. While differences for
other manifolds are sometimes of an order of 100 cm
this is still well below the average absolute error of our
final results (see Sec. III).

With these improvements, our final CI matrices are or-
der 1000 (J=1.5) and 850 (J=0.5). This is well above
the order of 350 permitted by our RCI algorithm [28]
which used a standard [29] multiroot diagonalizer. To
carry out the Zr II calculations, we have introduced the
large-order multiroot diagonalizer of Weber, Lacroix,
and Wanner [19],and made the appropriate dimensional-

ity changes in our program [20]. Improvements in

efficiency and tests of the Weber-Lacroix-Wanner [10]di-

agonalizer are discussed elsewhere [20].

III. CALCULATIONS

To keep the size of the energy matrix modest, the set of
unoccupied spinors must be optimized in a careful
manner, i.e., in "layers. " Valence (4d, 5s) shell many-

body effects are, as a class, one of the largest contributors
to energy differences due to near degener acies with
valence MCDF spinors; valence virtual spinors are also
sensitive to orthogonalization order. That is, if they are
forced to be orthogonalized to core-virtual spinors, it is
difficult to regain the portions of one-electron integrals
"lost" to orthogonalization [30].

Consequently, we treat valence many-body effects first.
As usual [16],good estimates can be obtained for the vir-
tual Z* by adjusting them to yield the same (r ) as the
MCDF spinors they are replacing (4d, 5s in the valence
space). While formally the virtual orbital symmetries
(inajor component) would be expected [31] to have 1~ 6,
we find it is sufficient to have I + 4 here. Calculation be-

gins by constructing all single and double valence excita-
tions, from each of the reference functions, into the virtu-
al spinors (one of each symmetry, to begin). The valence
virtual Z* are then iterated until the 4d I' root of the
energy matrix is minimized.

In the next layer, we explore whether the valence space
is sufficiently saturated. First, we insert the most impor-
tant core single excitations, i.e., 4p~ ~vpj, , uf~' using the

just determined virtual spinors. This produces a more
realistic energy matrix. It should be noted that both the
"Brillouin" core coupling (J, =0) and the hfs couplings
(J, = 1 for magnetic dipole [17] and J, =2 for the electric
quadrupole) associated with the core single excitations
are not part of the REDUCE process, as they contribute to
both fs and hfs, so that portions of them may not be elim-
inated on the basis of fs alone. Triply excited valence
configurations are also added now. A second set of
valence virtual spinors is added, with n = I~+2 (to avoid

possible degeneracy effects) along with "cross"
configurations such as those created by 4d ~vp vp~'

which are missing in the first layer. The second set has
its Z* iterated; we find that the valence space is then sa-
turated. In the next layer, we add the next important

TABLE III. Parameters (n, Z*) of the Zrri J =
~

virtual

basis. Prior to orthogonalization, the radial functions are rela-

tivistic screened (Z*) hydrogenic functions with principle quan-

tum number n.

S 1/2

P i/2

P3/2
d3/2

d5/2

f5/2

f7r2

g 9/2

(1,0.815), (2,1.79), (1,1.40)
(2,1.96), (3,3.55), (2,6.66)
(2,1.96), (3,3.55), (2,6.26)
(3,2.94}, (4,4.45}, (3,15.214}
(3,2.94), (4,4.84), (3,15.214)
(4,7.12), (5,9.78)
(4,7.12), (5,9.78)
(5,10.89}
(5,10.89)

class of single excitations from the core, 4s~4d+vd,
4s ~vs and add the second valence virtual set and a third
set of "core" virtual spinors (n~ =1+1), to all core excit-
ed configurations, and determine those Z* by energy
minimization. This completes selection of the virtual spi-
nors (adding an additional set of virtual spinors had little
effect). We display the final results in Table III for
J= l. 5 (the J=0.5 virtual spinors are quite similar).

At this stage, errors in some of the energy differences
were found to be an unacceptably large several tenths of
an eV. It seemed that the missing configurations respon-
sible for this error would be associated with shallow-core

(4p and 4s) excitations, such as 4p4d ~ and 4p5s ~. Ex-
citations into up vd and ud uf ' were tried for both pairs
but found to be an order of magnitude too small; excita-
tions 4p ~ were next considered. Since these excitations
have the same occupation numbers in all reference
configurations, one expects them to be only di+erentially
significant when they are excited into already partially
occupied subshells, viz. , 4d or 5s. The candidates are

4p +4d +4dvd+4dvs+5s +5svs+Ssvd. Of these, the
first is expected to be absolutely and differentially largest

[it follows from the 1 ~(l +1) maximum rule [26] and

has the largest exclusion effects]. Insertion of these in

fact reduces the discrepancy in AE to an average error of
0.075 eV for energy differences. The 4p ~4dvd excita-
tions were also examined but found to have a modest
effect.

Perturbation theory can be used [26] to analyze the CI
result —in particular to assign, to first order, a specific
energy contribution to each basis function. Let
%=@++;c,X; where qi is the CI eigenvector, N is the
zeroth-order function, and X; are the many-body basis
functions. With the normalization conditions
(&&~@)=(4&)'P) =1, we have E =(4~H~'0) =E+
+g;c; (4(H(X; ). The quantity c; ( N~H)X; ) can be
identified as the (first-order) correlation energy associated
with basis function X, , and is displayed in Table IV for
J =1.5.

Contributions are grouped by nonrelativistic mam-

folds, as both a matter of convenience, and because
many-body effects are substantially nonrelativistic in this
system (e.g. , manifold contributions exhibit only a
moderate J dependence). Contributions have been ob-
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tained using the largest of 4d, 4d 5s, or 4d5s manifold
as the zeroth-order function, the others are listed in Table
IV as the first entry. The "Brillouin excitations"
(4d ~vd, 4p~vp) are next largest, particularly for 4d 5s
and 4d5s as might be expected, based on how the
MCDF radial set was constructed. Following these
closely are 4p~uf, 4d ~uf and 4p ~4d . All other
manifolds individually differentially contribute 0.3 eV.
Contributions from triple excitations (mainly
udup +vd ) are not shown, as they are a higher-order

effect. The largest triple coefficients are 0.03—0.05.
Eigenvectors have been carefully screened; only those
contributing significantly to AE or hfs have been re-
tained. The J=—', final CI matrix has =1000 eigenvec-
tors while J=—,

' has =850.
Our fine-structure results are compared with experi-

ment [7,21] for J=
—,
' in Table V and for J =

—,
' in Table

VI. For J=—,', we confirm Kiess's [21] corrections to
Moore [7] that the level at 17614.00 cm ' is spurious,

TABLE IV. Energy contributions in eV for Zr II J= 1.5. All signs are reversed.

Roots

Basis 4d
4d 5$ 4d 4d5$
+4d +4d5s +4d

2p 2D 2D 4p 4p

4d3 4d~5$
4d'

+4d 5s
2p

4d~5$ 4d3

4F

4d 5s

(4d +Ss)
4d vs
4d Yp

4d vd
4dvf
4d vg
4d vsvd
4dvpvf
4d vs
4d vd
4d vg
5s vp
Ssvd
5svf
Ssvg
Ss vs vd
Ssvpvf
4d 5svs
4d 5s vd
4d Ssvg
Ss 2vd

4p'vf 4d'
4p'vf4d'5s
4p'vf 4d 5s'
4p'vp4d'
4p'vp4d Ss
4p'vp4d 5s
4s vd4d
4svd4d Ss
4svd4d Ss~
4p44d'
4p 4d Ss
4p 4d 5s
4p '4d'vd vf
4p'4d5svdvf
4p '5s ~vd vf
4s vs4d'
4svs4d Ss
4svs4d Ss
4s4d 5s
4s4d25s 2

4s4d
4p'vp vd 5s'
Total

—0.195
0.010
0.269
0.339
0.571
0.069
0.000
0.090
0.000
0.024
0.068
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.012
0.000
0.911
0.022
0.000
0.012
0.000
0.000
0.049
0.025
0.000
0.746
0.000
0.005
0.062
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.041
0.000
3.136

—1.041
0.000
0.304
0.011
0.054
0.008
0.061
0.383
0.004
0.063
0.086
0.014
0.050
0.164
0.019
0.000
0.000
0.000
0.561
0.000
0.000
0.034
0.853
0.007
0.040
0.067
0.000
0.014
0.056
0.009
0.000
0.757
0.000
0.011
0.054
0.000
0.000
0.017
0.000
0.062
0.000

—0.005
0.000
2.721

—0.385
0.003
0.166
0.228
0.395
0.044
0.006
0.102
0.009
0.066
0.051
0.000
0.000
0.000
0.000
0.000
0.000

—0.002
0.010

—0.001
0.000
1.003
0.020
0.000
0.016
0.002
0.000
0.036
0.034
0.000
0.630
0.001
0.002
0.070
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.063
0.000
2.576

—0.140
0.013
0.473
0.002
0.010
0.000
0.000
0.000
0.000
0.036
0.000
0.097
0.002
0.016
0.003
0.033
0.227
0.162
0.047
0.032
0.434
0.000
0.054
0.505
0.000
0.092
0.334
0.000
0.015
0.020
0.000
0.000
0.876
0.000
0.024
0.029
0.000
0.000
0.056
0.004
0.017
0.000
0.040
3.516

0.010
0.000
0.056
0.192
0.351
0.021
0.000
0.019
0.000
0.091
0.034
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.109
0.020
0.000
0.030
0.004
0.000
0.042
0.026
0.000
0.576
0.000
0.001
0.070
0.000
0.000
0.005
0.000
0.000
0.005
0.000
0.057
0.000
2.718

0.002
0.000
0.005
0.002
0.000
0.000
0.047
0.196
0.027
0.016
0.003
0.034
0.062
0.172
0.020
0.000
0.000
0.000
0.316
0.000
0.000
0.021
0.852
0.006
0.042
0.067
0.000
0.005
0.041
0.006
0.000
0.754
0.000
0.012
0.054
0.000
0.000
0.015
0.000
0.061
0.008
0.002
0.000
2.846

0.993
0.000
0.003
0.216
0.338
0.021
0.000

—0.031
0.048
0.075
0.039
0.000
0.000
0.000
0.000
0.000
0.000
0.001

—0.017
0.000
0.000
1.010
0.023
0.000
0.021
0.004
0.000
0.032
0.001
0.000
0.621

—0.002
0.001
0.074
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.042
0.000
3.520

0.738
0.000
0.040

—0.003
—0.010
—0.002

0.044
0.214
0.018
0.006
0.003
0.009
0.062
0.127
0.013
0.003

—0.006
0.035
0.364
0.028

—0.010
0.021
0.805
0.007
0.056
0.081
0.001
0.002
0.020
0.000
0.000
0.749

—0.001
0.012
0.053
0.000
0.000
0.015
0.000
0.045
0.010
0.003
0.000
3.553

0.014
0.000
0.022
0.161
0.244
0.014
0.000
0.041
0.001
0.084
0.014
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
1.166
0.019
0.000
0.035
0.005
0.000
0.022
0.026
0.000
0.505
0.000
0.001
0.075
0.000
0.000
0.003
0.000
0.000
0.006
0.000
0.016
0.000
2.473

0.008
0.000
0.005
0.001
0.001
0.000
0.048
0.192
0.022
0.004
0.009
0.000
0.037
0.058
0.005
0.000
0.014
0.000
0.295
0.015
0.000
0.020
0.899
0.006
0.084
0.079
0.004
0.006
0.018
O.OOS

0.000
0.680
0.000
0.012
0.055
0.000
0.000
0.012
0.000
0.016
0.007
0.002
0.000
2.623
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Level

TABLE V. Fine and hyperfine structure of Zr II J=
2 (d +s) states.

Energy (cm

Configuration'

4d
4d 5s+4d
4d'+4d 5s
4d5s +4d
4d
4d 5s
4d'+4d'5s
4d 5s
4d'
4d 5s

SLJ

D
2p
2D

D
4p
4p
2p

D
4F
4F

Experiment

27 699.96
20 080.30
14 298.64
13 428.50
9 742.80
7 736.02
6 111.70
4 248.30
2 572.21

0.00

Theory

29 097
20 671
15 004
14 329
10 103

8 115
6 765
5 033
2 980

0.00

A (MHz)

—190.0
110.3'

—114.7
—66.8

134.1'
—534.6

134.3
181.5'

—298.0
273.8

B {MHz)IQ[{b)]

224.0
—137.4'
—82.8
165.1

—133.3'
159.5

—132.2
—28.3'
—57.3

60.5

'See text.
bReferences [7,21].
'Experimental and MCDF hfs values available in Ref. [22].

and the location of the upper 4d D. Our average abso-
lute error is 0.087 eV (705 cm '). We do reverse [22] the
configurational assignments of Moore for the P's —the
primary one has a weight of 53%, the secondary (Moore
label) of 37%. The configuration labels of the lower
4d D and 4d5s D are also reversed, but because our
accuracy is scarcely larger than the splitting [7], we can-
not insist on the reversal. For J=

—,', the average absolute
error is 0.050 eV and the configurational assignments ex-
cept for the P's (see above) agree [22] with Moore [7].

wave functions generated above. We use the formalism
as expressed by Lindgren and Rosen [32]; for our pur-
poses, we may write A as

2 (MHz) = —95.4129 t J,~g =Jl To{"
I J,Mg =J ),PI

(3)

Hyper6ne structure

Magnetic-dipole, 3, and electric-quadrupole, B,
hyperfine-structure constants were evaluated using the CI

where T'" is a sum of one-electron electronic magnetic
dipole operators t'" and where

( )) . . . 1/2+m. J J' 1
(n~m~ ~t~{

"~n'~'m~') =( —1) '&(2j +1)(2j'+1)(x+~')
2 2

X f dr r [P„,Q„„+Q„/„,.] .
0

—m. m' q

(4)

The magnetic-dipole moment p and nuclear spin I are available in Fuller and Cohen [33]. For 8, we have

B (MHz) =234.9649a( J Mz =J~ To '
~ J,Mz= J ) Q(barns), (5)

TABLE VI. Fine and hyperfine structure of Zr iI J=
~ (d +s) states.

Level

Configuration

4d 5s
4d 5s+4d
4d
4d 5s
4d'+4d 5s

SLJ

S
2p
4p
4p
2p

Energy (cm ')

Experiment'

19477.89
13 889.16

3 828.72
1 788.29

0.00

Theory

20 198.99
14071.72
3 648.02
1 355.20

0.00

A (MHz)

—2690.31
—150.84

337 55
—655.01

—1046.75

'References [7,21].
Experimental and MCDF hfs values available in Ref. [22].
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~ /
I

(ntcm ~t' ~n'tcm') =( —1) 1 v'(2j+ I)(2j'+ 1)

Xj dr r [P„Q„,, +Q„g„, , ] .
0

m~ m. ~

The radial integrals are in a.u. , the ( ) are Wigner 3j sym-
bols.

Tables V and VI contain our relativistic many-body re-
sults for A and B of ten J =

—,
' and five J=

—,
' levels. Five

of these levels have just been measured [22], the calculat-
ed results difFer, on the average, by only 17%. This is
particularly striking when one notes that MCDF values
frequently have the wrong sign. By comparing theory
and experiment for the B's we have also deduced [22] a
quadrupole moment Q for Zr II.

Of the seven new A's and 8's of J =—', new in this
work, one might expect all those except the two closely
spaced D levels to be accurate to =20%. The two D
A's might have twice this error. For J =

—,', based on how
the A values varied as the basis was developed, we would

expect the S,&2 to be known to & 20%%uo and the 4d Ss P
to have an error perhaps twice as large, with the 4d 5s P
between these two.

Configurations important for hfs include many of those
important for fs; in addition 4s, 5s~s excitations are im-
portant. Due to current size restrictions no deep core po-
larizations were included for J=—,'; they were included
for J=—,

' levels and for 4d P, &2, they (mainly n s~v )s

contributed about 14% of the total A.
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