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Laser-noise suppression in the dressed-atom approach. I. Fluctuations in a
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The dressed-atom approach to the Auctuation problem in lasers is described. Such an approach allows
one to analyze the Auctuations in various kinds of laser models. The intensity fluctuations in a regularly
pumped laser are considered in the framework of the dressed-atom approach. The Fokker-Plank equa-
tion for the field density matrix is derived from first principles without heuristic assumptions. An alter-
native interpretation of the noise suppression in the regularly pumped laser is given. It is based upon the
nonstationary picture for atomic variables. In such a regime the statistics of the output laser field may
be controlled by the inuput statistics of the atomic initial conditions. It is the regular pump that pro-
vides the best input statistics. In the latter case the atoms are essentially nonstationary and coherently
oscillate at the Rabi frequency. They are treated in a framework of the time-dependent picture in spite
of the short atomic lifetime as compared with the cavity mode lifetime. The nonstationary version of the
dressed-atom approach is employed to treat the regular pump case. It is demonstrated that a coherent
coupling of the Rabi oscillations in the quadratic dressed-atom terms gives rise to a survival of a linear
inverse proportional dependence of the atomic correlation functions upon field intensity. This survival
in turn accounts for the anomalously large dressed-atom contribution to the Auctuations. Our results are
in quantitative agreement with those of other approaches.

PACS number(s): 42.50.Dv

I. INTRODUCTION

From the conceptional point of view it seems that there
are two ways to generate squeezed light. The first one is
an introduction of regularity via pumping with
suppressed fluctuations [1—6]. The second way is based
upon the intrinsic property of systems with internal de-
grees of freedom to generate squeezed light [7—13]. In
the case of the regular pumping, a deterministic pump re-
sults in a noiseless laser field, whereas in the second case,
the so-called "conventional pumping, " the noise reduc-
tion is an intrinsic property of the laser system itself. In
the latter case the squeezed light is obtained from in-
coherent energy, whereas in the regular pumping case the
sub-Poissonian property is transferred from one energy
source to another.

Noise quenching in a regularly pumped laser is ex-
plained on the basis of the standard Scully-Lamb-Haken
theory [14,15] in which the stochastic treatment of the
pump has been incorporated [2—6]. A phenomenological
derivation of the field density matrix master equation is
employed. It is also the case with the quantum Langevin
approach [4].

The noise suppression in a conventionally pumped
laser was predicted by Kazantsev and Surdutovich [16]
on the basis of a purely Hamiltonian approach. This re-
sult was confirmed by Pokrovsky and Khazanov [17],Lu-
giato, Casagrande, and Pizutto [18], and Haake and
Lewenstein [19]. By using the dressed-atom treatment of
the total N atoms + field system it has been demonstrat-
ed in Ref. [7] that the noise properties of a three-level sys-
tem are intrinsically better than those of a two-level one.
It has been pointed out, as well, that a unidirectional

pumping process minimizes the laser Auctuations. The
results were generalized to include multilevel systems by
Ralph and Savage [8—10]. They suggested a simple sta-
tistical model that relates Auctuations of the photon num-
ber with fIuctuations of the mean pump recycling time.
Hart and Kennedy [11] considered a three-level model
with pump depletion. Ritsch et al. [12] have been able to
identify the mechanism of noise quenching for the uni-
directional pumping process. They have established that
the multiple recycling the active electrons results in a
deterministic pumping process and thus suppresses the
stochasticity in the laser system. Ralph and Savage [10]
found a simple statistical model for interpretating the
multiple recycling in terms of stochastic recycling times
and investigated some conditions for experimental reali-
zation of squeezed lasers. In Ref. [13] a minimization
principle was reported that allows one to evaluate squeez-
ing capacity for all kinds of laser models.

In' this paper we analyze the relation between the two
different methods of laser noise reduction (regular and
conventional pumping). We present a unified approach
to both methods of noise reduction which is based upon
the dressed-atom treatment [7,16,20,21]. We proceed
with the Hamiltonian formulation of the total atoms and
field system. As will be demonstrated, (he dressed-atom
Auctuations in the regularly pumped laser dieter from
those in the case of the conventionally pumped laser.
This diff'erence stems from the oscillatory character (Rabi
oscillations) of the atomic quantities evolution and gives
rise to a "survival" of a linear inverse proportional
dependence of the atomic correlation functions upon field
after time averaging. This survival occurs due to the
coherent coupling of the Rabi oscillations of di6'erent
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II. DRESSED-ATOM APPROACH

A. Hamiltonian formulation of the fluctuation problem

In this section we present the generalized Hamiltonian
formulation of the fluctuations problem. This formula-
tion is applicable to both the conventionally pumped and
regularly pumped laser. These two different cases of the
pump may be specified just by the proper choice of the
atomic relaxation operator. The term "atom" is used
here for any possible type of the quantum dipole
(electron-hole pair, three-level atom, etc.). The total
atoms and field system density matrix p(t) obeys the gen-
eralized Liouville equation [15—21]

8 +A„+Af +iL„f P(t ) =0,
at

J

Af% = —~([be, b ]+[b,%b ]),
A„—g A, , L~f QL,f, (3)

atomic variables, dipole moment and inversion, the oscil-
lation phases of which are shifted by a fixed quantity
~/2. It can be readily seen in the dressed-atom terms
which ones are quadratic with respect to the atomic vari-
ables. Qur results are in full agreement with those of oth-
er approaches [1—6]. However, the present consideration
has some merits as it (1) indicates a conceptual heredity
of the two Inethods of the noise suppression which is es-
tablished to be just the difterent (stationary and unsta-
tionary) regimes of the same atomic system, and (2) pro-
vides a formal Hamiltonian background for the regular
pumping concept.

The setup of the paper is as follows. In Sec. II we de-
scribe the dressed-atom treatment of the fluctuations
problem. In Sec. III the general dressed-atom concept is
employed to treat the regularly pumped laser. The con-
ventional (stationary) multilevel pump will be discussed
in the following [27]. In that part we discuss the intrinsic
noise quenching property of the systems with internal de-
grees of freedom. A minimization principle that governs
the noise reduction will be formulated. It will be shown
that the minimization principle holds true for various
laser schemes including many-photon and multiphoton
systems.

A. 'p= —g y,,([o,, e, o,, ]+[o„,o,,q ]), (5)

o,,
=—/j)(i/ . (6)

Here y; are the generalized rates of incoherent radia-
tionless transitions between the atomic states. The relax-
ation in the form (5) does not include any so-called
phase-destruction processes. Thus, the relaxation in form
(5) corresponds to the minimum value of the dipole mo-
ment decay constant. The phase-destruction process may
be easily included if necessary.

B. Dressed atoms as a decoupling procedure

Pf =Trfp(t);—
the one-atom density matrix is

p, =Tr ,p(—t);-
the one-atom —field density matrix is

Pif =—Trifp(t);

the two-atom —field density matrix is

Pigf —Tripfp( t ) (10/

and so on. The bar above the quantities 1,2,f means that
the trace is taken over all variables except those marked
with a bar. To obtain a closed set of equations it is neces-
sary to use some decoupling procedure. However, it is
known [16—21] that the usage of "pure" n-atom —field
correlations, which arise from the definitions (1)—(10),
does not allow one to limit the calculations to a finite
number n, since all the n correlations have the same or-
der of magnitude. These difficulties may be overcome by
appealing to the dressed-atom concept, because correla-
tions between dressed atoms are actually small and it
makes them suitable for a correct perturbation theory.
To do this, the following correlation forms are to be in-
troduced [16]:

It follows from Eqs. (1)—(5) that the fiuctuation prob-
lem is a many-particle one and, hence, the atom correla-
tion problem arises formally. Indeed, making a trace of
Eq. (1) over atomic variables, one would arrive at a
hierarchy of equations for the reduced density matrices
pf, p„p», p, 2f, etc., defined as follows. The field density
matrix is

L,fg: [(o,+b+H. c. ),9/], . —o,+ = ~1)(0~, . (4)

The operators Af and A, describe the linear relaxation of
the field and the single atom, respectively; b (b ) is the
cavity-mode annihilation (creation) operator, o, (cr ) is
the lowering (raising) atomic operator, /r is cavity damp-
ing constant, and 4 is an arbitrary operator. Ring laser
conditions of the running wave are assumed. The cou-
pling constant in the interaction operator I.,f is omitted
for simplicity. As we noted before, each specific pump
may be defined by the proper choice of the atomic system
relaxation operator A, . For instance, in the case of the
conventional n-level pump it reads as

1,2, . . . , NP(t) Pf(t z)

Trz 3 P(/tv) Pf(t, z)ri(t, z),
Tr3 4 /vp(t) =pf(t, z)ri2(t, z—),

(12)

(13)

and so on, z is the field argument of the Glauber P repre-
sentation (from now on, all field operators are supposed
to be transformed into the coherent states representation
[23]). The field-dependent quantities r, (t,z), r, z(t, z) are
one- and two-atom density matrices describing the
dressed atoms. They have nothing to do with the
undressed-atom density matrices p, and p, z which do not
depend upon the field variable z altogether. The rigorous
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a~. 1 a+ A, r,—+ [h„r, ]=o, r, lnp&
—H. c. , (14)

where

perturbation theory [16] establishes that the dressed-
atom —atom correlation form 5~j,2=ri2 I ]r2 is very
small and can be neglected, in the adiabatic'c limit, in the
calculations of the quantum Auctuations. Using the
decoupling condition 6r, 2 =0, one can obtain from (1) the
"one-particle" equation,

C= g (o.")(b)+II.c. (22)

(23)

with

Apart from insignificant c-number quantity, C, the for-
mulas (19)—(21) define the zero Hamiltonian Ho and the
Auctuations Hamiltonian AH. The Hamiltonian Ho
represents the dressed atoms. The dressed-atom Hamil-
tonian may be decomposed in two parts [20—22]:

H =H' '+H'~',

o .=cr. —Tr. ( o.r. ), a.+ =—
~
1 ) (0 ~, , (15) H' "' = ( b )o,+ +H. c. (24)

with the equation for the field density matrix p& in the
form

~py x'z+Tr, g (tr, r, ) +H.c. p&,Bt Bz
(16)

with h, being the "classical" part of the interaction Ham-
iltonian, which does not contain quantum derivatives
a/az and a/az*, i.e.,

h, =h, (z)=z'o, +zo,+ . (17)

C. Dressed-atom Hamiltonian

Equation (16) is the basic closed master equation. It
di6'ers from that of the standard Scully-Lamb-Haken
theory [14,15] due to the difference between o and o.
Equation (16) takes into account all orders of pure-
atom —atom correlations. On the other hand, in terms of
the dressed atoms, Eq. (14) is a one-particle equation.
Indeed, it does not contain any quantity but those related
to the same atom a. The left-hand side of Eq. (14) defines
classical (i.e., without quantum fiuctuations) evolution of
the dressed-atom density matrix r, while its right-hand
side (rhs) has a pure quantum origin. It contains only
terms with derivatives a/az and a/az*.

(25)

[H,'t', H,'"']=0 . (26)

It follows from (26) that energy levels of the compound
system Ho are a simple sum of the energy levels of the
components Ho ' and Ho '. Energy levels of both com-
ponents are well known. The component Ho"' represents
the dynamical Stark atom [24] and the component Ho '

represents the shifted driven oscillator [23,24].
The regular perturbation theory can be built up for-

mally by treating the term bH as a forrnal small parame-
ter. This formal treatment resulted in the following mas-
ter equation [20,21]:

being the atomic component and

H I —= g (cr.+ )b+H. c.
a

being the field component. The component Ho ' de-
scribes the atoms situated in external classical field. The
Hamiltonian Ho ' is an operator quantity only with
respect to atomic variables and does not contain the field
operators. On the other hand, the Hamiltonian Ho is
purely a field quantity. It describes the field with the
given "mean polarization" (cr, ) [23] and depends upon
field variables only. The energy levels of the dressed-
atom Hamiltonian can be easily found because the com-
ponents Ho and Ho ' commute as

Until now we treated the dressed-atom approach as
some decoupling procedure for the total atoms and field
density matrix. In this section we present another look at
the dressed atoms. Here we show that there exists a
dressed-atom Hamiltonian and it may be used as a zero
Hamiltonian to build up a correct perturbation theory.
Consider the total interaction Hamiltonian

a +A„+A~+iLO p(t)
at

where

= —f dt'L, (t ) T(t', t )L, (t')p(t'), (27)

H= g (cr,+b+o, b ) (18)
Lo—:[Ho, . . . ], L, =[A,H, . . . ],

and

(28)

and select the quantum fiuctuations [20—22] b —(b),
b (b ), o, —(o,—), and o,+ —(o.,+). It results in the
following identical form of the Hamiltonian:

T(t, t') =exp . i Lo(r)d—r -, (29)

H =Ho+ ~H+ C

with

(19)
where exp is an ordered exponent.

Upon adopting the necessary approximations in rhs of
Eq. (27), i.e.,

P(t ) =P/( t )P „ (30)

Ho= g ((o,+ )b+ (b )o,+)+H.c. ,

aH= y [(~+—(~+ &)(b —(b &)]+II.c. ,

(20)

(21)

T(t', t ) = U/(t t') U„(t t'), — —

U„(t)—=exp[ —(A +iL(')"')t],

UI(t) =exp[ —(A/+iL('f')t I,
(31)
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with p'z' being the solution of the zero-approximation
equation

0—+A +iL'"' p' '(t)=0,0 (32)

we arrive at the final di6'usion equation with the di6'usion
term in the form

Bpy

die

2

g y, R'J(z, z*)y (33)

where

R'~(z, z*)=I dr Tr„(x, U~(r)x, .p'„'),
0

III. THE REGULAR PUMP

The idea of injecting the excited atoms in a laser cavity
to improve fluctuation properties of the lasing field dates
back to the pioneer works on laser mode fluctuations by
Scully and Lamb [14]. Golubev and Sokolov [1] first
studied the influence of the statistics of injection on the
quantum noise. In recent publications the di6'erent ap-
proaches to the pump-Auctuation problem were worked
out by Haake, Tan, and Walls [2,6], Marte and Zoller [3],
Benkert et al. [4], and Zhu, Chang, and Wang [5], and a
quantitative agreement has been achieved. It had been
found that in the case of regular pumping, when atoms
are introduced in the cavity regularly at a fixed
unAuctuating rate, a drastic reduction of quantum arnpli-
tude noise is possible and 50% amplitude squeezing is
achievable theoretically. Below we present an alterna-
tive, Hamiltonian, approach to the regular pumping
problem.

The diffusion term (33) with the correlation forms (34)
yields the Auctuation results which are identical to those
obtained in the previous section. The details of calcula-
tions of the atomic correlation functions R'J(z, z*) may
be found in [21].

We presented this alternative way of discussing field
Auctuations in order to emphasize the role of the
dressed-atom Hamiltonian Ho (20) and mostly skipped
the details of the calculations. In what follows we adhere
to the version based upon the decoupling procedure de-
scribed in the previous section.

A. Oscillatory and stationary regimes of the atomic variables

BI' = —y&P+igz(p, —
pb ),

Bt
(35)

Bp Bp

Bt Bt
+ (igzP" +c.c.), (36)

(igzP*+ c—.c.), (37)

with g being the coupling constant and z being complex
field amplitude. Here the atomic quantities correspond
to the atomic density matrix of the form

p I'

p )fc (3&)

The relaxation terms ( )~ are determined by the specific
case of the pumping and the decay. Consider the case of
the conventional pump [Fig. 1(a)]. In this case the relax-
ation terms have the following form:

~Pb
'Y gpa 'V ypb

(39)

with y &
and y &

being the atomic constants describing the
pumping and the decay rates, respectively. The explicit
time-dependent solution of Eqs. (35)—(37) with Eqs. (39)
reads (in the adiabatic limit, i.e., field amplitude z does
not depend on time) as

A11 the atomic quantities oscillate at the Rabi frequen-
cy. When the detuning is equal to zero the Rabi frequen-
cy is equal to co+ —= ~gE~/h, with g being the atom-field
coupling constant and E the field amplitude. The Rabi
oscillations are damped at the relaxation time of order
y

' (y ' is the atomic lifetime). The relaxation time is
very short compared to the laser cavity field lifetime for
the regimes at which real lasers operate. From a first
glance it seems that one can neglect these oscillations and
deal just with the stationary atomic quantities. However,
the regular pumping is a particular example of the oscil-
latory behavior of the atomic quantities and also
represents an example of the coherent coupling of these
oscillations. Here we discuss the stationary and oscillato-
ry regimes of the atomic quantities in order to under-
stand what is the relevant regime to the specific cases of
pumping. In the course of this discussion the role of the
initial conditions will be clarified. For the sake of simpli-
city we consider the two-level atomic dipole only. The
only evolution of the atomic quantities is governed by the
closed set of the Bloch's equations [25]:

R(t)=exp "[[R(0)—c]cos(&x y~~t)+ —[p, (0)—p&(0) —c]sin(&x yet)]+C, (40)

p, (t ) =—exp '~'[ [p (0)—p&(0) —c ]cos(&x y it ) —[R 0 —c ]&x sin(&x y ~~~t
) [ + (41)
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p~(t)= ——exp " [[p (0)—pb(0}—c]cos(&x yIIt)
—[R(0)—c]&x sin(&x yIIt) j+ (42}

P—:g R, x= g, yII=2(y, +y, ),
y y y y)+yg x+1 (43)

Here we adopted y~=yII. The solutions (40) —(42) de-
scribe the damping oscillations which decay during the
atomic lifetime

y~~
' to the stationary nonzero values

p, (~), pb(~), and P(~). The important issue is that
with conventional pumping the atom is in lasing all the
time and the oscillatory regime which remembers the ini-
tial conditions gives no contribution to the stationary
state and can be neglected [Fig. 2]. In fact, with conven-
tional pumping the laser fluctuations are determined by
the stationary values of the atomic quantities. Certainly,

I

I

the memory of the initial conditions is lost in this case.
Consider the case of regular pumping [Fig. 1(b)]. In

this case the relaxation terms in (35)—(37) are as follows:

Bp
Tape ~

R

~Pb

t XbPb
R

(44)

with y, and yb being the decay constants of the active
levels. The explicit time-dependent solution of Eqs.
(35)—(37), with the relaxation determined by (44), reads as

R(t)=exp [R(0)cos(&x y„t)+ [p.(0)—p, (0)]» n[ vxy„t], (45)

p, (t)=—exp ll'[[p (0)—pb(0 ] vx yIllt
—R(0)&x sin(/x ylIlt}+p (0)+pb(0)j, (46)

pb(t)= —exp ' [[pb(0)—p, (0)]cos(Vx yIIt)+R(0)&x sin(&x yIIt)+p, (0)+pb(0) j,
2

(47)

with yII =y, +yb and R and x determined by (43). Here
we adopted for simplicity y, =yb =y~=y. The solutions
(45)—(47) also describe the damped oscillations. Howev-
er, in contrast with conventional pumping, these oscilla-
tions decay to zero stationary values. Hence, the station-
ary atomic dipole moment vanishes and, thus, according
to this scheme of pumping the atom can effectively in-

teract with the lasing mode only long before it arrives at
its stationary state (see Fig. 2). In the stationary state the
atom is in the ground state and, thus, is out of lasing alto-
gether. So, for the atom to be active in the lasing process
it must be in the oscillatory regime, in spite of the uery

short atomic oscillation lifetime as compared with the caui

ty lasing mode lifetime It follo. ws from (45)—(47) that
these oscillations critically depend upon the initial condi-
tions P(0), p, (0), pb(0) of the atomic quantities. Since
the phase of the dipole moment oscillations is shifted by
~/2 with respect to population oscillations one can imag-
ine the coherent coupling of the oscillations. However,

Conventional pump

insignificant
transient

range

Lasing
Regular pump

to get this interaction one undoubtedly needs to have
some physical process in which the atomic quantities are
contained, at least in a product of two terms. Certainly, a
linear process cannot give rise to the coupling. We will
see below that the dressed-atom terms in fluctuation
sources just provide the needed products of the atomic
quantities. At this conceptual point the situation resem-
bles the cooperative phenomena in the superQuorescence
[26], in which case one encounters the nonlinear equa-
tions for the atomic quantities and coherent coupling of
the Rabi oscillations is also possible. Thus, we can sum-
marize: (i) The regular pump corresponds to the essential-
ly nonstationary, oscillatory character of the atomic re-
laxation (see Fig. 2). (ii} These oscillations exhibit the
strong sensitivity to the initial conditions [see Eqs.

I(
b I s I s I s I s I i ~ i I s i I I ~0

Relative time

Lasing No
lasing
range

(b)

FIG. 1. Schematic illustration of the two different schemes of
pumping. (a) Conventional two-level generation. (b) Relaxation
of the atomic levels after the atom has been injected in the cavi-

ty (regular pumping).

0 Relative time

FICx. 2. Evolution of the atomic polarization under two
different pumping regimes. Variables are plotted in arbitrary
units.
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(45)—(47)]. (iii) The interaction of the oscillations is possi-
ble, but nonlinear terms, with respect to atomic quanti-
ties, are needed.

The dependence of Rabi oscillations upon the initial
conditions explicitly reveals a possibility to introduce the
statistics from outside. Indeed, P(0), p, (0), and pb(0)
quantities may be fluctuating and may have their own
statistics. It is clear that this statistics will inAuence the
final field fluctuations. In particular deterministic case
when P(0), p, (0), and pb(0) are fixed (degenerate statis-
tics), one might expect the best conditions for the noise
suppression. External statistics is also introduced if exci-
tation time t~ fiuct. uates. In Eqs. (45)—(47) we dealt with
the relative atomic time, so that the moment t =0 corre-
sponded to t =t. in a global time scale. The regular exci-
tation, at which t.+,—t =const is also expected to give
rise to the best fluctuation properties. From now on, we
assume these two conditions to be valid, which is optimal
for noise suppression.

Remarks. We discussed the nonstationary behavior of
the atomic variables under regular pumping conditions.
However, one may argue that such behavior is exhibited
only by a single atom, so due to averaging over a large
number of atoms, macroscopic polarization and popula-
tion inversion are not sensitive to micro-oscillations [4].
This is true. However, there arises a problem with quan-
tum fIuctuations. The point is that the fluctuation terms
in quantum equations are not linear with respect to atom-
ic variables (these are dressed-atom terms which are
quadratic ones). This nonlinearity does not allow one to
obtain quantum equations by simple summations of one-
atorn equations. Thus the transition from microscopic to
macroscopic quantities is a nontrivial one. Moreover,
one may envisage a physical situation when macroscopic
description is impossible altogether. This is, for example,
the case with a single atom in the cavity.

B. Nonstationary picture of fluctuations:
Survival of an inverse proportional dependence

of the dressed-atom terms upon 6eld
in the nonstationary pumping case

In this section we apply the dressed-atom concept to
the nonstationary pumping regime. Before we discuss
rigorously the nonstationary Auctuations we investigate
the specific features of the dressed-atom terms in this par-
ticular case of nonstationary pumping. First of all, it
should be noted that all quantities, in the nonstationary
regime, have to be averaged over the interaction time
(atomic lifetime) and be treated as averaged quantities.
The dressed-atom terms are represented by the products
of the atomic quantities in Auctuation terms. These prod-
ucts are PP*, P, PS, and P*S. Let us investigate the
dependence of these products upon field x. In order to
avoid unnecessary dealing with complex quantities we use
a "real" atomic dipole moment R according to definitions
(43).

(i) With stationary pumping when only the stationary
terms survive in (40)—(42) we have for the products in

question the following formulas:

R =RS =b, (1+x ) (48)

One can see that at the strong-field limit (x ))1) the
fo11owing asymptotic behaviors are valid:

R -S——,R -RS—1 2

X
(49)

The inverse quadratic dependence of the dressed-atom
terms upon field accounts for the vanishing of the
dressed-atom contribution at the strong-field limit for the
conventional (stationary) two-level pumping. These
quadratic terms are unable to compete with the linear
ones at this limit.

(ii) With nonstationary pumping result (49) is crucially
changed because of the time averaging. We assume for
simplicity the initial conditions [see Eqs. (45)—(47) and
(40)—(42)] to be as follows:

p, (0)= 1, pb(0) =0, R (0)=0, (50)

which corresponds to injection of atoms in a pure excited
state. In this case nonstationary solutions (45)—(47) yield

R (t)=exp Ii —sin(+x gilt)
X

(51)

S(t) =—p, (t ) pb(t)—
=exp 'i cos(&x yiit) .

(52)

(53)

Upon time integration one obtains the asymptotic
dependencies

R (t) -S(t)— , R ~(t) -—R(t)S(t ) ——,1 1
(54)

with the definition

4(t)= Jdt 0(t)—
0

(55)

used.
One can see that on integration over time the products

in question R and RS have the same asymptotic field
dependence as the linear terms R and S, namely, 1/x.
This survival of inverse linear dependence upon field in
the dressed-atom terms is characteristic for nonstationary
pumping. By contrast with conventional (stationary)
pumping the dressed-atom contribution does not vanish
in this case at the strong-field limit. It fo11ows from our
simple consideration that this survival of inverse linear
dependence is a consequence of a coherent interaction of
Rabi oscillations of the atomic quantities. This interac-
tion becomes possible because of the presence of products
of the atomic quantities in the fluctuation terms. In what
is followed we present a rigorous consideration of the
nonstationary fiuctuations (nonstationary pumping).

Bpf az+i g P (t) +H. c. .pf,at az J='=0
(56)

C. Rigorous formulation of the fluctuations problem
for the nonstationary pumping regime

We start from the basic equations (14)—(16) which have
to be adjusted to the specific pumping [Fig. 1(b)]. On be-
ing rewritten for matrix elements these equations read as
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as,
+y,S —y2(K. —1)+(2izP~*+c.c. )

at

(57)

=i A (1.+S~ )lnpf, (58)

aP. a P —1 —S.
+yiP~

—izSJ =i +P/A~ lnpf, a =—— K' —S+ R lnp
1 a, x 2

2 ay m

P—: riR (1+S)lnpf,=2 a

yJ a77

2 a
gR (1+K')lnpf, R—: i—P, K'=K —1,. yl

yi I Z

az,
at +y, (K~. —1)—y2S =i AJKJlnpf, (59)

4y yb yi 4gm=, x= z =&ye'
ytz +yb y/] y~yll

PJ ——(r, ),b, SJ = (rj. )„——(r )bb, K—:(rj )gs, (60)

j j ' ' y1 ya+yb & y2 ya yb
a
az

(61)

P (t)=P(jr), S(t)=S(jr), K (t)=K(jr) . (62)

The time t'=j~ represents the relative atomic time so
that t'=0 corresponds to the moment of injection. It is
convenient, therefore, to discuss the atomic equations
(57)—(59) by using the relative atomic time t' and formu-
late the initial conditions with this time t'. The time
scale we are interested in (of order I /y) is much longer
than the time gap ~. Therefore, we can change the sum-
mation in Eq. (56) into an integration

g P, (t ) = g P(j r) = JP(t')dt—'=—P .
j=o j=o

(63)

Upon introducing the relative atomic time t', using Eq.
(63) and making some evident incidental arrangements,
we arrive at the final set of equations and initial condi-
tions

where X is the ground-state population.
For the sake of simplicity we adopt g=1. According

to our numeration of atoms, the atom with the number

j=0 is supposed to be injected in a cavity at the moment
t. The time gap ~ between the consecutive atom's arrivals
is independent of j number (regular pumping assump-
tion). Since each atom is situated under the same condi-
tions which are physically identical we can introduce the
unified atomic functions P, S, and K so that

We have fixed the initial conditions in atomic equa-
tions (65)—(67). In contrast to conventional (stationary)
pumping the initial conditions will influence the laser
field output fluctuations. The method described below al-
lows one to deal with any possible initial conditions in
principle. For the sake of simplicity we fix those corre-
sponding to the atom injected in a pure excited state
[R(0)=0, S(0)=1, and K(0)=0]. The closed set of
equations is to be reduced to the Fokker-Plank equation
for the field density matrix. This problem can be solved
by finding the quantity R as it is readily seen from (64).

D. Classical solutions

In this section we neglect, for the time being, the fluc-
tuations, i.e., we put a=P=8=0 in atomic equations
(65)—(67). First, we shall obtain the explicit time-
dependent solutions for the following two relevant cases:
(i) y, =yb, x ))1, (ii) y, «yb, x ))1. Then we shall ob-
tain exact formulas for the time-averaged quantities R, S,
and K'.

(i) y, =yb=y (equal decay constants for both active
levels). In this case the classical equations read as

1 aR +R —S=O, R (0)=0,
yg at

1 as +S—xR =0, S(0)=l .
yg at

(68)

(69)

—z~R = —e r'sin(2&x yt),V'x

S=e r'cos(2&x yt) .

(70)

(71)

Taking for yj its minimal value yz'"=y, +yb=2y
one has the following explicit solutions:

apf a 2
2v — R -pf,

at ag

1 aR +R —S=a, R(0)=0,
yg at

(64)

(65)

1 aR +R —S=O,
yj.

(72)

1 as +S+K'+yR =0, y—:x =4x, (73)yff ya
at yl yb

(ii) y, «yb (disparity between the decay constants),
x ))1. In this limit case the classical equations read as

as +yiS —y2K'+yllxR=~, S(0)=1 (66)
I

+K'+S =0 .
y, at

(74)

M''
+y iK' —y2S =0, K'(0) = —1, (67) Again we put y~=yz'"=y, . On assuming y )&1 we have

an explicit solution of Eqs. (72)—(74):
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-yb~ 1 1 . — 1R (t)=e ' . —+ —sin(&y yl, t) ——cos(&y ybt) . ,
y v~y b

(75)

count the small terms a, P, and 8. Upon making a time
integration of Eqs. (65)—(67), with proper account of the
initial conditions, we arrive at the following set of equa-
tions:

-yb~ 1S(t)=e ' sin(Vy ybt)+cos(&y y&t) . ,
Vy

1—sin(&y ybt)

(76)
R —S=a,
—+y,S y,K—'+y„xR

(87)

(88)

(89)

1+—cos(Vy ybt) ' . (77)

R —S=O, (78)

(iii) The exact expressions for the general case can be
obtained for the time-averaged quantities R, S, and K'.
After integrating the classical equations over time we
have (the initial conditions are taken into account)

According to our scheme of perturbation theory the
small quantities in this set of equations a, P, and 9 are
treated as constant terms calculated with zero-order
functions Ro, So, and Ko (i.e., classical solutions). This
algebraic set of equations is to be resolved and the result
for R is to be inserted in Eq. (64). We skip this straight-
forward procedure and present here only the final
Fokker-Plank equation:

+y iS y2& +yllxR 01

7

1——+yiE'' —y2S=O .
'r

(79)
—p =2m g 1 gf+D — p
a = a a
a~ ~ ag ag

with the diffusion coefficient in the form

(90)

This set of equations results in the following solution D = —y, w K' —S+ 1+ xR
yz

1

R =S= f, f:—(I+x)
2y. v

(81) Pl+1 ~ y2
(91)

1 y2 f
y1+ yl 2ya+

(82) The Mandel parameter is ordinarily determined by the
formula

At the "no fiuctuations" limit the field Eq. (64) can be
rewritten, with the help of Eq. (81), in the form

~Py =2~ rl(1 gf)pt-
Bt Bg

with g the lasing parameter

1

2Ky~ Rye

(83)

(84)

x= —1. (85)

An explicit stationary solution of Eq. (83) is represent-
ed by a 5 function,

from which one can find a stationary solution for field. It
reads as

(92)

Formulas (91) and (92) solve the fiuctuation problem in
principle but certain work is still to be done. One has to
evaluate the second moments R and K'R [the first mo-
ments R, S, and K' have beengresented by (81) and (82)].
The moments in question, R and K'R (dressed-atom
terms), will be calculated (1) with the help of the explicit
expressions for R(t) and K'(t) functions taken for two
different limit situations y, =yb and y, ((y~, and (2)
with the help of some moment consideration for the gen-
eral case of arbitrary y, and yb. As for the linear terms
in Eq. (91) their contribution to Q is equal to zero because
of the equality

pg'=5(x —(g—1)) . (86) E'' —S+ 1+ xR =0, (93)

Incorporating the fiuctuations (taking into account the
diffusion terms) in the theory gives rise to nonzero width
of the distribution p&(x). It will be done in the next sec-
tion.

yl

which is valid at the strong-field limit [see expressions
(81) and (82)). Thus, the Mandel parameter Q is deter-
mined solely by the dressed-atom terms.

E. Fluctuations

The next step is a calculation of fluctuations. In order
to do this we have to calculate R in Eq. (64) with one
more order of the perturbation theory. In other words,
we have to solve the lower Eqs. (65)—(67) taking into ac-

F. Calculation of the dressed-atom terms
(i.e., quadratic moments Ro und K'R)

(i) y, =y& =y. In this case we need only moment R
since ye=0 [see Eq. (91)] and moment K'R gives no con-
tribution. Upon integrating the explicit expression (70)
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one obtains
2

1 2 t 1—e ~'sin(2&x yt) dt =
&x 8y~x

(94)

del parameter,

~l

~

~ b

2 yg +yb
(102)

and the final expression for the Mandel parameter be-
comes

This formula is in full agreement with other approaches
[2—6].

Q = —y, rx m+1 -2- 1

m 4
(95) IV. CONCLUSIONS

Here we adopted for m its minimal value I=1. For-
mula (95) indicates 25% squeezing [2—6].

(ii) y, ((yb. In this case both moments R and K'R
are significant for the fluctuation results. Elementary in-
tegration over time can be easily performed in this case,
too. Upon integrating the products of functions (75)—(77)
one obtains (for first nonvanishing order of small quantity
3' 3'=4x'V ~yb)

1 1, 7 1R E''R = ——
4 y)~~x

' 4 y()~x

and, finally, an expression for the Mandel parameter

Q = —gy, [R —K'R ]
T

ya 1 7 1—+—
yiix 4 4 2

(96)

a22+0. 5a, 2R
y ~~+ 11 22 12 21

a21+0.5a11

y~)7 a11a22 a12a21

where
2

(98)

(99)

xa„=—3a2 +2
a,

x
a12 = a1 +4+2

a,
a2

a1

(100)

x
a22 —=3a2, a21 —= —a1 2 + 1 +

a1

yl y2
a1 =— , a2 =—

yll rtl

(101)

At the strong-field limit (x )) 1) Eqs. (98)—(99) [togeth-
er with (91)—(93)] yield the general formula for the Man-

Here we again adopted the strong-field limit. The result
(97) indicates 50% squeezing in full agreement with other
works [2—6].

(iii) Now we consider the general case of arbitrary y,
and yb. In this case it is very convenient not to solve ex-
plicitly Eqs. (65)—(67) but to treat them like a moment
problem. On multiplying the classical (i.e., with
a=P=8=0) version of Eqs. (65)—(67) by proper function
and integrating over time, taking into account the initial
conditions, one arrives at a close set of algebraic equa-
tions. On solving this set of equations (see the Appendix)
one obtains the following expressions for the moments in
question:

In this part of the paper we introduced a classification
of the laser pumping according to the time regime of the
atomic variables. It has been shown that the oscillatory
pumping regime features an ability to introduce Auctua-
tions from the outside through the initial conditions. In
the particular case when the initial values of atomic vari-
ables are fixed (degenerated statistics), one tnight expect
the best conditions for noise suppression. Another way
to introduce an external statistics is through the statistics
of excitation (or injection) times. The regular excitation,
i.e., under the condition t +,—t =const, is also expected
to give rise to the best fluctuations properties. This
method of noise suppression is known as regular pumping
[1-61.

On the other hand, the stationary pumping regime is
insensitive to initial conditions but in this case noise
suppression is also possible [7—13] through the coherent
interaction of the internal degrees of freedom and will be
discussed in the following paper [27].

We presented a general approach to consider both
pumping regimes. In the framework of this dressed-atom
approach the two different pumping regimes are just two
limits of one and the same physical system (stationary
and nonstationary pictures). In this paper we discussed
in detail the nonstationary picture of fluctuations. We
emphasize that our results are obtained without any
heuristic assumptions but are based upon the rigorous
treatment of the total many atoms + field Liouville equa-
tion. The crucial difference in the results, as compared to
the conventionally pumped laser, stems from the quadra-
tic terms R and RK'. These terms grow anomalously
large due to the essentially nonstationary (oscillatory)
character of the atomic variable dynamics. Because of
this oscillatory character and the presence of the prod-
ucts of the atomic quantities in dressed-atom terms, this
interaction of the very-short-lifetime Rabi oscillation be-
comes possible. Mathematically, this interaction is mani-
fested in a survival of the linear inverse proportional
dependence of fiuctuations upon the field (instead of the
inverse quadratic one in the case of a conventionally
pumped laser). Our treatment is also applicable to the
case of the micromaser (y, =yb =0). In the latter case,
one has to deal with the real summation in Eq. (56) in-
stead of integration (63) and with explicit time-dependent
solutions R(t) and S(t) averaged over a time within the
interaction period.

Finally, our calculations (the limit ye~0 is taken) are
completely applicable to the opposite limit of yr » 1 (low
rate of injection) as well. In the latter case the integral in
Eq. (63) means an averaging over nonstationary states of
the single atom.
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APPENDIX: CALCULATION OF R and X'R
BY APPEALING TO THE MOMENT TREATMENT

OF THE CLASSICAL EQUATIONS

The classical version of basic Eqs. (65)—(67) reads as

a2x2 —(a, +m )x3+mx, =0,
1

XX 3 +Q2x4 2Q )x g +Q2x6 =
~II

[m+(a, +x )]x, —a,x, +mx4=0,

1xx +ax —ax1 1 4 2 5
~ll

1
a2x5 —a]x6 =—

2yv

(A5)

(A6)

(A7)

(A8)

(A9)

1 aR +R —S=0, R (0)=0,

1 BS +a,S—a2K'+xR =0, $(0)= 1,
yll at

M'
+a,K' —azS =0, IC'(0) = —1,

yll at

Vl V2
Q) =, Q2=

VII

(A 1)

(A2)

with the following notations:

x& =—R, x2 =—RS, x3 —=RE',
(A10)

1a»x
&
+a,2x3 (A 1 1)

x4 =—S, xs =SE', x6 =(K')

Elimination of x2, x4, x„and x6 yields the reduced set of
equations for the moments in question:

Upon multiplying Eqs. (A 1)—(A3) by proper functions
and taking into account the initial conditions we arrive at
the following closed set of linear equations:

1
Qp(x ) +Qzpx3 =

2V II7

(A12)

x( x2 —0 (A4) the solution of which is presented in Eqs. (98)—(101).
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