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Semiclassical periodic-orbit theory for identical particles
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Gutzwiller's semiclassical approximation is applied to systems of identical particles. The special case
of antisymmetry under particle exchange is treated as an example. The Pauli principle is shown to cause
a modification of Gutzwiller s periodic-orbit sum: The amplitude with which a periodic orbit contrib-
utes to the sum is changed, but new orbits do not arise in the sum. The case of noninteracting particles
is used for purposes of illustration of the procedure.
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I. INTRODUCTION

The semiclassical method, based on Gutzwiller's trace
formula and its generalizations, has become an invaluable
tool in the study of quantum manifestations of classical
chaos [1]. It has been very successfully applied to the
analysis of systems with few degrees of freedom [2,3].

Quantum systems are typically composed of identical
particles (fermions or bosons), and the wave functions
must be antisymmetric (or symmetric) under an exchange
of these particles. How can such symmetry requirements
be accommodated in the framework of the semiclassical
method? Which modifications arise in the sum over
periodic orbits as a consequence of these symmetries? In
the present paper, we give a general answer to these ques-
tions.

It may be argued that this effort is futile: Interacting
many-body systems are too complex anyway to be acces-
sible to the semiclassical approximation; the construction
of periodic orbits is a nearly hopeless task. We do not
share this view, for the following reasons: First, under-
standing the influence of symmetries on periodic-orbit
theory is an important issue in its own right; it must be
seen as an integral part of semiclassical theory. Second,
given the intractability of the many-body system, there
are questions which semiclassical theory hopefully can
answer. We have in mind, for instance, the determina-
tion of the characteristic energy scale where the 63 statis-
tic for the two-level correlation function in classically
chaotic systems becomes constant [4], or the occurrence
of shell structure as a generic feature of self-bound quan-
tum systems, or the modifications caused by electron-
electron interaction and the exclusion principle in the ap-
plication of semiclassical methods to mesoscopic physics

The role of symmetries in the semiclassical approach
has been dealt with in papers on molecular physics [6].
We mention, in particular, the work by Robbins [7].
There, a general group-theoretical method for Hamiltoni-
ans with special symmetries has been developed, and ap-
plied to several problems. In this method (the "reduced-
phase-space method"), the entire phase space is generated
by repeated application of the symmetry operation to
part of the phase space, and the periodic orbits are con-

structed in this reduced phase space. It seems that this
method does not apply to permutation symmetry; in any
case the physically very relevant case of particle identity
has not been dealt with.

In the present paper, we follow another route. Starting
from an explicit expression [8] for the relevant projection
operator 1& defined below, we construct semiclassical
periodic-orbit theory directly and without using the re-
duced phase space of Ref. [7]. We arrive at a geometri-
cally very appealing description of the inftuence of parti-
cle symmetry on the periodic-orbit sum.

For definiteness and for simplicity of notation, we con-
sider a system off interacting spinless fermions in one di-
mension with coordinates q„.. . , qf. We emphasize,
however, that the method employed in this paper applies
to more general situations. An extension to three dimen-
sions would require vector notation throughout. Bosons
would require trivial changes of signs. Spin can be in-
cluded by extending the trace in Eq. (1) below to spin de-
grees of freedom, by replacing the operator 1 ~ defined in

Eq. (2) by a suitable generalization, and by dealing with
the ensuing Young tableaux in coordinate space in a
manner analogous to what follows.

In Sec. II we introduce the projection operator which
imposes antisymmetry, and derive the periodic-orbit sum.
In Sec. III we use properties of the symmetric group to
elucidate the structure of the terms contributing to the
sum. In Sec. IV we apply the method to the special case
of noninteracting fermions. Section V contains a brief
summary.

II. PERIODIC-ORBIT SUM FOR FERMIONS

In the present section, we follow closely Ref. [1]. We
therefore only sketch the main steps, emphasizing those
points where the presence of the projection operator
leads to modifications.

Let p(E) be the energy-level density of the quantum
Hamiltonian H(q&, . . . , qf ), an operator which is sym-
metric in the variables q &, . . .qf, and let
G(E)=(E H) ' be the adv—anced Green's function.
Then,

p(E)= ImtrG(E) .(
—1)
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For fermions, the trace extends only over that part of
Hilbert space which is spanned by totally antisymmetric
wave functions. With I~ the projection operator onto
this part, we have [8]

(q', , . . . , q&~1~ ~qI', . . . , qI'&=(f. ) 'det(D;~) . (2)

Here, D is a matrix of dimension f with elements

D;~ =5(q —q;"). Equation (2) can easily be derived [8] by
writing the projection operator 1 „explicitly in an (arbi-
trary) single-particle basis. Using the Laplace expansion
for det(D; ) and substituting the result into Eq. (1), we

obtain

J
p(E)= g( —1) f dq', dq&dq", . de'lm(q&, qy IG(E)lq~, . , q~&P g ~(qj q,")—.

j=l
(3)

The sum runs over all f. permutations P acting on the variables (q", , . . . , q&') with ( —1) the sign of P. Equation (3)
differs in two ways from the corresponding expression obtained in the absence of symmetry requirements: (i) The factor
(f!) ' reduces overall phase space in an obvious fashion and (ii) the terms with P@1 express the additional constraint
that two particles may not occupy the same point in single-particle phase space, i.e., may not have the same coordinates
[8]. We shall see that the terms with P&1 cause a substantial modification of the standard sum over periodic orbits.

Writing G (E) as the Laplace transform of the time-evolution operator exp( —iHt IA'), we express the latter as a Feyn-
man path integral. The stationary-phase approximation for all paths connecting q' = (q ', , . . . , qI ) with
q" =(q", , . . . , q&') at time t is met by all classical trajectories connecting q' with q" at time t; the same approximation
with regard to the time integration is met by all classical trajectories of energy F which lead from the 2f-dimensional
phase-space point (q', p') to the 2f-dimensional phase-space point (Pq', p"). Here, we made use of the factor
Pg &5(q' —q") in Eq. (3) and wrote Pq' for the result obtained by P acting on q'. The values of p' and p" are as usual
given by partial derivatives of the action at q' and q", respectively. The remaining integrals over q' in the directions
perpendicular to the trajectory are again evaluated with the help of the stationary-phase approximation. This yields
p" =Pp' and

ff dq'dq" (q" IG(E)lq'&P Q o(q,' q,")=—
classical trajectories

Here, S(F.) is the action along the trajectory from (q', p')
to (Pq', Pp'), p is the Maslov index (an integer), and F is
the determinant of the monodromy matrix. This matrix
has the form 1 —3, where A describes the map of the
infinitesimal area perpendicular to the trajectory at q'
onto the corresponding area at Pq'. The integral over dq
extends along the trajectory. In these steps, we have as-
sumed that the points of stationary phase are isolated. In
general, this condition will not be met unless the system
is chaotic.

The right-hand side of Eq. (4) can be simplified by not-
icing that the trajectory connecting (q', p') with
(Pq', Pp') is a piece of a periodic orbit [7]. This is seen as
follows: As a consequence of the symmetry of the Hamil-
tonian under permutations of the variables q,
j= 1, . . . , f, the simultaneous substitutions q'~Pq' and

q "~Pq" leave Eq. (3) invariant. Using these substitu-
tions and repeating the argument leading to Eq. (4), we
arrive at a formally identical expression, the only
difference being that the trajectory now connects the
point (Pq', Pp') with the point (P q', P p'). The above-
mentioned symmetry of the Hamiltonian guarantees that
the values of F, S (E), and p on this new trajectory
(which is but the continuation of the old one in the direc-
tion of increasing time) coincide with their counterparts
on the old one. Let m be the smallest positive integer for
which P =1; such an integer always exists. Repeating
the procedure described above m times, we generate [9]
m trajectories. The jth trajectory connects the phase-

space points

s, , =(P' 'q', P' 'p')

and s.=(Pjq', P~p'), with j=1, . . . , m. Obviously, the
jth trajectory is the continuation of the (j—1)st in the
direction of increasing time. Moreover, the last point s
and the first point so=(q', p') coincide. We have thus
shown that all the m trajectories defined above lie on a
periodic orbit M.

Having shown that all the trajectories contributing to
the sum in Eq. (4) are pieces of periodic orbits, we now
relate the quantities S, F, and p appearing in Eq. (4) with
the action So, the monodromy determinant I'o, and the
Maslov index po defined for a single traversal of the asso-
ciated periodic orbit M. To do so, we define n as the
number of traversals of M realized by adding the m tra-
jectories defined in the previous paragraph. In general,
we have n ) 1. Note that for each P and each periodic
orbit M, the value of n is uniquely defined, although for P
fixed, n may depend on M. By construction, each of the
m trajectories defined in the previous paragraph yields
the same values for S (E), F, and p, . Hence,
mS(E)=nSO, A =HO, and mp=npo. But So, Fo, and

po are independent of the initial point on the trajectory.
Therefore, the integration over dq in Eq. (4) can be car-
ried out after So, Ao, and po have been substituted for
S(E), A, and p. The integral yields To, the time for a
single traversal of M. We obtain
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2' TQ . n So
(f+ i imp

D ( n, m )exp i
transversals periodic orbits (2™) m fg

(5)

Here, D(n, m) is the inverse of the square root of the
determinant of [1—( Ao)" ]. The sum over periodic or-
bits extends only over those orbits for which, with
(q', p'), (Pq', Pp') also lies on the orbit. The summation
over (multiple) traversals keeps track of contributions
where the point (Pq', Pp') is reached from the point
(q', p') after one or more complete traversals of M, while
the sum with subscript periodic orbits accounts only for
contributions which do not involve a complete traversal
of M; the additional factors arising in Eq. (5) from multi-
ple traversals are not written down explicitly but will be
given in Sec. III below. Equation (5) generalizes the
canonical periodic-orbit sum for the level density to the
case of identical particles (fermions).

III. SYMMETRIC GROUP AND PERIODIC QRBITS

The structure of the sum (5) can be elucidated further,
and the possible values of m and n can be determined by
using the symmetric group. We define classes of periodic
orbits by the following equivalence relation: Let M be
some (arbitrary) periodic orbit at energy E, and let (q,p)
be a phase-space point on M. We write M(q, p) for M to
indicate that M is obtained by solving the equations of
motion with (q,p) as initial point. We consider the set
S= ((Pq, Pp)] of f! phase-space points generated by all
permutations P. These points are generically distinct [9].
Solving the equations of motion with each of these f!
points as initial points, we create f. trajectories
M(Pq, Pp). The symmetry of H under permutations im-
plies that with M(q, p), all the M(Pq, Pp) must be closed
orbits and that the values of So(E), Fo, and po must be
the same on all these orbits. The set A, =tM(Pq, Pp)J
thus generated by the f!permutations defines a class of
periodic orbits. We now rewrite the sum over the f!per-
mutations in Eq. (5) as a sum over classes of periodic or-
bits and, within each class, calculate the contributions of
all permutations.

The following possibilities exist.
(i) No two points in 4 lie on the same orbit in JR. Then

JNcontain, s f! distinct elements. Each element contrib-
utes only to the term with P =1 in the sum over P in Eq.
(5). All f!elements in Af, give the same contribution to
the sum. (f!) ' times the sum over all elements in A is
therefore equal to the contribution of a single element in
Af; the latter has the canonical form for a single periodic
orbit with m = 1 and n = 1.

(ii) At least two points in 4 lie on the same periodic or-
bit in At. The permutation symmetry of H then implies
that each periodic orbit in A, carries the same number of
points in S. Let this number be k. The set A, then con-
sists of f./k distinct elements. Again, the permutation
symmetry of H shows that each element in AL yields the
same contribution to the sum over P in Eq. (5); (f!)
times the sum over the contributions of all elements of A,
is thus equal to k ' times the contribution from a single

I

element of JR. It remains to work out this contribution.
We do so for the periodic orbit M(q, p) in A, which

contains the point so=(q, p) and (k —1) further distinct
points s'. , j= 1, . . . , k —1 in S. The points s'. are ordered
in the manner in which they are met as we traverse the
periodic orbit M in the direction of increasing time, start-
ing at sp. It is convenient to put sk=sp. We note that
the k points s', j=1, . . . , k, are not identical to the
points s, j=1, . . . , m, introduced in Sec. II although we
obviously may and do choose sp=sp. The relation be-
tween the two sets of points will be clarified below.

Let t be the time it takes to reach point s' from points, on M in the direction of increasing time without
traversing M more than once, with j=1, . . . , k. All t~

must be equal. Indeed, let us assume the contrary and let
t; be the smallest of the set (t ]. If t, is n. ot unique, we
take it such that t, +, ) t;. Both s

&
and s are by con-

struction permutations of sp. Therefore, there exists
another permutation P' such that s,'=P's

&. With boths, and s on M, it follows that P's is also on M and is
reached from s at a time t = t, ( t, + „

in contradiction to
the assumption that t, is the smallest of the t . Hence, all
t are equal.

Let Pp be the permutation for which s ] =Ppsp. From
the argument just given, it follows that all the points s'
are given by (Po)'so, j=l, . . . , k, and that (Po)"=1.
The possible values of k are found by writing Pp as a
product of l cycles of length f„,w =1, . . . , l, with

if =f. Then k is given by the smallest common
multiple of the numbers f, ,f2, . . . , f&. The parity

(
—1) ' of Po is given by ( —1)

What is the relation of the set of points

introduced in Sec. II and the set

=js', j=l, . . . , kJ

considered now? By construction, SM is a subset of SM
and therefore k ~ m. Inequality does occur under the fol-
lowing conditions: (i) The partition f of f defining A,
consists of more than one nontrivial cycle (i.e., a cycle of
length larger than 1), and (ii) k is larger than the largest
of the f . Consider, for instance, the class JNfor f=5,
with l=2, f, =3, f2=2, and k =6, and take a permuta-
tion of five elements consisting of the three cycles f i =3,
f2=1=f3. This permutation and its powers connect
only three of the six points on M. We conclude that for
k )m, k must be an integer multiple of m. To determine
n, we recall that for P, one of the permutations con-
sidered in Sec. II, and s„apoint defined on M by
s, =Psp, the point s& must also be a point in the set 4'~,
say, s& =s . Then, P =Pp, and n is determined by the re-
lation mi =kn.

Returning to Eq. (5), we carry out the summation over
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permutations within class A, by summing over the contri-
butions from the k points in S~. Each point in this set
does correspond to a permutation of sp and therefore
contributes; no other permutations contribute to the sum

over P on M. Since s ' =P~p, the contribution from point
s is given by the jth power of the contribution of Ppsp,J
and the latter is the k 'st power of the contribution of a
single traversal of the orbit A, . Hence, we have

(
—1)

p(E) =
classes of periodic orbits

Im.
2 ITTp f—k . n

(
—1)~ "g D(n, k)exp i —So(E)—KPp

2
(6)

The sum over n now also includes multiple traversals of
the orbit M. In Eq. (6), each class is specified by a parti-
tion of f into l integers f with g', f =f, and k is the
smallest common multiple of the numbers f
m=1, . . . , l. The sum over classes includes each class
that actually occurs in a given problem; at this point we
cannot make any general statement about whether and
how often classes pertaining to the same partition of f
will occur.

In comparison with Eq. (5), the new Eq. (6) has the fol-
lowing advantage: Given a single periodic orbit, we
can —by traversing this orbit —determine to which parti-
tion of f it belongs. This knowledge enables us to write
down the contribution to the sum in Eq. (6) of the entire
class to which the orbit belongs. We believe that this
may be helpful in answering some of the general ques-
tions raised in the Introduction.

The considerations in the present section were quite
simple and allowed us to bypass the explicit use of group
theory. There is, of course, a close relationship between
the classes of orbits introduced above and defined in
terms of a partition of f, on the one hand, and the conju-
gacy classes of the symmetric group, on the other.

We note that, by definition,

f dq Ko(q", t";q, 0)Ko(q, t'; q,', 0)

=K,(q,",t"+t', q,', 0) . (8)

The matrix element of G (E) in Eq. (3) takes the form

(, qi . qy lG(&)lqi, , qy&

=(iiii) ' f dt exp
iE+t + Ko(q", t;q,', 0) .

j=1

(9)

f f
(fI) ' Q f dE Q ™fdqigo(qi qt ei)

We substitute Eq. (9) into Eq. (3). Before we give the full

result, it is useful to consider two simple cases which elu-

cidate the structure of the full result. The two classes are
the following: (i) P is the identity and (ii) P is the product
of the two cycles ( 1,2, 3, . . . , f, ) and

(fi+1,fr+ 1, . . . ,f ). We use Eqs. (7) and (8) and find,

for case (i),

f
X5 c, —QE,

1=1

IV. NONINTERACTING FERMIONS (10)

It is instructive to apply our procedure to the special
case of noninteracting particles where the many-body
Hamiltonian H(qi, . . . , q&) is the sum of f identical
one-body Hamiltonians Ho(q ), j=1, . . . , f. The Projec-
tor 1 ~ onto antisymmetric states allows us to express the
f-body density of states as the sum of convolution in-
tegrals over products of the one-body densities of states,
and the periodic-orbit sum provides a useful approxima-
tion to the latter in case the one-body problem is not inte-
grable. (This case occurs, of course, only in two or three
dimensions. For simplicity of notation, we continue to
consider f particles in one dimension, however. ) From a
systematic point of view, the present section lies some-
what outside the main topic of this paper because a sys-
tem of independent particles is (at least partially) integra-
ble.

Let Ko(q", t; —lq', 0) be the (quantum) time-evolution
operator of particle j. The quantity Kp is related to the
single-particle Green's function go(e) by

and for case (ii),

( —1) E
de Im dq go q»q»f'is i

( —1) (&—e)
X Im dqfgo qt~q

2

ic t Ko(q", t;q,', 0) . .&q,"Igo(E)iq,'& =(i&) 'f "dt ex-p f
5 E —QE'

JI, . . . , JJ. 1=1
(12)

(7)

The expressions (10) and (11) differ. While expression
(10) contains a product of f single-particle Green's func-
tions, expression (11) contains only two, albeit with
modified energy arguments. The physical significance of
this difference emerges when we replace the straight
brackets containing gp by their exact quantum counter-
parts QJ.5(E—E'), with e' the eigenvalues of the single-

particle Hamiltonian Ho. The expression (10) takes the
form
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while expression (11)becomes equal to

(13)

The term (13) obviously corrects the term (12) for the
presence of f, (f2) particles in equal single-particle or-
bits, as imposed by the choice (ii) of P.

We return to the general case and give the exact form
of Eq. (3) for the case of f independent particles. We ob-
serve that every P in the sum (3) corresponds to a parti-
tion of f and that different permutations which corre-
spond to the same partition of f give identical contribu-
tions to the sum. (This last point follows because we are
free to relabel the integration variables q„.. . , qf. ) The
sum in Eq. (3) can thus be written as a sum over parti-
tions of f. We find

f
p(E)= g( —1)f

f~ fz
[f$ -fz — -fI ~

(14)

Here, po is short for the single-particle level density, and
the 5 function with the argument (f—gf ) stands for a
Kronecker symbol. The coefficients c(f&, . . . , ft) give
the number of permutations belonging to the same parti-
tion of f. These coefficients are well known; in the
present context, they are given in Ref. [8]. These
coefficients, incidentally, give the number of elements
within a conjugacy class of the symmetric group.

V. SUMMARY

We have shown that the semiclassical approximation
to quantum systems with classically chaotic dynamics
can be extended in such a way that it applies to systems
of identical particles. The symmetry requirement im-
posed by particle identity causes modifications in the
periodic-orbit sum. A classification of periodic orbits in
terms of the partitions of the number f of particles is a
useful tool in reordering the periodic-orbit sum. Within
each class of periodic orbits, the sum extends over multi-
ples of a basic element, a fraction of a periodic orbit. For
each class, we have given an explicit expression for the
contribution of this basic element to the periodic-orbit

sum. From the point of view of symmetry considera-
tions, the theory presented in this paper appears reason-
ably complete. From the point of view of general dynam-
ical theory, it is not: We are not in a position to say
which of the possible classes of periodic orbits do occur
in a given dynamical system, and with which multiplicity
this happens.

In the special case of noninteracting particles, the
many-body level density is written as a convolution in-
tegral involving products of one-body level densities.
This expression displays very clearly the inhuence of the
exclusion principle. For systems of noninteracting identi-
cal particles composed of nonintegrable one-body systems
in two or three dimensions, our result may serve as a use-
ful starting point for an approximation to the level densi-
ty.
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