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The intrinsic property of laser systems with many internal degrees of freedom to generate a squeezed
light is studied. The dressed-atom approach to fluctuations, described in the preceding paper [Khaza-
nov, Koganov, and Shuker, Phys. Rev. A 48, 1661 (1993)], is employed. A minimization principle which
governs noise quenching in laser systems is described comprehensively. This principle allows one to
avoid complicated quantum-mechanical calculations to assess the squeezing capacity of the system. It is
shown that noise in a laser system can be decomposed into noise states. These states interact coherently.
For instance, each nonactive level in a multilevel lasing scheme may represent separate noise states un-
der certain conditions while both lasing levels make only one noise state. The squeezing capacity of the
system is determined by a quantity called the noise dimension. The theory is extended to laser schemes
with many photons (two-photon generation, more than one lasing transition, etc.). The validity of the
minimization principle is established for this type of system. Some consequences from the theory, which

are relevant to the experiment, are discussed.

PACS number(s): 42.50.Dv

I. INTRODUCTION

Squeezed-light generation can be achieved by two
different schemes. In the preceding paper, paper I (Ref.
[1]), we discussed an introduction of the regularity via
pumping with suppressed fluctuations [2—-7]. Another
method of noise suppression is based upon the intrinsic
feature of multilevel systems to generate squeezed light
[8-16]. Regular pumping schemes have an evident
disadvantage: to have reached a squeezed output in a
laser one should have had a squeezed input (i.e., squeezed
pumping). This seems to discredit the idea of a laser it-
self as an active device. Indeed, how can a more coherent
light be obtained than that given by a laser? Moreover,
the crucial difference between the active device—the
laser—and the passive one is that the former is able to
generate a coherent light from an incoherent input. In
this sense the regularly pumped laser is rather a passive
device. It just transforms a coherent input into a
coherent output. In light of this reasoning, the second
method of laser noise suppression seems to be a more ap-
pealing one. In contrast to the regular pumping it can be
regarded as an active device.

The present paper is designed for a comprehensive
description of a principle of noise suppression in active
devices, i.e., lasers. This principle governs the noise
suppression in a number of systems in which the pump
can be assumed to be stationary (see the specification in
Ref. [1]). Qualitatively, the mechanism of noise suppres-
sion can be formulated as follows. In a multilevel laser
system with internal degrees of freedom each level (inter-
nal degree) is a source of noise. Since the noise of each
level has the same physical origin, i.e., spontaneous emis-
sion noise, the levels are “correlated” and able to interact
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coherently. Incoherent processes (i.e., pumping and de-
cay) impose a specific restriction on this interaction. For
instance, a group of levels between which there is an in-
tensive incoherent exchange (as compared to other levels)
is statistically identical and makes only one source of
noise. The output noise is determined by the coherent in-
teraction of such groups. As will be shown, the squeezing
capacity of the system grows with the number of such
groups. It is remarkable that such a coherent addition of
noises is intrinsic for any active system. In the conven-
tionally pumped two-level laser the coherent addition of
noises of different atoms gives rise to the shot-noise limit.
While in the case of the conventional two-level laser a
coherent summation of noises from different atoms re-
sults in a Poissonian distribution of amplitude, in a mul-
tilevel system the addition of noises from the different
levels gives rise to a sub-Poissonian distribution. Our
treatment is based upon the dressed-atom approach de-
scribed in Ref. [1]. Several important examples of mul-
tilevel systems are discussed in recent publications
[8—16]. The semiconductor laser that demonstrated a
very high squeezing degree [17] can be viewed as such a
multilevel system [15,16]. Indeed, it has been recently re-
ported that such a laser cannot be regarded as a two-level
system with implication on the laser photon statistics
[18]. In the present work we briefly address this noise
reduction degree of semiconductor laser.

The setup of the paper is as follows. In Sec. II we ap-
ply the dressed-atom approach to the conventionally
pumped multilevel laser and discuss the intrinsic noise
quenching property of the system with internal degrees of
freedom. A minimization principle that governs the
noise reduction is formulated. In Sec. III it is shown that
the minimization principle holds true for many-photon
and multiphoton systems. The hierarchy of photon
statistics for such systems is discussed.
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II. CONVENTIONAL MULTILEVEL PUMPING

A. Stationary fluctuations in laser systems
with internal degrees of freedom

In this section we consider the influence of internal de-
grees of freedom on squeezing phenomenon. Here we
deal with the simplest case of three-level generation [8].
Consider the three-level laser (Fig. 1) with atomic relaxa-
tion defined in the usual manner [see Eq. (5) of I, abbrevi-
ated Eq. (1-5), at n =2]. Dressed-atom formulation of the
problem (1-11)-(1-17) results in the following set of equa-
tions:
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with N being the number of atoms (all the atoms are iden-
tical and the number of atoms is fixed); « is the field
damping constant; y, is the dipole moment relaxation
constant. Notations py, p;, and p, stand for diagonal ma-
trix elements of the dressed-atom matrix r; [see Eq. (1-
14)]

Po=(r1doo >, P1=ri, p2=(rily . (6)

Other quantities are defined as follows:
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The quantity R stands for the real dipole moment of
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FIG. 1. General scheme of three-level lasing.
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the dressed atom according to the definition

(rp)o=——. 8)
or™ " 7
Fluctuation terms 6; stem from the right-hand side (rhs)
of the master equation (1-14) and have the following ex-
plicit form:
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~ 9 1, — %X R2|Inp, , 9
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m =(y,/y,). For the sake of simplicity we assume here
only three nonzero rate constants ¥,;, ¥, and Yy, so
that

Y10=Y01=¥20=0 . (12)

Standard perturbation theory described in Ref. [1] re-
sults in the following expression for the Q parameter:

2Y31Y 0
(7’02+Y12+27’21)2 ’

provided the field is strong (x >>1). The result (13) one
can find from our work [8]. Minimization of the Q pa-
rameter upon pumping rate y,; results in

o=— (13)

Yo2
Qmin= - (14)
Hyo+712)
at
2Y0=Yntvi- (15)

It turned out that the condition of minimization of the
Q parameter coincided with another condition. Let us
consider the populations of the levels. ‘“Classical” (i.e.,
6r =0,=0, i=0,1,2) solution of Egs. (2)-(5) is (provided
the field is strong)

Y21
Po=pI=—————————, (16)
oM Yoot 712t2v2
+
py= Yo T7V12 (17)

Yoot vit2va

One may notice that the minimizing condition (15)
coincides with the following condition:

P2=potp; - (18)

In what follows we shall see that it is not by chance
that Eq. (18) is identical to minimization condition (15).
We shall see that the two lasing levels constitute one
“noise state” and Eq. (18) corresponds to some minimiza-
tion principle according to which all the noise states
(nonactive level 2 makes another noise state in our case)
have to be equally populated.

The minimal value Q= —1 (25% squeezing) occurs
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under the limit Yy, >>v,. In this limit one has a uni-
directional rate process and condition (15) changes into

2Y21=Y02 - (19)

Condition (19) has been generalized for multilevel sys-
tems by Ralph and Savage [9,13,14] and Ritsch et al.
[10,12]. They have identified the mechanism of noise
quenching for the unidirectional pumping process and
have established that the multiple recycling of the active
electrons results in the deterministic pumping process
and, thus, suppresses a stochasticity in a laser system.
The results obtained for the three-level generation case
have prompted the more general consequences of
coherent interaction of noise states (noises of different
levels or groups of levels). This concept will be formulat-
ed in the follow section.

B. Noise states and minimization principle

Here we discuss a common principle of laser light
coherence and introduce all notions associated with it.
We emphasize that the systems we discuss in this paper
possess an intrinsic property to convert an incoherent en-
ergy of pumping to coherent one of noise-reduced laser
light. It means that we do not consider here the systems
with any external coherences such as regularly or
coherently pumped lasers [2—7] to which our principle is
not relevant. Before we deal with a formal definition and
quantitative assertions we discuss qualitatively the
phenomenon of coherent addition of noises from different
sources in laser.

Coherent addition of noises from different atoms
in a conventional two-level laser

The principle difference between the laser light and
classical light is the coherence of the former. From a sta-
tistical point of view the classical light consists of in-
coherent wave packets and the total noise is a simple sum
of different atom noises. There is, apparently, no correla-
tion between the noises of different atoms. The laser light
is coherent and the noise properties of different radiating
dipoles are correlated. This statistical coupling of the
different radiating dipoles is so strong that the laser noise
corresponds to the noise of only one radiating dipole.
The drastic reduction of noise to the noise of a single
atom is clearly seen in the transition from the below-
threshold photon statistics to the above-threshold statis-
tics. Indeed, the incoherent light of a laser below thresh-
old is described by the Plank distribution with the photon
number variance in the form [19,20]

o?=(n?)—(n)*=(n)((n)+1), (20

where {(n) is the mean photon number. Provided
(n)>>1 the variance normalized to mean photon num-
ber is proportional to {n ) or to the number N of radia-
tive dipoles, i.e.,

0_2

(n)

={(n)~N. (21)

Above threshold the photon statistics is given by a
Poisson distribution with normalized variance,

o
) 1+0~1, (22)
with Q being Mandel parameter (in this case Q —0). It is
distinctly seen from formulas (21) and (22) that the transi-
tion from incoherent light to coherent light corresponds
to the transition from the incoherent sum of noises of
different radiating dipoles [Eq. (21)] to the noise of a sin-
gle atom (22). Thus we emphasize that above threshold
the amplitude noise features a strong collective behavior.
In fact, the state of a field with N atoms in a cavity of
quality g remarkably coincides with one with a single
atom in the cavity but with a quality gN (see Fig. 2). It
has been established [19,21-23] that the transition from
Eq. (21) to Eq. (22) features a first-order phase-transition
behavior with the pump parameter as the control param-
eter. Thus, this phase transition is associated with strong
coherent coupling of different atoms, when the system as
a whole exhibits a noise like a single atom.

It has been shown [8—14] that additional internal de-
grees of freedom in radiating dipoles may give rise to fur-
ther reduction of amplitude noise below the Poissonian
one. For instance, the squeezing capacity of a three-level
generation scheme is 25% [8)]. Certainly, the internal de-
grees of freedom can be quite diverse and complicated.
These can be a multilevel system, a semiconductor, a sys-
tem with several active levels, etc.

We shall see in what follows that under certain condi-
tions a coherent addition of noises from different internal
degrees of freedom is also possible, which results in fur-
ther noise reduction. This noise reduction is caused by a
certain different order imposed on the system and
features a second-order phase-transition behavior.

We start with the following definition: The number n
is noise dimension (ND) of the system if the two follow-
ing conditions are satisfied.

(a) The states of the system are decomposed into n
groups so that transition rates between states belonging
to one group are much larger than transition rates be-
tween the states belonging to different groups. Each such
group is called the noise state of the system.

(b) The population of every noise state has the same or-
der of magnitude.

First comments. Fast transitions inside the noise state

ABOVE THRESHOLD N TWO - LEVEL DIPOLES MAKE
NOISE LIKE A SINGLE DIPOLE

qualily = q quality = Nq

Poissonian noise °
single alom

FIG. 2. Coherent addition of noises for two-level atom las-
ing. Correlated agents are radiated dipoles. The limit of classi-
cal correlations is a Poissonian noise. To overcome this limit
the additional (quantum) structure is required.
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physically mean that states belonging to the same noise
state are statistically degenerate. In other words, they
“bear” the same noise and statistically manifest them-
selves like one state. For instance, two lasing levels, at
strong saturating field, make only one noise state. Thus
the noise dimension of the system is the full number of
noise states. Let us consider some examples of systems
with different noise dimensions.

(1) Four-level system with lasing transition between
levels 0 and 1 (Fig. 3). At strong field the levels O and 1
make only one noise state. If we adopt the same order of
magnitude for all relaxation constants, i.e.,
Y21~ Y32~ Y03 then the noise dimension is equal to 3. If,
for instance, y,;~7¥3;, <<7q3 then the levels 1, 0, and 3
make one noise state and the noise dimension of the sys-
tem becomes equal to 2. When otherwise ¥,; <<¥3,~ %03
all levels O, 1 , 2, and 3 degenerate into one noise state
and the noise dimension becomes equal to 1. Then, in
fact, the noise properties of such a system would be iden-
tical to those of a two-level system. The last case results
in a Poissonian noise.

(2) Semiconductor laser. From a conceptual point of
view all degrees of freedom in a semiconductor are
“internal” and this example is particularly important for
our concept. If intraband transitions are much faster
than those between the different bands we get a system
with the noise dimension equal to 1. This fact distinctly
shows that the noise dimension of the system has nothing
to do with the number of energy levels (the latter is very
large for the semiconductor case). If, to the contrary, all

2 ~ ~
Y1 Yar 33 Vs
1 "O+1"
lasuag Noise states: "on
'YO3 ”3 "
3 ND =3
2 Y377 Ta7 T
Y21
1 . o "0+143Y
lasing Noise states: o
0
Vo3
3 ND=2
2 TS T5 T,
V21
1
lasing Noise state: ~ "Q+1+2+3"
0
Y03
”s ND=1

FIG. 3. Illustration of a noise dimension (ND) idea for an ex-
ample of the four-level scheme.
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the transition rates are of the same order the noise dimen-
sion grows to infinity and one can expect the remarkable
noise reduction observed in experiments.

As mentioned above, it was reported that semiconduc-
tor lasers cannot be described by a two-level model but
rather it requires at least four levels and that this has im-
portant consequences on the laser photon statistics [18].
Thus the regular pumping description of a semiconductor
laser is not appropriate as it is based on a two-level mod-
el. In terms of the present work, the semiconductor laser
is a multilevel system, the noise dimension of which
should be calculated in order to determine its noise
reduction capacity. It is suggested here that such a
description can account for the high squeezing degree re-
ported for the semiconductor lasers [17].

(3) Four-level lasing with two lasing transitions (Fig. 4).
We assume that the field saturates both of the lasing tran-
sitions. In this case, each pair of the lasing levels consti-
tutes one noise state. So, the maximal noise dimension of
such a system is equal to 2.

It should be noted that there is some analogy between
the notion of the noise dimension and the concept of adi-
abatic elimination of the fast variables widely used in the
analysis of nonlinear, dynamical systems [24]. Indeed,
there is a hierarchy of times in the problem. The shortest
time scale refers to the transition times within one noise
state. Populations of the noise states are slow variables
with respect to the population of levels within these noise
states. Therefore, the reduction to the noise states relates
to the adiabatic elimination of the fast variables of the
system and the noise dimension corresponds to the
remaining number of slow atomic variables (i.e., noise
states) which “‘slave” the fast variables.

However, the noise dimension is a more general notion
than the number of the slow variables. Indeed, as we will
see later (see Sec. III), fluctuation properties of the sys-
tems with more than one lasing transition are really
determined by the effective noise dimension which is not,
necessarily, equal to the number of the remaining slow
variables. This inequality is a consequence of the symme-
try of such systems. An effective noise dimension may
become, for example, a fractional quantity (as seen in Sec.
III E).

The principle we put forward establishes a linkage be-
tween fluctuations and noise dimension of the system. It
reads as follows: In a system with the noise dimension
equal to n the minimal noise is reached if and only if all
the noise states are equally populated. The larger the
noise dimension of the system is, the larger is the possible
noise reduction.

Thus, this principle requires equalizing the population

3

I lasing
2

1
I lasing
0

FIG. 4. Four-level lasing scheme with two coherent transi-
tions.
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of different noise states.

A numerical example depicted in Fig. 5 illustrates the
above formal assertion. The system shown consists of a
total of nine levels and lasing takes place among levels 1
and 2. It is assumed that levels 5, 4, and 3 have fast non-
radiative transitions between themselves. The same is
true for levels 6, 7, 8, and 9. Division into noise states is
evident. The lasing levels 1 and 2 make noise state a.
Two other noise states are made by the group with levels
3, 4 and 5 (group b) and the group with levels 6, 7, 8, and
9 (group ¢). The noise dimension of the system is equal to
3. So, according to the above principle, each group has
to have the same population, which is equal to {. Fast
transitions inside each group equalize the populations of
levels belonging to the same group. In other words, in-
side each group one has a statistical equilibrium. There-
fore, the distribution of populations of the levels is that
represented by the last column in Fig. 5.

The formulated principle selects the most correlated
state of the system in which one can find alternative sym-
metry of the noise. Like the coherent addition of noises
from different dipoles at the first laser phase transition,
the noises from different internal degrees of freedom are
added coherently, establishing a different symmetry.
Thus, this is cooperative behavior of the noise states via
specially tailored incoherent pumping which gives rise to
the suppression of spontaneous emission noise. We em-
phasize that the quantum correlations dealt with here are
the correlations between different parts of one and the
same system rather than correlations between different
systems [25].

In this section we discuss the most simple examples of
systems for which the minimization principle is valid.
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Then we shall consider more sophisticated examples.

(a) A two-level system in the case of strong saturating
field consists only of one noise state. The minimization
principle is satisfied trivially.

(b) Consider three-level lasing (Fig. 1). The noise di-
mension of the system is equal to 2 (both lasing levels
make one state). As has been shown, the noise is minimal
when pumping rate y,; satisfies condition (15) in which
case relation (18) takes place and, thus, the minimization
principle is satisfied. It may be noted that the global
minimum of the Q parameter [see Eq. (14)] corresponds
to the unidirectional process (no decay of upper lasing
level, i.e., ¥,=0). In this particular case the minimiza-
tion principle is also satisfied.

In the following sections we consider in detail more so-
phisticated examples of laser systems for which the
minimization principle holds true.

C. Multilevel generation

In this section we discuss a multilevel generation and
provide simultaneously an example which may be used
for illustration of our common principle. Consider a
multilevel laser system and assume, for simplicity, an ini-
tially unidirectional process of pumping (see Fig. 6). The
general master equations (1-14)—(1-17) result in the fol-
lowing set of equations written down for fluctuating pop-
ulations of dressed-atom levels p; and the real dipole mo-
ment R

level group population population

number index of group of levels
9 1/12
8 c 1 1/12
7 3 1/12
6 1/12
5 _— 1 1/9
4 — ] b 3 1/9
3 — 1/9
2 ) 1 1/6
Y ) a 3 e

Noise states: "a", "b" and “c"
+ = + + = + + +

p11 p22 p33 914 %5 %6 p77 %8 p99

Noise Dimension = 3

143 d N
—=p,=2-"n|1——-R |p,, 23
K atpf ann Ky, Pf ( )
1 0 N _
ZER +R—S=0;, S=p,—po > (24)
J Y
5,Po T YonPo— 5 AR =6, , 25)
a Y
EP1—721P2+_ZLXR =06, (26)
3 _
—a?pi+7/i,i—1pi—7i+1,ipi+1_9i ’
i=2,3,...,n—1, (27

a —
Epn_'_’yn,n*lpn—yOnPO_en > (28)

with fluctuation 6 terms of the form

FIG. 5. This figure illustrates the minimization principle for
an example of the nine-level system with lasing transition be-
tween levels 2 and 1.

FIG. 6. Multilevel generation scheme. Maximal squeezing is
reached under the condition py+p,=p,= - -+ =p,=1/n.
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Successive adiabatic elimination of the atomic variables
results in the following value of the mandel parameter:

g
:"*‘f‘ﬁ—“ > a;(2—a;))+0(f), (32)
where o
aiE?% , f=1+x)"",
B=Q2+a,+ - +a,)7", ¥, =278
The minimal value of Q is determined by the condition
%zo’ i=2,...,n, (33)
from which we readily find
a;=2, i=2,...,n, (34)
or
Yu=Yn= """ =Vpn-1=7%0n - 35)

Now we shall verify whether condition (35) is identical
to that required by the minimization principle or not.
The noise dimension is easily determined. Adopting for
all the transition rates y; to be of the same order of mag-
nitude we obtain that each nonlasing level represents one
separate noise state, and the two lasing levels make one
noise state. Thus, the noise dimension is equal to n.
Note that if one of the constants y;; becomes much larger
than the others the noise dimension decreases by 1. This
is explicitly seen in Eq. (32) in which the number of ad-
dendums is reduced by 1. The relevant populations in the
strong-field limit (x >>1 so that f—0) are

pi=a;B, i=2,...,n, (36)

PootpP11=2B . 37

Upon equating the rhs of Eq. (36) to that of Eq. (37) we
arrive exactly at Eq. (34), which completes the proof.
Thus, we have found that our minimization principle
minimizes the noise of the system. Under condition (35)
we get for the Mandel parameter

Q=_

n—1

P (38)

with n being the noise dimension of the system. It yields
50% squeezing at the limit of n — . Equation (38) is in
agreement with the result of Ritsch et al. [10,12] and
Ralph and Savage [9], in which case Eq. (38) was ob-
tained as a result of heuristic use of Eq. (35). Equation
(35) in turn generalizes Eq. (19). Figure 7 displays the
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FIG. 7. The Q parameter as a function of the ratio of the
pump rates and noise dimension (ND). Curve 1 corresponds to
the maximum squeezing, when the requirements of the minimi-
zation principle are satisfied. The dots on this line represent the
relevant squeezing levels: a corresponds to a ND of 2, Q= — },
and squeezing of 25%:; similarly, b, ¢, and d have ND’s of 3, S,
and 12, Q=—1, —%, and — 1, and squeezing of 33%, 40%,
and 46%, respectively. Note that a ND of 12 already results in
a squeezing level very close to the ultimate value (when ND ap-
proaches infinity).

dependence of the Q parameter upon noise dimension n
and the ratio of the rate constants «; for the case of equal
constants «;=a=const, where i=2,...,n. Formula
(38) corresponds to curve 1 for which the minimization
principle is satisfied. The figure illustrates the noise di-
mension idea as well. At a>>1,i.e., at yq, >y, ,—, the
levels O, 1, and n are statistically degenerated into one
noise state and the noise dimension is lowered by 1.

Consider an opposite case where a <<1/(n—1). In ac-
cordance with the noise dimension definition, the levels
0,1,2,...,n make one noise state and the noise dimen-
sion is equal to 1. The noise becomes Poissonian. This
result agrees well with the results of Refs. [9-14]. It is
clear that the presence of the slow transition in the sys-
tem drastically increases the noise. This evident conse-
quences has a far-reaching experimental significance since
it indicates the major cause of the fluctuation growth.

As argued above, the noise dimension of the semicon-
ductor laser can be quite high, which may account for the
success of noise reduction experiments in the semicon-
ductor laser [17].

III. MANY-PHOTON AND MULTIPHOTON SYSTEMS

In this section we extend our theory to include the very
important case of interaction. Hitherto we discussed the
laser system with only one coherent transition. However,
real examples of interaction in quantum optics have
sometimes more than one coherent transition. These are,
for instance, four-wave mixing (when coherent energy of
the signal mode is transferred to coherent energy of the
idler mode), lasing with many laser transitions (this takes
place for vibrational molecules laser media), lasing in a
semiconductor, etc. Recently, a two-photon lasing has
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been observed [26]. We shall show in this section that the
two-photon process may be statistically identical to
another process with two ‘“one-photon” transitions. So
the theory we present in this section is established to be
relevant to this case as well.

Here we investigate a system with two and several las-
ing transitions and establish the validity of the minimiza-
tion principle for this kind of the laser systems. In the
case of more than one photon, namely, a few lasing tran-
sitions, the competition among these transitions on the
cooperative behavior of all other internal noise states
may hinder the noise reduction in the system. Thus the
noise dimension which plays an important part in the
squeezing phenomenon effectively decreases. The frac-
tional noise dimension is introduced to account for this
effect. This may result in a decrease in noise reduction
capability.

Moreover, we shall see that systems with more than
one lasing transition exhibit a remarkable feature. These
can generate different photon statistics which continuous-
ly transform from super-Poissonian to sub-Poissonian
just by varying the incoherent rate constants. This result
seems to reveal a different statistical nature of two
(multi)photon process. Here we restrict our considera-
tion by interaction only with one and the same field
mode. Nevertheless, our results are applicable to interac-
tion with two and several modes.

A. Minimization principle for a system
with more than one lasing transition

Consider the scheme which comprises five levels with
two lasing transitions [Fig. 8(a)]. First of all, it should be
noted that the presence of the two lasing transitions is ex-
pected to worsen noise properties, since lasing photons
from transition 4—3 and from transition 1—2 are an-
ticorrelated. Indeed, if radiation of a lasing photon
occurs in one transition the radiation from the other
transition becomes impossible simultaneously. In what
follows, this elementary reasoning is confirmed by exact
calculations. The one-particle interaction Hamiltonian
from this scheme is

Hint:'g(o'34+001)bT+H.C. R (39)

where b and b are cavity-mode operators, o ;= li) (]
are atomic transitions operators, and g is the coupling
constant. Let us determine the noise dimension of the
system. Provided the field is strong, levels 3 and 4 make
one noise state, likewise do levels 0 and 1. Provided all
quantities ¥,, V35, and Y, are of the same order of mag-
nitude, the maximal noise dimensions of the system is
equal to 3. According to the minimization principle the
fluctuations are minimized under the condition

Patp3=pry=pitpo=7 , (40)

where p; are normalized populations, i.e.,
potpitp,+p3+p,=1. Now examine a validity of the
minimization principle. The general master equation
with interaction Hamiltonian (39) results in the following
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FIG. 8. This figure illustrates the continuous transition from
the scheme with two “one-photon” lasing transitions (a) to one
“two-photon” transition (d).

set of equations:

19 _ .0 N

P atpf 28 1 Ky, (R1'+'R2) pf ) (41)
0 Yy

§P0+7’04P0—TXR1=90 ’ ) (42)
) Vi —

§P1_721P2+‘2_xR1“91 ) 43)
d

E{P2+7’21P2_7’32P3=92 > (44)
9 Vi —

5;P3+7’32P3_—2‘XR2_93 ) 45)
) Y

§P4—704P0+ Tszzg“ ’ (46)
L 8 R 4R, ,—S,,=6 47
Lot 1,2 1,2 127 VR,

S1=p1—Po> S2=ps—p3 > (48)

with small fluctuations terms in the form

0 =9 2,'—lx—[(~1+po)R1+R2p0] Inp, , (49)
_ 0 Y

91 % [_Z_(R1+R2)p1 ]lnpf N (50)
_ 0 |V

6= |1

= an | 2 [(—=14+p;3)R, +R p5] Inp, , (52)
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0,= aa {7“ (R,+R,)p, fInp, , (53)
1
KN x
On, .=~ o lpM ZRY, finp, (54)

The notations are standard ones. Real dipole moments

of atoms are introduced as follows:
( izR 1 ( ) iZR 2 (5 5)
r =, (r =—.
Por= T S
The straightforward usage of the standard perturbation
theory [1] yields the classical (without fluctuations) solu-
tion at the strong-field limit:

a (04
(0)— (0)— 0— (0 1 o %1
Po =pi a4’ P3 =pPg 4’ P2 q’ (56)

B=——, d=2+a,1+2a, . (57)

Evaluation of the Mandel parameter yields the expression

4 a,+2a,ta,a,)
%— : dj — (58)

The minimum Q= —1} is reached at a,=2, a,=1,
which results in the following values for the level popula-
tions [see formulas (56)]:

1 (0)— (0)— 1 (0) —

pP=p =1 pO=p@=1 pO=1 (59)

We see that condition (40) is satisfied, which completes
the proof of the minimization principle validity for this
particular case of the laser system.

Then we skip details and present just the result of cal-
culation of fluctuations for the case of lasing as it is
shown in Fig. 9:

_ 1+a2 (2a2+a3)(2+a1+a3)
T d d?
224a)a;+a,)  2@itad)  a;—a
— + +
B i T (60

with

53 l 1

FIG. 9. Six-level scheme with two lasing transitions.

__ Y2 _ V2 _ V2
al:— > a2:‘_- > a3:——' Py

Ya1 Yos Vs3
d=2+a;+2a,+a; .

(61)

Result (60) will be useful for discussion of the general
structure of noise in laser systems which follows this sec-
tion. One can readily check that the minimal noise case,
which occurs at a;=a;=2, a,=1, exactly corresponds to
the conditions of the minimization principle, namely,
noise states (the noise dimension is equal to 4 in this case)
occur to be equally populated, i.e.,

potpP1=p2tps=ps=ps, (62)

B. Continuous transition from one-photon
to two-photon statistics in a laser

Now we shall follow the photon statistics transforma-
tion while parameters a,,a, in Eq. (58) are changed.

(i) a; << 1. In this case the levels O, 1, and 2 make one
noise state and the noise dimension is equal to 2. The
minimum Q =0 is reached at a,=1. Thus, we have ar-
rived at Poissonian photon statistics. The last limit is
identified with the scheme displayed in Fig. 8(b) at
Y1=7v,. For the scheme with one lasing transition and at
the same noise dimension equal to 2, it follows from Eq.
(38) that Q= —1

(ii) a;~a,<<1. This limiting case corresponds to Fig.
8(c). In this case, all levels make the single noise state, so
the noise dimension is equal to 1. The quantity Q is equal
to 4, which remarkably coincides with the two-photon
laser statistics obtained by Cheng and Haken [27]. So
that with respect to photon statistics, the cascade scheme
with one-photon resonance [Fig. 8(c)] is identical to the
scheme with two-photon resonance [Fig. 8(d)] discussed
in Ref. [27], in which case the interaction Hamiltonian
was supposed to be a quadratic one with respect to the
field operators, i.e.,

mt [gU +H C. ] . (63)

The above examples exhibit the relation between the
one-photon process statistics and the two-photon process
statistics, which are just the different limits of one and
the same general case. Once again we arrive at the con-
clusion that the noise properties of the two-lasing transi-
tion scheme are worse than those of the one-lasing transi-
tion scheme for which, at the same noise dimension equal
to 1, Eq. (38) results in Q =0.

(iii) Now consider the continuous transition from case
(i) [Fig. 8(b)] to case (ii) [Figs. 8(c) or 8(d)]. Such a transi-
tion one can follow while varying the parameter
€=v1/y, from O to infinity (see Fig. 10). State F, with
Y1=7, has the noise dimension equal to 2 and satisfies
the minimization principle requirements, i.e., both noise
states are equally populated. Moving along the curve
FoF,(FoF,) corresponds to disturbing the symmetry
characterizing the state F, with the noise dimension
equal to 2. The limit of such a breakdown of symmetry is
the final state F|(F,). These states are once again
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FIG. 10. Q parameter for the scheme is represented by Fig.
8(b) as a function of e=vy,/y,. States Fy, F|, and F, satisfy the
minimization principle requirements. The crucial difference be-
tween the state F, and the states F,, F, is the difference in their
ND. In state F, the ND is 2, while in states F; and F, the ND
is 1. In intermediate regions between state F, and F,, F, the
minimization principle requirements are not satisfied.

characterized by the symmetry required by the minimiza-
tion principle but with the noise dimension lowered by 1.
Thus the transition FyF(FyF,) from the one-photon
process to the two-photon process is accompanied by
lowering of the noise dimension and consequently by
worsening of noise properties. The worsening of the
noise property of the two-photon process can also be
readily understood from the simple fact that in the latter
case the photons are created by pairs which hinders the
stabilization of the field intensity. Thus, a hierarchy of
different photon statistics is established. The part of the
control parameter at this photon statistics transformation
is played by the noise dimension of the lasing scheme.
Our consideration reveals a different statistical nature of
the two-photon process. It appears to be a result of a
breakdown of the symmetry characterizing a system with
the noise dimension equal to 2 and a transformation to a
different symmetry characterizing a system with the noise
dimension equal to 1. Thus, it is shown that the squeez-
ing capacity of the systems with two lasing transitions is
worse than that of the schemes with one lasing transition,
provided the noise dimension is the same.

C. How can one interpret the sub-Poissonian statistics
in the two-level case?

It follows from the standard Scully-Lamb-Haken
theory [20] as well as from our consideration that two-
level atoms generate a Poissonian light well above thresh-
old (the dressed-atom effects are insignificant in this case).
Nevertheless, it has been known for quite a long time
[19,28,29] that some small squeezing may be achieved in
principle at intermediate field when the Rabi frequency is
of the same order as the atomic decay rate. Interpreta-
tion of this peculiarity has been done by Kazantsev and
Surdutovich [19]. It is easily done if we recall that in the
case of unsaturating field the spontaneous emission prob-

ability becomes minimal under some intermediate field.
The phenomenon may be understood in a framework of
the minimization principle as well. Indeed, in the case of
unsaturating field the lasing levels no longer make a sin-
gle noise state. As a matter of fact, their noise state splits
into two and a noise dimension increases up to 2. How-
ever, this growth of squeezing capacity is hindered by the
fact that the minimization principle cannot be satisfied
(the populations cannot be equalized before a saturation
is achieved) for a two-level system. This is the reason
that the squeezing is achieved but at a very modest level
(about 5%).

D. Minimization principle and a reduction of description

In this section we shall see how the minimization prin-
ciple allows one to reduce a description of a complicated
laser system. This reduction is based upon an alternative
symmetry that one can find in a laser system which
satisfies the conditions required by the principle. We
start with one preliminary remark. What sort of reduc-
tion in the description do we mean? Let us recall a
coherent interaction of the two-level atoms in conven-
tional laser. In this case, we had a reduction of descrip-
tion since the collective properties resulted in that we
dealt with the density matrix of the single particle
(dressed atom) instead of multiparticle correlation forms.
In other words, we reduced our description up to the
“single-particle” one. Physically this reduction is in-
voked by the strong laser coherence far above threshold.
So a different symmetry in a laser system is accompanied
with the reduction of description. To some extent, the
coherent interaction of different noise states looks like the
discussed interaction of the different two-level atoms.
When the minimization principle is satisfied the system
may be characterized by some different symmetry and a
reduction in description is possible as well. Physically it
means that some noise state may become indistinguish-
able and one operates with only one noise state instead of
many. We demonstrate this reduction for a particular ex-
ample and then generalize the results.

Consider again the laser scheme depicted in Fig. 8(b).
We have already established that the minimization prin-
ciple requires that the constants ¥, and ¥, be equal (in or-
der to equally populate the noise states). In this case the
two lasing transitions (noise states) becomes indistin-
guishable and we can operate just with the quantities of
only one transition. This symmetrization results in the
following relations:

R,=R, (for dipole moments) , (64)

Po=p,, p1=p; (for populations) . (65)

Equations (64) and (65) reduce the description of the
system from six quantities (pg, p;, Py, p3» Ry, and R,)
down to three. We skip the straightforward calculations
which repeat mostly the derivation of Eq. (58) or (60).
The amplitude fluctuation result perfectly agrees with
that obtained from Eq. (58), under conditions a;=0 and
a,=1, or that obtained from Eq. (60), under conditions
a;=0, a,=1, and a;=0. It reads as
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0=0. (66)

This result indicates that this scheme is statistically
identical to the conventional two-level (one-photon) re-
sult where the noise is known to be a Poissonian one as
well [19,20].

Now consider again the scheme represented by Fig. 9.
Without any quantum-mechanical consideration (using
the classical rate equations only) one can easily check
that the symmetry principle will be satisfied if the follow-
ing conditions are imposed:

Y24=2Y415 Yos=2Vs3 - (67)

In this case the lasing transitions (1—0) and (3—2)
become indistinguishable as well as the nonactive levels 4
and 5. Again we find a reduction in description. It is in-
teresting to follow what happens with the noise states.
The noise dimension of the system is still equal to 4 since
each lasing transition makes one noise state and so does
each nonactive level. However, because of the indis-
tinguishability of some noise states this system has noise
properties identical to those of the conventional (one-
photon) three-level system with one nonactive level (Fig.
1). Calculations with expression (60) affirm this result.
Indeed, upon taking a;=2, a,=1, and a;=2, which ex-
actly corresponds to conditions (67), we arrive at the re-
sult

Upon comparing Eq. (68) with Eq. (14) (under the con-
dition ¥, <<7yg,) we come to the conclusion that the
noise properties of this scheme are identical to those of
the three-level one.

E. Effective noise dimension

The above reasoning prompts us to introduce some al-
ternative quantity in order to correctly assess the squeez-
ing capacity of the system. This can be done by the fol-
lowing simple definition:

Neg=—— , (69)

R on
where n is the noise dimension and 7, is the number of
coherent photons in the system (number of lasing transi-
tions for the situation in question). The quantity # 4 may
be called the effective noise dimension. Indeed, exact cal-
culations resulted in Eq. (38) can be generalized for the
n-level scheme with n,, lasing photons. The result of
such a generalization reads as
o=—""Tw
2n

It follows from Eq. (70) and definition (69) that upon
replacing the noise dimension n by the effective noise di-
mension n one can continue to use the expression (38)

to assess the squeezing capacity of the system with any
number of coherent photons, so that the result reads as

(70)

ng—1
o=—"— (71)

2n ¢

Let us analyze the effective noise dimension and
squeezing capacity for the generation scheme of Fig. 8(a).
According to definition (69) the effective noise dimension
is as follows:

(72)

[S11%)

e

Upon inserting Eq. (72) into Eq. (71) we arrive at the
simple result

Q=—1, (73)

which remarkably coincides with that obtained by the
quantum-mechanical consideration above [see text under
Eq. (58)].

F. Multiphoton processes

Another remarkable example of the system, the
effective noise dimension and the squeezing capacity of
which may be easily analyzed, is a multiphoton process.
Let us consider for simplicity the two-photon process
represented by Fig. 8(c) or Fig. 8(d) (in Sec. III B we have
established that these two schemes of lasing are identical
from the statistical point of view). In this case there is
only one noise state (the lasing transition itself) and the
noise dimension of the system is equal to 1. There are
two coherent photons (lasing photons) in the system, so
that n,;, =2, therefore for the effective noise dimension
we obtain a simple result,

Reg=1 . (74)
Then the general formula (71) yields the following re-

sult for the Mandel parameter:
o=4. (75)

Again this result coincides with that obtained by a
quantum-mechanical calculation (see [27] and Sec. III B)
and means 50% super-Poissonian noise. Generalization
of the result (74) on three and more photon processes is
straightforward. This fractional effective noise dimension
agrees well with the elementary reasoning about an-
ticorrelation of different coherent photons (see Sec.
IIIA).

It should be emphasized that the quantity n .4 accounts
for the total number of coherent lasing photons in the
system. It includes the cases of many one-photon lasing
transitions [e.g., Figs. 8(a) and 8(b)], multiphoton lasing
transition [Fig. 8(d)] or both (Fig. 11). Thus, in order to
evaluate the squeezing capacity of the system one has to
deal, in general, with the effective noise dimension. The
last example (Fig. 11) demonstrates the difference be-
tween the effective noise dimension which is equal to 0.8,
and the number of the slow atomic variables left after
adiabatic elimination of the fast variables, which is equal
to 4. Squeezing capacity in the present case is deter-
mined only by the effective noise dimension.

G. Minimization principle and quantum correlations

Recently Barnett and Phoenix [25] investigated a quan-
tum correlations issue by using quantum-information
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FIG. 11. Example of the combined scheme. There are four
noise states (or slow atomic variables) and five coherent photons
in the system. Hence, the effective noise dimension
ng=0.8<1. Thus such a scheme cannot produce squeezed
light.

theory. They concluded that a squeezed state corre-
sponds to a most-correlated state of the coupled system
and that quantum mechanics allows systems to be twice
as strongly correlated as classical mechanics. In light of
this discussion, the laser noise can probably also be
decomposed into classical and purely quantum ones.
Along these lines the Poissonian distribution is a result of
““classical” noise correlation and can be obtained as a lim-
it in a system of two-level radiating dipoles. In fact, the
Poissonian noise of the laser indicates that the total sys-
tem makes noise as a single two-level atom (see Fig. 2).
In this case all “classical” sources of noise (such as a
thermal distribution of atomic parameters, etc.) are com-
pletely suppressed. The noise of N atoms in a cavity with
quality factor g is identical to that of a single atom, but in
a cavity with quality gN (see Fig. 2). This result is easily
understood since in this case there is only one noise state
and the problem of quantum correlations between
different noise states does not arise. On the other hand,
the sub-Poissonian noise features a purely quantum
correlations property [16]. Sub-Poissonian photon statis-
tics can exist only in a system with an effective noise di-
mension larger than 1. This, in turn, can happen only in
a quantum system whose structure is more complicated
than that of a two-level atomic dipole. The most
squeezed light corresponds to the most quantum-

mechanically correlated state of system. This is exactly
the state required by the minimization principle. Such a
manifestation of quantum correlations differs from the
conventional one (when this is the correlation between
different systems [25] rather than different levels of the
same system), namely, the noises of different levels can
coherently interact and the minimization principle selects
the most correlated state.

IV. SUMMARY

The dressed-atom approach formulated in paper I has
been applied to analyzing the intensity fluctuations in
conventionally pumped lasers. A minimization principle
that governs the noise reduction in such lasers has been
formulated and described comprehensively. A definition
of noise states was introduced. It was shown that the
squeezing capacity of conventionally pumped lasers is
determined by the so-called noise dimension, which is
equal to the number of the noise states in the case of
one-photon resonance in a single lasing transition. The
larger the noise dimension the larger is the squeezing
capacity of the system. The validity of the minimization
principle has been proven for the various lasing schemes.
According to the principle, the squeezing capacity is
maximal when all the noise states are equally populated.
The minimization principle is generalized for the cases of
multiphotons, many lasing transitions, or both. For these
cases an effective noise dimension is defined which is
equal to the number of noise states divided by the number
of the lasing coherent photons.

This minimization principle leads to a reduction of the
description of the system. Indeed, in order to evaluate
the squeezing capacity of the system one no longer needs
a complete quantum-mechanical calculation to treat the
fluctuation problem. It is quite enough to assess the
number of noise states of the system just from the semi-
classical rate equations, which makes the minimization
principle helpful in the planning of experiments on
squeezing.
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