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An exact analysis has been carried out for general analytical expressions for the second threshold

of a single-mode homogeneously broadened laser and for the initial pulsation frequency at the second
threshold, for arbitrary physical values of the relaxation rates, and at an arbitrary detuning between
the cavity frequency and the atomic resonance frequency. These expressions also give correspond-
ingly exact forms for asymptotic cases that have been previously studied with some approximations.
Earlier approximate results are partly confirmed and partly improved by these more general expres-
sions. The physical status of various expressions and approximations is reconsidered and specified
more clearly, including an analysis of what reasonably can be attained in lasers or masers. A general
analytical proof is given of the fact that, for a larger detuning of the laser cavity from resonance, a
higher value of the laser excitation is required to destabilize the steady-state solution (the second
threshold). We also present results for the minimum value of the second threshold at fixed detuning
as a function of the other parameters of the system and for the dependence of the ratio of the second
threshold to the first threshold as a function of detuning. Minima of the second threshold and of
the threshold ratio occur only if the population relaxation rate is equal to zero. The minima of
the threshold ratio are shown to be bounded from above as well as from below (as functions of the
relaxation rates, so long as the second threshold exists). The upper bound on the minima is equal
to 17. The variation of the second threshold in the semi-infinite parameter space of the decay rates
is shown at various detunings in plots with a finite domain by normalizing the material relaxation
rates to the cavity decay rate.

PACS number(s): 42.60.Lh, 42.60.Mi, 47.20.Ky, 05.45.+b

I. INTRODUCTION

A. Background

The problem of obtaining and analyzing an exact an-
alytical expression for the second threshold (at which
steady-state operation gives way to time-dependent be-
havior) in lasers has been and continues to be a chal-
lenge in nonlinear and quantum optics. Although the
problem is exactly solvable, at least in principle, for the
semiclassical equations for a homogeneously broadened
single-mode laser, the solution requires both an enormous
amount of calculations and further simplifications of the
resulting equations. The calculations and the symbolic
simpliflcations are so daunting that to our knowledge
they have not been attempted by hand or by ordinary
symbolic-manipulation computer programs.

For instance, a rigorous mathematical treatment of the
problem in [1] met rather formidable algebraic relations
which had to be restricted to a special limiting case for
evaluation. Such technical complexity has been the main
obstacle to a full treatment of the problem and it has
limited previous work to only a few particular, though
highly instructive, cases.

Our goal is to present a general study of the problem.
This has become possible with the availability of MATH-

EMATICA, notable for its versatility in computer-based
symbolic mathematics [2]. While we demonstrate this
power for solving our particular problem, this can also
be taken as an illustration of how this tool can be ap-
plied in the fields of nonlinear dynamics and nonlinear
optics.

B. Outline

Our main purpose in this article is to investigate the
influence of the detuning and the relaxation rates on the
second threshold of the homogeneously broadened single-
mode laser, especially the influence of the detuning on the
relative accessibility of the second threshold as the pump
parameter is varied.

We have completed this investigation without any re-
strictions (within physically accessible ranges) on the val-
ues of the parameters of the problem, and we present a
purely analytical treatment.

The paper is structured as follows.
In this section we start from the original semiclassi-

cal equations of motion for the homogeneously broad-
ened single-mode laser. These equations are variously
known as the standard laser equations, the single-mode
homogeneously broadened laser equations, the single-
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mode Maxwell-Bloch equations, or the laser-Lorenz or
Haken-Lorenz equations. To the best of our knowledge,
the stability of the steady-state lasing solutions of these
equations (or their Maxwell-Schrodinger equivalents for
lasers or other two-level systems) were first investigated
by Gurtovnik [3] (for applications to masers) and then by
Grasiuk and Oraevskiy [4,5] and Uspenskiy [6] and later
by Korobkin and Uspenskiy [7] for the resonantly tuned
laser, and by Uspenskiy [8] for the case of a detuned laser.
An alternative development in the framework of study-
ing the response of lasers to intrinsic noise through anal-
ysis of nonlinear Langevin equations for the resonantly
tuned laser was given by Haken [9] and in the framework
of the Fokker-Planck equations by Risken, Schmid, and
Weidlich [10], who also set up the stability analysis of
the detuned laser without computing instability thresh-
olds. Using what are now more conventional methods
of linear stability analysis of steady-state solutions, their
earlier results were soon thereafter generalized to consid-
erations of multilongitudinal-mode stability and instabil-
ities as well as single-mode instabilities [11,12], although
in these papers the single-mode studies were limited to
the resonantly tuned situation.

Section II is devoted to an extensive discussion of the
intersections, overlaps, and isomorphism of the standard
laser equations and various versions of the equations
known as the Lorenz equations (both real and complex).

We give a systematic derivation of Lorenz models from
the standard laser equations and summarize, in the pro-
cess, previous results on this topic which are a bit scat-
tered in the literature. Taken together, these results
give three levels of isomorphism between the standard
laser equations and the "hydrodynamical" Lorenz mod-
els. The levels of this isomorphism are presented in Table
I. The established isomorphisms allow us to continue our
analysis in alternative sets of terms: either laser or "hy-
drodynamical. "

After Sec. II, we present our calculations which have
been done using the "hydrodynamical" form which is
more convenient for the usage of MATHEMATICA. How-
ever, since we deal here with laser physics we will refor-
mulate all intermediate results in laser terms.

In Sec. III, we give the rigorous solution for the second
threshold of the homogeneously broadened single-mode
laser. In order to do this, we prove that another ana-
lytically possible solution for the second threshold does
not exist although MATHEMATICA successfully produces
it. (It turns out that this alternative second threshold
requires a negative intensity. ) We also demonstrate that
we start with the same expressions as in previous studies,
which makes it possible to straightforwardly compare our
general results with previous results which should be ob-
tained from our expressions for particular choices of the
parameter values.

In a very short Sec. IV the absolute minimum of the
second threshold for the resonantly tuned laser will be
made more precise than has been previously reported.

Since the evaluation of the pump value for the second
threshold is closely related to the evaluation of the ini-
tial pulsation frequency of the Hopf-like bifurcation at
the second threshold, we derive in Sec. V the general ex-

pression for this initial pulsation frequency and, on the
basis of this, we present the values for the initial pulsa-
tion frequency for certain special cases.

In Sec. VI our general results are compared with previ-
ous results which have been derived for special cases, the
dependence of the second threshold on all parameters is
restored in comparison with those previous results, and
special limits that can be reached only for either lasers
or masers are distinguished. The importance of the or-
der in which double parameter limits are taken is also
discussed.

In Sec. VII we show that a perturbative approach to
the problem of the position of the second threshold can
evidently fail. Thus, to overcome this, we give a gen-
eral analytical proof at arbitrary parameter values that
increasing the detuning has the effect of increasing the
second threshold. In this section we also assess how the
ratio of the second threshold to the first threshold de-
pends on the detuning.

In Sec. VIII, in order to satisfy the common tempta-
tion to look at the surface which represents the second
threshold in the parameter space, we demonstrate that
a new normalization of the relaxation rates of the laser
system brings the domain of the existence of the second
threshold from a semi-infinite half plane of the param-
eter space into a small triangle, allowing us to plot the
second threshold surface easily at various values of the
detuning. This will help to illustrate our general result
on the influence of the detuning on the second threshold.

Section IX is devoted to the search for minima of the
second threshold and of its ratio to the first laser thresh-
old as functions of the detuning and the relaxation rates.
We show that the minima of both occur when the popu-
lation relaxation rate is equal to zero. We also find that
the minima of the threshold ratio are bounded not only
from below, but also from above. The minima of the
threshold ratio are found to be limited between 9.0 and
17.0. Numerical results of this study are given in Table
III.

We have summarized the results of this article in Sec.
X, where we have also summarized the main points of
our discussions.

In the Appendixes we have collected some details on
points which are only mentioned in the main discussion
of the physical results, but which are necessary for the
rigorous justification of our statements.

C. How to check and compare other results
with our results

Since we have used MATHEMATIGA, it is probably not
practical to check most of our results by hand because
they are produced by computer. However, in order to
provide interested readers with the opportunity to check
our results, to compare them with other results, and/or
to develop them further, we have created a number of
special files which are available upon request by electronic
mail from the first author. The choice of the file we will
send depends on the purposes of the requester.

It should be also mentioned that working with sym-
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bolic programs requires some precautions, otherwise one
can get explicit, though wrong results.

laser case in the units of pz (this will be shown later
on), the parameters o and b are real and positive, and
the parameters a and r are complex:

D. The basic dynamical system

Semiclassical equations for the homogeneously broad-
ened single-mode laser have the following well known
form [13—16]:

—E(t) = —~E(t) —i~E(t) —igP(t),

d—P(t) = pgP(—t) —isP(t) + ig*E(t)S(t),
dt (2)

—S(t) = Pll(S(t) —Ndo)
dt

+2i(gE" (t)P(t) —g'E(t) P'(t) ). (3)

II. COMPLEX LORENZ MODEL AND
STANDARD LASER EQUATIONS

A. Alternatives for identification of the standard
laser equations with the complex Lorenz model

The complex Lorenz model [26], which is a five-
dimensional generalization of the famous (real) Lorenz
model of three dimensions [27,28], has the form

d—x(~) = —o.x(~) + cry(~),
d7

(4)

d—y(~) = ~y(~) + «(~) —x-(&)&(&)
d7 (5)

—z(~) = —bz(~) + —,'[x*(~)y(~) + x(~)y'(~)], (6)

where ~ is the normalized time which is measured in the

In these equations, E(t) is the electric field amplitude
of the lasing mode of the optical field, P(t) is the macro-
scopic polarization of the two-level medium inside the
cavity of the laser in the rotating wave approximation,
and S(t) is one-half of the macroscopic population differ-
ence between upper and lower atomic levels.

Further, w is the frequency of the cavity mode which is
the nearest one to the atomic transition frequency e, g is
the atom-field coupling, p~ and p~~ are, respectively, the
polarization and population relaxation rates of the two-
level medium inside the cavity, and K is the relaxation
rate of the optical Beld mode. An incoherent pumping
rate for the population inversion is described by the level
of the unsaturated inversion per atom, do, N is the den-
sity of the atoms in the cavity.

Contributions to the analytical study of the threshold
properties of the standard laser models have been made
by many workers [3—25] where the contribution of Mandel
and co-workers should be particularly noted.

a = 1 —ie,; r = ri + ir~.

The connection of the basic equations (1)—(3) with
the complex Lorenz model has been pointed out and de-
scribed in the literature several times [18—23,29], after the
basic work of Haken [17] on the connection of the reso-
nantly tuned laser equations with the real Lorenz model
and it is, therefore, well known. However, it seems to us
that the discussions of the connection between Eqs. (1)—
(3) and the complex Lorenz model, and of the physical
meaning of the complex Lorenz model in laser physics,
are somewhat scattered [20,22,23,29]; we find it useful to
collect everything in one place.

There are two different ways to develop a correspon-
dence between the standard laser equations and the com-
plex Lorenz model. They both were described in the ar-
ticle by Fowler, Gibbon, and McGuinness [26].

The Erst possibility is to get the parameter r2 identi-
cally equal to zero (making the pump parameter, r, real
as in the laser equations) and to identify at the same time
the parameter e with the normalized detuning. Fowler,
Gibbon, and McGuinness preferred this strategy (Ref.
[26], p. 140): "The complex Lorenz equations ... form
the ... model for ... optical systems of two level atoms ...
semiclassical equations are the set of damped Maxwell-
Bloch equations. ... In this case, rz = 0, but e g 0."
This approach has been used in almost all other work
devoted to this subject [18—23].

The alternative approach is to keep r2 always equal
to —e. Although this approach was called by Fowler,
Gibbon, and McGuinness a "...rather pathological possi-
bility" (Ref. [26], p. 141), it has been developed and ex-
plored in recent work by Ning and Haken [29]. An impor-
tant feature of the work by Ning and Haken [29] is that
for the first time, we believe, the spatial dependence has
been embedded into the connection between semiclassi-
cal equations for slowly varying amplitudes and complex
Lorenz equations, thereby generalizing the Lorenz-laser
analogy to apply as well to the multimode laser equations
and providing a complex-variable version of this analogy
which was Erst set forth for real variables by Graham
[32]. This approach has proven helpful, albeit somewhat
controversial, in discussions of geometrical phases in de-
tuned laser systems [30,31].

Since we will not develop in this article the second
approach, let us try to characterize briefly that possibility
for the identification and reasons why we have chosen
another one.

Fowler, Gibbon, and McGuinness [26] pointed out both
ways for the identification, obtaining for the Erst time
formal expressions for the second threshold (formula 2.43
in [26]) and the initial pulsation frequency (formula 2.38
in [26]) basing their consideration on the biquadratic
equation they derived (formula 2.41 in [26]).

Eight years later Ning and Haken repeated many of
these formal results: Ending the expressions for the sec-
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ond threshold [formula (74) in [29]], the initial pulsa-
tion frequency [formula (75) in [29]], and the basic bi-
quadratic equation [formula (70) in [29]]. In addition
they formally included consideration of the spatial coor-
dinate and analyzed numerically the supercritical bifur-
cation in the laser case.

Nevertheless, while it was relatively easy to write down
the biquadratic equation and the formal solution for it,
the main part of the work still lays ahead.

The following questions which were obstacles to con-
verting those formal results to truly analytical ones had
been left unanswered.

(i) Is one of the roots of the biquadratic equation al-
ways negative? If not, then one should compare each root
and its prediction of a second threshold with the value
of the first lasing threshold to make clear whether or not
there are two branches for the second threshold.

(ii) Is another root of the biquadratic equation always
greater than the first laser threshold under the bad-cavity
condition or does a domain of parameters exist where the
second threshold has no meaning at all? (If so, then there
is an additional restriction on the parameter values for
which the second threshold can occur, and the physical
meaning of such a restriction should be understood. )

(iii) Does the second threshold increase with detun-
ing or can it be decreased by varying the detuning and
relaxation rates (a result that would be important for
experimental observations of the phenomena)?

(iv) Even if the second threshold does increase with
detuning, does the ratio of the second threshold to the
first threshold decrease in some parameter domain?

(v) Generally, what are the extrema of the second
threshold; what is the shape of the second threshold in a
parameter space?

(vi) What are the asymptotes for the second threshold;
what is the physical meaning for those asymptotes?

No exact analysis of these problems has yet been given
making use of the beautiful formal expressions obtained
in both works [26] and [29]. To complete our analysis of
these expressions, to answer many of the questions we
have identified, it was necessary to find many simplifica-
tions and substitutions in order to bring the expressions
to a form which would make possible a subsequent anal-
ysis.

Further, one can see that the approach taken by Ning
and Haken connects the commonly used bifurcation pa-
rameter r in (7) with the difference of the normalized
pump and normalized detuning [ [29], formulas (27) and
(29) under the condition r2 = —e]. Thus, two physically
Chfj'erenow dependences, on the pumping rate and on the
detuning, are mixed in the single parameter in the Ning-
Haken approach. This particular feature can sometimes
be a disadvantage because it makes it diKcult to sepa-
rate the efFects of detuning from the efFects of variation
of pumping intensity in the course of variation of bifur-
cation parameter r.

We present here the derivation of a particular form of
the complex Lorenz model from (1)—(3), following the ap-
proaches taken in [18—23]. In this way, we collect in one
article most of the various forms of the standard equa-
tions for a homogeneously broadened single-mode laser

with nonzero detuning, and try to understand their over-
laps and hierarchy.

B. Idea of transformation

We will establish this connection in two steps. In the
first step, Eqs. (1)—(3) are brought to a form which is
qualitatively similar to the complex Lorenz model, and in
the second step we properly normalize those intermediate
equations.

First of all, one can see from direct comparison be-
tween the standard laser equations (1)—(3) and the com-
plex Lorenz model (4)—(6) that if the connection is pos-
sible, then it should be between E(t) and z(w) (because
the difFerential equations for these quantities are the only
linear equations in these two systems), between S(t) and
z(~) (because these are the only real variables in these
two systems) and, consequently, between P(t) and y(r).

However, Eq. (1) for E(t) has an imaginary part in the
coefficient in front of E(t) while Eq. (4) does not have
this. This means that in order to eliminate this imagi-
nary coefficient at E(t) from (1) we must take a reference
frame for the field rotating with the cavity frequency u.

Further, the coefficients of both T(~) and at y(~) in
Eq. (4) are real, while even after transformation to the
rotating reference frame the coefficient at P(t) in (2) is
complex. In establishing the equivalence, the phase shift
between E(t) and P(t) must be eliminated together with
the transformation to the rotating reference frame.

Finally, one has to shift the scale for S(t) onto the value
of Ndo in order to eliminate the constant term from (3)
which is absent in (6), and to invert this scale in order to
bring the signs in the new equation for the polarization
to a form coinciding with Eq. (5).

C. Change of reference frame and scale

First we perform the transformation of the amplitudes
of the optical field E(t) and the polarization P(t) and
the changes in the population difference S(t).

The explicit form of this intermediate transformation
1S

where the value of the compensating phase shift pp 1n-

cludes both the phase of the imaginary unit i and the
phase arg(g) of the complex dipole matrix element of the
atomic transition between upper and lower levels

7r
arg(g).

The intermediate equations can then be written as fol-
lows:

—Z(t) = —KE'(t) + ~g~'P(t),
dt
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—~(t) = —v &(t)+ ( — )&(t)

+ lg I~do~(t) —
lg l~(t) ~(t)

—S(t) = —p~~&(&) + 2~g~ [~"(&)P(&) + ~(&)&'(t)] (12)

D. Normalization

we use di"' (respectively, re"') where "thr" denotes the
threshold and the subscript "1" denotes the first laser
threshold; we use di"0 (respectively, ri"0) for the first
laser threshold with resonant tuning of the cavity, where
the subscript "0" denotes the resonant detuning, u = z.

E. Distinctive features of the Laser Lorenz model
and a hierarchy of standard laser equations

Second, Eqs. (10)—(12) need only proper normaliza-
tions of the time, and of the variables and parameters.
Since the term in Eq. (5) that is linear in y(7) has a coef-
ficient with a real part equal to unity, the normalization
of the time is evident:

7 =Pgt=
7J

Hence, time now is measured in the units of the polar-
ization relaxation time p& .

By means of the following relations for the coeKcients:

where

K
0

QJ

&II

fJ .

.Cd —E'a—= 1 —ate= 1 —i
PJ

0
thr '
i 0

g&hr

(14)

(15)

(16)

X(r) = Z(t), Y(r) = 2 P(t), Z(r) = S(t),
QJ KPJ KQJ

we finally get the complex laser-Lorenz equations:

d
X(r) = crX—(r) + o.Y(r), -

07
(20)

d—Y(7.) = —aY(r) + rX(r) —X(r)Z(r),
7

(21)

Z(r) = —bZ(r) —+ z[X*(r)Y(r) + X(r)Y'(r)], (22)

with the only difference from the original complex Lorenz
model (4)—(6) being that in the laser case (20)—(22) the
normalized pumping parameter r is a real parameter

Im(r) = 0, (23)

while in the general case of Eqs. (4)—(6) this parameter
(7) possesses a nonzero imaginary part which has been
discussed already in [20,21]. For the first laser threshold

is the well known value for the first threshold (onset of
steady-state lasing) of the resonantly tuned laser, and
by means of the following normalization of the dynamic
variables

We can conclude the following from this derivation of
a particular form of the complex Lorenz equations (20)—
(22) from the semiclassical equations for the single-mode
homogeneously broadened laser (1)—(3).

(i) The complex Lorenz equations are practically ap-
plicable to the laser only in two particular cases; one is
considered by Ning and Haken [31], which we discussed
in Sec. II A [Informally, one can assert that there is a con-
tinuum of possibilities for such an identification defined
by function I'(r2, e) = 0 which allows us to eliminate
from consideration the parameter r2]; in our article, we
consider the particular case when the parameter r is a
real number [20,21], i.e., if Im(r) = r2 = 0.

(ii) In the laser case, the variables X(r), Y(r), and
Z(r) describe, respectively, the normalized amplitudes of
the field and polarization and the population difference.

(iii) In the laser case, the reference frame both rotates
with the cavity frequency w and there is an inverted scale
for the population difference with its origin shifted to the
value of the unsaturated population difference.

(iv) In the laser case, the time is measured in units of
the polarization relaxation time p& .

(v) In the laser case, the phase shift between the op-
tical field and polarization which is due to the Coulomb
gauge and complexity of the dipole matrix element of the
transition between upper and lower lasing levels, has been
formally eliminated by the compensating phase shift in
the definition of the field variable X(r).

The hierarchy of the standard equations for the single-
mode homogeneously broadened laser is presented in Ta-
ble I.

It is clear from our derivation of the laser-related form
of the complex Lorenz model from Eqs. (1)—(3) that one
can successfully use either the description by means of
laser physics terms and parameters (the left column in
the Table I) or the description in the "hydrodynami-
cal" terms of the Lorenz models, complex and real (the
right column in the Table I). Downward arrows in both
columns of Table I show the direction from a general form
to a more particular one. Thus, Eqs. (1)—(3) in five di-
mensions for the detuned homogeneously broadened laser
are completely isomorphic to the complex Lorenz model
with r2 ——0.

If one sets the detuning equal to zero, the parameter e
in the complex Lorenz model vanishes as well. Therefore,
the standard equations for the resonantly tuned laser re-
main five dimensional and are completely isomorphic to
the complex Lorenz model with e = r2 ——0.

The following warning is required here: one cannot yet
identify these equations with the three-dimensional real
Lorenz model because these equations contain, for in-
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TABLE I. Hierarchy of standard laser equations.

Detuned homogeneously
broadened single —mode laser,

eqs. (1) (3)

complex
Lorenz model
with r2 ——0

The same but
tuned laser:

{3

C'omp/ez

Lorenz model
with e = r2 ——0

Tuned laser with fixed phase
(arg(g) = +or /2)

and special initial conditions
for E(t) and P(t)

Real Lorenz model, i. e. complex
Lorenz model with e = r2 —— 0

and special initial conditions
for X(r) and Y(r)

stance, transient and noise driven, time-dependent pro-
cesses which cannot, in principle, be described in three di-
mensions. However, for most deterministic transient pro-
cesses, there is a rapid relaxation to a three-dimensional
subspace of the five dimensions with the adoption of a
particular fixed value of the absolute phase which remains
asymptotically fixed.

In contrast, when Langevin noise sources are added to
these equations, there is noise-induced diffusion of the
absolute phase which requires the full five equations for
a proper description [33]. Hence, capturing the efFects of
laser dynamics in the presence of spontaneous emission
requires, necessarily, the complex rather than the real
equations.

For deterministic evolution, it is easy to see that the
five-dimensional equations for the resonantly tuned laser
can be efjectiiiely replaced by the three-dimensional equa-
tions in the case when one takes the special choice of the
relative phase such that P(0)/E(0) is real at an arbitrary
value of S(0). The resulting equations will be effectively
isomorphic to three-dimensional real 7 orenz model.

VA can now distinguish three levels both for the stan-
dard laser equations and for the Lorenz models in the
laser case. At each level, one can use both the laser
and the "hydrodynamical" presentations which are corn-
pletely isomorphic as we have shown in this section.

We have collected in one place both the previous re-
sults [18—23] and our results about connections and over-
laps between the standard laser equations and the Lorenz
models. This helps to clarify the parameter regions and
initial conditions which define the validity of applications
to each particular case.

A. Equations for the normalized variables
in the reference frame rotating with the frequency

of the stationary optical field

It can be easily shown [13,15—25], that in the reference
frame rotating with the frequency

KE'+ Pg(d

K+ P~
(24)

the basic equations (1)—(3) have a nontrivial (lasing)
steady solution. The shift of A from the cavity frequency
w is called "frequency pulling"; see, for example, in [13],
pp. 121 and 187. So, taking the dynamic variables in this
reference frame

field [20,19,22]. This leads to the transformation of the
steady solution, describing steady-state (constant inten-
sity) laser operation, into a periodic solution which seems
to us to have been properly termed "undue complexity"
[19]. Even in the original work by Fowler, Gibbon, and
McGuinness [26], wherein the complex I orenz model was
analyzed for the first time, the authors changed the refer-
ence frame by transforming to the reference frame which
is commonly used in laser physics [13] for the description
of the detuned laser. From the point of view of stability
theory it is always easier to treat a fixed point rather
than a periodic solution. This is the reason why pre-
vious workers [18—21] used the reference frame adopted
in laser physics but not the complex Lorenz model it-
self even when they considered Eqs. (1)—(3), which are
completely isornorphic to Eqs. (20)—(22).

III. EXACT EXPB.ESSION FOH THE SECOND
THRESHOLD F(t) = E(t)e' '+~' 'P(t) = P(t)e'"'

(25)
The laser-related comple~ Lorenz model itself is not

so convenient for the study of stability because of the
choice of a reference frame which rotates with the cavity
frequency u rather than the reference frame which ro-
tates with the actual frequency of the stationary optical

where the compensating phase shift po was defined ear-
lier by relation (9), and introducing a parameter 6 con-
taining the absolute detuning (~ —s):
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b=
K+ Pg

(26)

we get the system of equations

—E(t) = —r(1+ ib)E(t) + ~g~g(t),

—'P(t) = —p~(1 —ib')'P(t) + ~g~NdpE(t)dt
—

lg ~(t)~(t),

—„~(t)= —7]~~(t) + 2lg [~'(t)P(t) + ~(t)P'(t)] (29)

The parameter b scales the detuning of the frequency 0 of
the steady-state lasing solution from the cavity frequency
w and the transition resonance frequency c for which the
values are, respectively, Kb and p~b.

the physical meaning of a zero value of the parameter b.
Another but also ambiguous situation occurs for large

values of b. It is clear that the detuning (w —e)/p~ is large
in this case. However, to what extent is the detuning
large?

The answer is not unique and strongly depends on
whether or not the limit of large b is taken simultane-
ously with the bad-cavity limit r/p~ —+ co. We can say
in advance that the limit of large b in the extremely bad-
cavity limit can be reached only for masers while either
limit (K/p~ )) 1 or ~ —e~/p~ )) 1) is difficult to achieve
for any laser (see also the discussion in the Sec. VIC).
In the experimental observations of second threshold in
homogeneously broadened lasers, it was not possible to
operate much beyond K/p~ & 3 and ~~ —e~/p~ & 10.

Since the standard laser equations are completely iso-
morphic to the laser-related complex Lorenz model, we
can reformulate the remarks of this subsection in terms
of the parameters o. , e, and b. Recalling the definitions
(14), (15), and (16), we rewrite b' as a function of e and

1. Discussion of the parameter b b(e; o) = (32)

K ) PJ ++II) (30)

Before proceeding, it is helpful to discuss in detail the
dependence of b on the other parameters of the system.

Since the relaxation rate ~ which characterizes the loss
of the cavity

In this form the previous remarks are even more clear-
the parameter e describes solely the cavity detuning while
the parameter o. describes the relative loss of the cavity.

Conclusion: if one performs some limits in b one should
necessarily specify the behavior of both o. and e.

should be compared with p~ and pII when analyzing the
second threshold, it is better to rewrite the quantity b as
a product of two separate factors using the common nor-
malization of all parameters to the parameter p~ which
is, therefore, a fixed constant:

Cco —e

wi j
—1

+ 1 . (31)
+J.

The first factor in this product depends solely on the
cavity detuning as measured in the natural units of the
transition linewidth (since p~ is now a fixed normalizing
parameter) while the second factor characterizes the rel-
ative loss of the cavity. This means that if one wants to
vary the quantity b changing only the detuning at fixed
relative cavity loss, one has to vary only the first factor.
Varying the relative cavity loss at fixed detuning requires
variation of the second factor only.

Thus, the parameter b contains simultaneously both
the dependence on detuning and on the relative loss of
the laser cavity in contradistinction to the common mis-
conception that b is just a normalized detuning. If the
value of r is also to be varied, (r + p~) cannot be used
as a constant normalizing factor.

It is easy to illustrate this statement. For instance, one
has b equal to zero in two physically different cases: either
when detuning goes to zero [(~—e)/p~ —+ 0j or when the
cavity is very bad (K/p~ ~ oo). Hence, simply setting
the value of b equal to zero does not specify completely
the physical situation —further specification of the value
of either (w —e)/p~ or r/p~ is required for understanding

8. Explicitly symmetrical form of equations

e
p = arctan b = arctan = arctanK+ P~ 0+1 (33)

The normalized time is now measured in the units of
(~ &1+b')-':

1+b2 t = t p~ 1+b2 (34)

By means of relations for the coeKcients

6= 6

gl+ b2

do

(1 + b2)dthr d&hr '

(35)

where

Our aim in this subsection is to make a normalization
of the new dynamical variables to simplify the form of
both the steady solution and the coeKcients of the equa-
tions in variations near this steady solution.

In this way we also get an explicitly symmetrical form
of the equations, i.e. , a form which is covariant with re-
spect to the rotations of the steady solutions.

To this end it is convenient to define an "angular" vari-
able
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dthr r1 b2qdthr Y-L( )
/gf2N

(36) —xq = —(r cos(p)x) + o sin(p)x2+ (rx3,
d7 (47)

is now the value for the first laser threshold of the detuned
laser, and by means of the following normalization of the
dynamic variables:

G—x2 = —o sin(p)xq —o. cos(p)x2 + (Tx4,d7.

X(r) = t(t), Y(r) = P(t),1+ h2 rp~ 1+P
(37)

d
x3 —rx j cos(p)x3 —sin(p)x4 —zqxs,

d7= (49)

z(r) =
z2 s(t),

rp~ 1+ 62

we obtain another representation for the complex laser-
Lorenz equations:

X(r)—= oe'~X( —)r+ (rY(r),
d7=

G—x4 = rz2 + sin(p) x3 —cos(p) x4 —x2xs,

—X5 ——6X5 + Xj X3 + XQX4.
'T

(5o)

—Y(r) = —e ' Y(r) + rX(r) —X(r)Z(r),
d7

The stationary solutions turn out to be written in a
very simple form as well [compare with relations (3.45)
and (3.46) in Sec. 3.4 of [26] ]:

—Z(r) = —bZ(r) + —,[X*(r)Y(r)+ X(r)Y*(r)]. (40) (z(,zr, xr, z4, T5 ) =
A

Icos(p), 11ll($),cos(p + p),

The striking feature of Eqs. (38)—(40) is that now they
have steady-state solutions which can be written down in
very simple form:

r —1
sin(P+ p), (52)

Xo = Aexp(P), Yo = Aexp(g+ p), Zo = r —1, (41)

where the magnitude A of the normalized stationary field
and polarization is equal to

Now we introduce the variations near the solutions
(52):

q„=X„—X„,st n = 1, . . . , 5.

A= b+1+P(r —1) = b
~

—1
I

( r
(42) The equations for the variations are written as

and the parameter p is arbitrary:

0&/(2vr, (43)

d—
q& ———cr cos(p)q& + (r »n(p)q2 + (rq3

d7=

while the "angular" parameter p characterizing both the
degree of the detuning and the relative loss of the cavity
has been introduced earlier by means of relation (33).

d—q2 = —(r sin(p)q& —«os(p) q2 + (Tq4
d~

(55)

8. Symmetrical equations in variations toith respect
to the stationary solutions

d—q3 ——qq
—cos(p) qs —sin(p) q4 —A cos(p) qs —

q& qs,
dv

(56)

It is more convenient to use a set of the real variables
X] ) X2) X3) X4) X5

G—q4 = q2 + sin(p)q3 —cos(p)q4 —A sin(p)q5 —q2qs,
d7

X(r) = x) (r) + ix2(r),

Y(r) = x3(r) + ix4(r),

Z(r) = xs(r).

(44)

(45)

(46)

(57)

d—qs
——A cos(p + p) qq + A sin(p + p) q2 + A cos(p) qsd7.

In terms of these variables, Eqs. (38)—(40) acquire
the following explicitly symmetrical form with a simple
trigonometrical parametrization of the coeKcients:

+A sin(p) q4 —bq5 + qq qs + q2q4. (58)

The matrix of the linear part of Eqs. (54)—(58) is there-
fore written as follows:
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Lias

( c—r cos p—o. sin p
1
0

(A cos(p + y)

o sin p
—0 cosp

0
1

A sin(p + P)

0
—cos p

sin p
Acosg

a
—sin p—cos p
Asing

0
—Acosg
—Asing

—b )
(59)

Straightforward calculation immediately shows that
this matrix is a degenerate matrix:

det L), = 0, (60)

Ai = 0

is equal to zero. It turns out to be that there is only one
zero root of Eq. (61), and we get the characteristic equa-
tion for this matrix in the form of a partially factorized
polynomial of the fifth order in A:

I~ ~ = AI~ ~ = A(coA + c A + c A + c A+ c ) = 0.

(62)

We note the exception of the first threshold where there
is an additional root exactly equal to zero. At the sec-
ond threshold a pair of characteristic roots with zero real
parts appears in addition to this zero root. From the
point of view of stability theory a pair of purely imagi-
nary roots is equivalent to one zero root [34]. This char-
acteristic equation was obtained in [19], and in the next
subsection we show that Eq. (62) and the characteristic
equation derived in [19] are the same.

We write down the coefBcients c, , i = 1, . . . , 4, for this
equation both in terms of the coeKcients of the system
(38)-(4o):

Co = 1) (63)

and, hence, at least one characteristic root A, i.e. , one of
the solutions of the characteristic equation

A = Acosp. (68)

Thus, apart from the common factor of cos p = (1 +
Pz) z, Eq. (62) takes the form

convenient to the study of the Hopf-like bifurcation at the
second threshold because of their symmetrical form and
simple trigonometrical parametrization of the coeKcients
(which are the components of the stationary solution).
This study will be reported separately.

However, in this subsection it is more convenient to use
the original notation for the complex Lorenz model [26]
because of the need to compare the results we will derive
here with the previous results in [19,20,22]. We com-
pare our results mainly with results obtained in the work
[19] which is up to now, probably, the work containing
the most analytical results about the threshold proper-
ties of the standard laser equations under consideration
in the present article. Studies of the various aspects of
stability for the standard model of the single-mode ho-
mogeneously broadened laser have been done in [19] in
the reference frame rotating with the cavity frequency u;
the time has been measured in the units of z—,and the
normalization of the variables was different. This might
have made the comparison of our results with [19] diffi-
cult, however, very fortunately, the results from [19] have
been reproduced in Sec. V of the review [22] in more fre-
quently used notation, which makes a direct comparison
with our results easier.

In terms of the original complex Lorenz model we can
rewrite the characteristic equation using a redefinition of
the characteristic number

ci = b + 2(1 + o ) cos p, (64) 1~4& = ~A + c,A + c,A' + C, A + c4 —0, (69)

c2 = (1 —o) + 4cr cos p+ 2b(1 + o) cos p+ Az, (65)

cs = b((1 o) + 4«os P) + A (1 + Scr) cos p, (66)
Co = 1) (70)

where the parameters of the original complex Lorenz
model are now used in the following expressions for coef-
ficients:

c4 = 2A o(l + o.) cos p, (67)

and, in the next subsection, in terms of the parameters
of the complex Lorenz system (4)—(6).

B. The Hurwitz minor T3, the Lienard-Chipart
stability criterion, and the exact explicit expression

for the second threshold

Characteristic equation for the problem

ci ——2(1+ o) + b,

c2 ——b(r —1) + (1 + o') (1 + o + 2b)

+ ((1 —o) —b) b (e; o.),

cs = b(1 + So)(r —1) + b(l + o)'
+b ((1 —o.)' —(1 + So.) ) b'(e; cr),

(71)

(72)

(73)

Equations (38)—(40) and the equations for their varia-
tions (54)—(58) near the stationary solutions (52) are very c4 = 2bo (1 + o')(r —1) —2bo'(1 + o)b' (e; o). (74)
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A ) a„A"=0 (75)

We see that coefficients of the characteristic equation
contain only the squared normalized detuning e2 through
the squared parameter function 6z(e; cr).

The quantity 6 (e;cr) entered into the characteristic
coefficients (70)—(74) not only by means of the squared
(normalized) field amplitude Az = b(r —1 —b2)/(1+ 6 )
in the equations for variations (54)—(58) but also sepa-
rately as a part of the coefficient a = 1 —ie in the original
complex Lorenz equations. Therefore, if we perform ex-
pansions of the second threshold in the powers of b2, in
order to be consistent we must collect the total factor at
each power of 6' (i.e. , including that part in the expres-
sion for A2) in order to get the true coefficients in such
expansions.

The neglect of this fact in previous work [19,20] led to
quantitatively inconsistent results. This is why we have
collected the total factors at 6z (e; o) in the characteristic
coefficients (72)—(74) .

The characteristic equations (62)—(69) are the basic
ones for exact derivation of the explicit expression for the
second threshold. Let us now make sure that we have the
same characteristic equation as that derived previously
by others.

Recalling the expressions obtained and used in [19] and
[22], p. 61, we found there the characteristic equation

acteristic equations (75)—(80) used by previous workers

[19,20,22], are the same equations. This means, of course,
that we studied the same Hurwitz minors as were studied
previously.

8. Lid'nard-Cheart 8tability criterion

ri"' ——1 + 6' (e; cr) = 1 +
(o + 1)z

' (83)

By virtue of the characteristic equations (70)—(74) the
Hurwitz minors of our problem are defined by the follow-
ing matrix [35]:

(ci 1 0 0)
C3 C2 C] 1

l
0 C4 C3 C2

0 0 0 c4)

and written as

In this subsection we will derive the formal solution
for the second threshold. This formal solution has two
different branches. We show in the next subsection that
one of the branches is not physical because it gives the
value of the second threshold which lies belongs the first
laser threshold r&"' for the detuned single-mode homoge-
neously broadened laser

with the following coefficients a„: Tj ——cg ) 0, (84)

a4=1, T2 = C3 C2 —C3,

a~ ——2+ 2k+ p,

az = 2p(1+ K) + (1+R) + (2C —1 —6 )p

+(1 —ic) h, 2,

ai = p((1+ R,) + (1+3r)(2C —1 —6 )

+(1 —K) 4 ),

(77)

(78)

(79)

r —r',"' = r —1 —b (e;cr) ) 0, (87)

all the coefficients c, , i = 1, . . . , 4 turn out to be positive

c, ) 0, i=1234. (88)

T3 = C3T2 —C~C4.
2

Since the nontrivial stationary solution (52) exists only
above the first threshold (83):

ap = 2k'(1+ Fc)(2C —1 —4 ). (80)

Making the correspondence between the physical quan-
tities

R, wo. ,

pmb,
2C m r,
4'mb',

and between the characteristic coefficients

a~ =c4 n =1, . . . , 4, (82)

we have verified that the characteristic equations (69)—
(74) which we are using in the present work, and the char-

The latter inequality means that the exponential in-
stability of the nontrivial stationary solutions (52) under
consideration is determined solely by the sign of the third
Hurwitz minor Ts [35]. This particular case of the gen-
eral Routh-Hurwitz criterion is called in the theory of
matrices the Lienard-Chipart stability criterion [35]. In
general, when the real part is equal to zero for at least
one of the characteristic roots while the other charac-
teristic roots have negative real parts, the rigorous in-
vestigation of the stability may no longer be possible in
the framework of linearization, and special theory should
be applied —stability theory for critical cases; see for re-
view [36]. However, if, as in this case, the zero eigenvalue
corresponds to a symmetry (the indeterminacy of the ab-
solute phase) which is not broken by the subsequent bi-
furcation, the analysis can continue with a study only of
the minor determinant governing the roots with initially



LASER SECOND THRESHOLD: ITS EXACT ANALYTICAL. . . 1643

negative real parts [37].
Calculating the minor Ts, we find that one might write

this minor as a quadratic equation with respect to the
normalized unsaturated population difference r. This
gives us an equation for determination of those values
of r at which the minor T~ changes sign:

Ts(r) = kr + pr + q = 0. (89)

—p + Qp2 —4kq
2k

(90)

is the sought-for value for the second threshold for the
single-mode homogeneously broadened laser. The upper
index of these roots r+ corresponds to the sign in front
of the square root.

The coefficients p and q in the Eq. (89) are very cum-
bersome and one can find their explicit general forms in
Appendix A.

The most easily calculated coefBcient k

k = b (1+3cr)(b + 1 —cr) (91)

should be negative because the Hurwitz minor Ts(r) as a
quadratic function of r defined by (89) should be negative
for large values of r when the stationary solution (52) is
unstable according to known results [16—23]. This implies
that even for the detuned laser we retain the usual bad-
cavity condition [4,5]:

(92)

This quadratic equation (which is a biquadratic equa-
tion with respect to the steady-state intensity of the field
A) was formally solved in the original work by Fowler,
Gibbon, and McGuinness [26] and later, also formally,
in the work by Ning and Haken [29]. No comparative
analysis was done for two possible solutions of this equa-
tion and for the value r&"' of the first laser threshold, nor
was an analytical study of the influence of detuning on
these quantities provided. This situation has left open
the problem of the analytical study of the dependence of
the second threshold on the parameters of the model and
its relation to other threshold values (i.e. , to the value of
the second threshold for the resonantly tuned laser, and
to the value of the first threshold) as well as the prob-
lem of analysis of asymptotic expressions for the second
threshold over the whole physical region of parameters.

Up to now, the main attempts to carry out parts of
these analyses were, in our opinion, made in [19—22]. A
discussion and comparison of our results and theirs can
be found in Secs. VI A and VI B.

Thus, one of the roots of this quadratic equation (or
maybe both roots in some physical region of parameters)

(92), both roots (90) are real numbers because the dis-
criminant of the quadratic equation (89) is always posi-
tive:

p —4kq & 0. (93)

Hence, both roots (90) can be considered as a possible
second threshold and they do not cross each other at any
physical values of the parameters under the bad-cavity
condition. Since that proof is very tedious, we have also
put it in Appendix A.

8. Elimination of the root r+

Now we check whether or not the root r+ is more than
the lasing threshold. We show that this root r+ is aluiays
less than the first laser threshold riih'

Proposition 8.1. At a zero value of the detuning and at
an arbitrary finite value of the relative cavity loss, i.e. ,
when e = 6(e; o) = 0, the root r+ is a negative number.
Proof 9.1. Taking the limit of zero e2 in the expression
(90) with the plus sign in front of the square root, one
gets

lim r+
b~ —+0

—2 —b —6g —bg —6g 2 —2bg 2 —2g 3

b+ abg. (94)

T+ —Tthr 01 (95)

with respect to 6 (e; cr), gives after very long transforma-
tions:

which is obviously less than zero for all positive values of
b and g.

The physical consequence of Proposition 8.2 is that for
the resonantly tuned laser the root r+ has no physical
meaning and the only second threshold is given by the
root r in expression (90).

However, one must be attentive to the behavior of the
root r+ with growth of the parameter b(e;o). For in-
stance, at g. = 3 and b = 1 the root r+ grows rapidly
becoming positive at 6 (e;cr) & 7 (Fig. 1). Even in this
particular case, the competition between two increasing
functions of 6 (e; o), the root r+ and the first threshold
r~i"' ——1 + b (e; o), is evident. If r+ becomes more than
the lasing threshold re"' a second physically meaningful
branch of second thresholds will appear.

Fortunately, this is not the case and we will show this
in Proposition 8.8. The difference r+ —r&"' has no zeros
for real values of 6(e; cr), and r+ is, therefore, always
less than riih' (according to the previous proposition) for
physical values of b(e; cr), cr and b

Proof 9.8. Straightforward solution of the equation

as a necessary condition for obtaining a second threshold.
To define the true second threshold from the formal

expression (90) one has to use the following requirements.
(i) The second threshold should be a real number.
(ii) The second threshold should not be less than the

first threshold r~P' = 1+6z(e; o).
We have proven that, under the bad-cavity condition

(o + b+ 1)z
(cr —1)z

6( )=&
( +1)
(o. —1)

(96)

Thus, Eq. (95) has either one (or both) of the roots (96)
or no roots at all depending on the values of the param-
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O
Q

-(3+b+-)
0 o. —b —1

rl (97)

—10

Proof 9.9. According to the contents of Sec. IV, the ab-
solute minimum for r (= rzt"') occurs at zero detuning
and is greater than or equal to 9 while the minimum of
rtih' also occurs at zero detuning and is equal identically
to l.
Proposition 9.$. The difference r —re"' has no zeros at
real values of b(e; cr), and r is always greater than rtih"

for physical values of b'(e; cr), o and b.
Proof 9.$. Solving the equation

FIG. 1. A numerical example why one cannot neglect the
root r+ of the equation (89) without careful consideration.
The root r+ is shown vs squared detuning 6 at cr = 3.0 and
b = 1.0. The values of r+ become positive (solid line) when
6 ) 7.0. For these values of parameters, this root should be
obligatory compared with the value of the first threshold r~"'

eters o and b. In any case, relation (96) is an obvious
contradiction because there is a positive quantity on the
left-hand side and there are explicitly negative quantities
on the right-hand side of this relation.

The solutions (96) are symbolic solutions of equations
r+ —rtlhr ——0 and r —rlhr ——0. HOWeVer, if One SetS,
for instance, o = 3 and b = 3/4, symbolic solution (96) is
nQt a QQm, e~ga) sQlutlQn Qf the equation r — rt&hr 0
This simply means that this equation has no solutions
for these values of cr and b

Thus, the root r+ can never cross the value of the first
laser threshold rti"', remaining below it.

(98)

with respect to bz(e; o), we find once again symbolic re-
lations (96). Let us recall once again that a symbolic
solution can exist in a domain of the parameters where
the corresponding numerical (or exact) solution does not
exist. If so, there are no roots at all which do not violate
our consideration.

Further proof just repeats the Proof 9.8. Thus, the
root r remains always above the first threshold ri"'.

The physical conclusion from Propositions 9.j—9.$ is
that among two roots (90) of the basic equation (89)
derived from the Lienard-Chipart stability criterion [35]
only the root r has the physical meaning as the second
threshold for the single-mode homogeneously broadened
laser.

5. exact analytical expression for the second
threshold at atbitrury physical values

of (~ —s)/pi ——e, ~/p~ ——o, and p~)/p~ ——b

Verification of the position of the root r
Thus, we get for the value of the second threshold the

following exact explicit expression:

Now we verify whether or not the root r is less than
the lasing threshold. If so, for some domain of physical
parameters, this would mean that the root r cannot
be a second threshold inside that domain of the param-
eters, being therein less than the first threshold. But we
demonstrate that the root r is always greater than the
first threshold.
Proposition 9.9. At zero detuning, at arbitrary finite
value of the relative cavity loss and under the bad-cavity
condition, the difFerence r rl is a positive number:

—p —- /pz —4kqrthr 2 e~ ~ P yP

~(b'2(e; o), cr, b)

D(o,b).
To make the expressions more compact we are using

here the parameter b(e;o), which contains the depen-
dence on the normalized detuning e = (~ —s)/p~. The
numerator of this exact expression has the following ex-
plicit form:

~(b2 o b) 2+ 3b+ b2+ 2b' bb' b'b'+ 4o + 9bo + 2b'o. + 4b'o
2 + 5g2 2 8P2 2 + ggy2~2 + g2P2~

4o3+ 3$o3 —4$2o3 —g$ o3 —2o. +66 o

+ (—] + o) (2+ b+2o)(1+ 2b+ b + 26 —2b b + &

+g2P4 + 4o + 6go + 2$2a + 862o + 4g$2o. 16$2P2o.

+4P4o. 2$$4o. 2$2$4o + 6o2 + 6$o-2 + $2o 2 + 4$2o.2

+32M o —146 6 o —2b o + 10M cr + 6 6 o. +40. +260.
8b'o +28bb o. —12b o ——6bb o. +o —6b o +9b o ) / (1oo)
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while the denominator is just

D(cr, b) = —2k = 2b (1+3cr)(cr —b —1). (101)

Such cumbersome expressions as expression (100) are, very unfortunately, typical for the Hurwitz minor method
in stability theory. The main difhculty is to understand the behavior of r2"' as of a function of the main variable,
the normalized detuning e, over the range of the set of the physical values of the other parameters, the normalized
relaxation rates o and b.

C. Analytical expansions of the second threshold in powers of detuning e = (u —s)/p~
for arbitrary cr = K/p~ and b = p~~/p~

In this subsection we can consider the normalized relaxation o as a Axed finite parameter but not as a variable
going to infinity. Thus, the limits of zero detuning e and zero parameter b'(e; cr) will coincide.

Expanding expression (99) into a series with respect to powers of the squared normalized detuning ez, we get

rz"'(e « l, cr, b) = Ro+Rze + R4e + Rse + O(e )

&(—5 —2b —bz+5~z) e2

1+ b —cr (1+ c )'(-1 —b+ c ) (1+b+ o.)
4 (—1 + cr) cr (1 —b + cr) ( b+—2cr) (2 + b + 2cr) e

(1 + c )'(1 + b + c )'
+4 (—1+0)0. (1. —b + c ) ( b+ 2—o.) (2+ b + 2~)

(—1+bz —3& —2b&+ 7bz&+ &z —14b&z + 3&s) es

(1 + c )'(1 + b + c )' + O(es). (102)

In addition to this expansion, in order to make comparisons easier with earlier results, we give here the same
expansion but in powers of the cr-dependent parameter 6 (e; cr):

rP '(6' « 1, c, b) = Ro + Rz6' + R4h' + Rsbs + O(bs)

cr (3+ b+ cr) cr (—5 —2b —bz + 5crz)

1+ b —0 (1+ b —cr) (1+b+cr)

+4 (—1 + cr) cr (1 —b + cr) ( b+ 2o-) (2 +—b + 2cr)

(1+a) (1+b+ ~)'
+4 (—1 + 0) cr (1 —b + cr) ( b+ 2c—r) (2 + b + 2cr)

X (—1+P —3~ —2b~+ 7bz~+ ~z —14b~2+ 3~s)
b +Obs

(1 + 0.) (1 + b + cr)
(103)

Both expression (102) and expression (103) provide us,
of course, with the true value of the second threshold for
the resonantly tuned laser [18—23] (or, in other words, for
the bifurcation point at which the nontrivial steady-state
solution of the mat Lorenz model loses stability [28]):

thr &thr( 2 0)
t

grthr
2,0 2cr (1 + cr)

(1+ b —cr)
(105)

Differentiating the expression (104) with respect to the
variables o. and 6, we get

= r',"'(6' = 0) = Ro = Ro = . (104)
cr (3+ b+ o) —3 —4b —b —2cr —2bcr + crz

Oo (1+ b —0.)
(106)

IV. ABSOLUTE MINIMUM OF THE SECOND
THRESHOLD FOR THE RESONANTLY TUNED

LASER

What is the minimum value of the second threshold
for the resonantly tuned laser?

The derivative (105) is always positive at positive cr.

Therefore, r2"0 as a function of b is a monotonically
growing function which has its obvious minimum at the
lower boundary, i.e. , at 6 = 0.

The derivative (106) has a unique zero at the following
positive values of o".
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o.p (b) = 1 +. b + Q4 + 6b + 2b~ (107)

min (r',",') = 9. (108)

While the expansion for r2~"p at o = op(b) in powers of
b in the vicinity of b = 0 has the following form:

r2"p(o. = op(b)) = 9+ 6b ——+ +O(b ), (109)
b 3b 4

) 8 32

At b = 0 the value of op(b) is equal to 3.
Setting the function op(b) and zero value of b into the

expression for r2 0 one can obtain the minimum value of
the second threshold for the resonantly tuned laser:

b

0.0
0.001
0.01
0.1
0.25
0.5
1.0
2.0
8/3 —2.666. . .
10.0

op(b)
3.0
3.0025
3.02499
3.24942
3.62171
4.23861
5.4641
7.89898
9.51664
27.2481

thrr2.0
9.0
9.006
9.05999
9.59884
10.4934
11,9772
14.9282
20.798
24.7
67.4962

TABI E II. The minimal values of the second threshold r2"o
for various values of 6 which are achieved at the specified value
of o = o.p(b).

for large b this function is asymptotically a straight line:

(1 + ~2)(2 + ~2)
rt2"p(o. = op(b)) = 9+ b

—9 + $.82843b. (110)

Thus, the value of the minimum for the second threshold
lies not far (less than one order of the magnitude) above
the first laser threshold for the resonantly tuned laser
which is equal in these units exactly to l.

This value of op(0) at which the minimum occurs is
not approximately equal to 3.5 [22] but equal exactly
to 3. The specific dependence of oo on b which realizes
this minimum for nonzero values of b is given by relation
(107).

The minima of the second threshold r2"p(o = op(b))
have been collected in Table II together with the spe-
cific values of op(b) which realize these minima. We
note that the transition to instability at the value of
b = p~~/p~ = 0.25 was predicted for the ammonia laser
[38,39] and observed [40—43].

For atomic gas lasers and solid-state lasers with strong
homogeneous broadening, b may be much smaller than
one, while the physical upper limit of the two-level model
for b is 2, though multilevel models have a physical upper
limit for b of 1 [22]. We include the values of b = 8/3 and
b = 10 for comparison with other studies of the Lorenz
model for nonlaser systems [28].

One can see from Table II that the value of r&~hp(o =
op(b)) grows with b but not too rapidly for the most
physically accessible region for lasers between b = 0.0
and b = 0.25.

The values of r&"or are not so inaccessible for the phys-
ically accessible range of values for b, being very close to
the absolute minimum which is equal to 9.

The discussion in this short section has shown that it
may be experimentally easier to observe the transition
to instability of the standard laser equations or of the
Lorenz model in the case when the relation p~~/p~ = b is
very small and when the value of the ratio r/p~ = o is
matched to the value of oo according to its dependence
(107) on p~(/p~.

V. INITIAL PULSATION FREQUENCY:
GENERAL AND ASYMPTOTIC ANALYTICAL

EXPRESSIONS

One can derive from the characteristic equation (69)
the expression for the initial pulsation frequency by tak-
ing in that characteristic equation the characteristic num-
ber A as a purely imaginary quantity:

A =i Ap.

Then Eq. (69) splits into a system of two equations:
the equation for the determination of the value of the
second threshold (89)

Ts(r;o., b) = cic2cs —cs —cic4 = 0,2 2

which has been already solved in Sec. III B, and the equa-
tion for the value of Ao

(112)

where the normalized intensity of noncoherent pumping
r is equal to the value of the second threshold. In [19] and
[22] the initial pulsation frequency is denoted by A. We
are using here the designation Ao for the initial pulsation
frequency because we have already used the symbol 0 for
other purposes.

It is very important to note that due to the positive-
ness of the quantities cs and ci defined by relations (73)
and (71), respectively, the solution of Eq. (112) exists
at cl/ physical values of parameters under the bad-cavity
condition above the lasing threshold rih' = 1 + bz(e; o.).

The latter result means that the bifurcation at the sec-
ond threshold occurs always at the presence of two imag-
inary characteristic roots. We have set the explicit an-
alytical expression for the initial pulsation frequency Ap
in Appendix B.

The expansion in powers of bz(e; o) for the square of
the initial pulsation frequency at the second threshold
has the form



48 LASER SECOND THRESHOLD: ITS EXACT ANALYTICAL. . . 1647

Ao(6 (e; o.) (( 1) = 2—her (1+ cr) 4b( —1+o) cr ( b—+2o) 2 4b( —1+cr) o (1 —b+ cr) ( b—+ 2o) (1+3o)
1 + b —cr (1 + b —o.) (1 + b + a) (1+a) (1+b+o)

+4b (—1 + o ) cr (1 —b + a) ( b—+ 2o ) (1 + 3o')

(—1+ bz —3a —2ba + 7b2a+ a2 —14ba2+ 3as)

(1+o)'(1+ b+ o.)' (113)

We immediately see that in the limit of large cr taken after the limit (113) of a small value of parameter 6(e; cr) the
following expression is obtained:

Ao(6 (( 1; o )) b+ 1) = 2bo(1+ 46 + 126 + 366 ).

(—1 + o) (1 —b+ 3o) 2 (1+o) (—1+ b —3o —4bcr+ 5b2o + o2 —12bo.2+ 3o.s)
$2

1+ b —o. (—1+ b —3o.) (1+ b —a)
4bo(l + cr) (1 —b+ cr) ( b+ —2o) (1+3o) 1 ( 1+ s

—2+&
~

—
g

(—1+a)'(1 —b+ 3a)'

A,'(6'(e;o) » 1) =—

At the same time, in the single limit of large cr we have

2 1 +62 1 3$2+3bf2
A,'(o » b+1) = (—1+36')o'+

+(1+6 ) (—1+36 ) (1 —96' —10b6 —6b 6

+276 + 12b6' —48b 6 —276 + 54b6 + 54b 6 )+0
~

—
~

t'1 i

Let us also consider now other asymptotic cases.
In the single limit of large 6z taken in the general expression (Bl) we get the following form:

(114)

(115)

(116}

These two expressions coincide in the double limit of
large o and large 6, providing us with the following limit
expression:

A', (6' »1;a » b+1) =3o'6'. (117)

(118)

VI. DISCUSSION OF THE PUMP VALUE
REQUIR. ED FDR, THE SECDND THRESHDLD

A. Brief overview of previous analytical results

It is now possible to compare our results with previ-
ous analytical results for this dynamical model [19,20,22].
In order to make the comparison of all results easier,
we give this brief overview of the earlier results. Some
of these results were formulated in another time seal"
more exactly with time normalized to K [19], while in
this article we use the common normalization of time to
pz, some other results contain misprints [22]. At last,
there are both a minor inconsistency in the derivation of
these results which has led to different values of the coef-
ficients in expansions for the second threshold and initial

If we consider the expression for A& at large o and
moderate 62 = 1/3, we get

3

Ao(6' =1/3 a»b+1) =3+ +

pulsation frequency, and incomplete speci6cation of the
physical meaning of the asymptotic case of large 6 (e; o.)
at large values of o (see the preliminary discussion in Sec.
III A 1).

In particular, these results concern the analytical ex-
pressions for the second threshold and for the initial pul-
sation frequency of the Hopf-like bifurcation of the steady
solution at the second threshold. They have been accom-
plished previously only under certain approximations.

Generally, the earlier results were calculated for the
fixed value of p~~/p~ = b = 1 while in this article we
have restored in all expressions the dependence on b and
therefore we can easily proceed to the particular case of
b = l.

Further, in previous work the value of r/p~ = o has
been either fixed (cr = 3 in [20]) or taken in the limit of
o &) 2 (for b = 1) at various limits [19—22] for 6 (e; o).

The following expression has been derived in [20] for
the expansion of the second threshold in powers of the
parameter 6 (e; o.) at b = 1 and cr = 3:

r~P'(6' (( 1;o = 3; b = 1)

= 3+ 16.86'+ (324+ 194.46'+ 262.446')' '
—21 + 22.262 + 7.2964. (119)

Other approximate results have been given in [19,22]
under the condition o. &) 2, which is a particular case of
the asymptotic expressions in the bad-cavity limit o ))
b+1 at 6=1.
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and the initial pulsation frequency is given by

A,'(6' && 1; o. » 2)=, = 2o.(1+46' + 36').2cr(l + 62

1 —362

(121)

For a moderate value of 62 (e; o') = 1/3, the correspond-
ing expressions are

thr(62 i. » 2) 4 3/2
) (122)

A,'(6' = —,', o. » 2) = 2 3/2 (123)

For large values of 62(e; a) one finds in [19] the follow-
ing expressions:

2cr 36 —1)r',"'(6' » 1;o » 2) = 1+6' +
3

1 + $2 + 2~2/2 (124)

Three situations have been considered in the particular
case of the bad-cavity limit: small detuning 6 (e; a) (( 1,
moderate detuning 6 (e;cr) = 1/3, and large detuning
6(e;o.) » l.

Unfortunately, when reproducing the expressions from
the original work [19] in the review [22] the rescaling fac-
tor of o.2 for the initial pulsation frequency was neglected;
we have restored it below.

According to [19], for small values of the parameter
6(e; o.) the second threshold value is

o 1+6r,'"'(6' && 1; o » 2) = 1 + 6' +
1 —36

= 1+6' + o.(1+56' + 7b' + 3b'),
(120)

particular expansion:

r2h'(6' && 1;o = 3, 6 = 1)

111p2 + 162 p4 243 p4
5 25 125

~ 21 + 22.56 + 6.486 —1 944$

All coefficients in powers of 62(e; o) in this expansion
are different from the coeKcients in the earlier expan-
sion (119). However, more important is the information
which we get from the additional [in comparison with
(119)] term of the sixth power of b. It gives a negative
contribution to the value of the second threshold at the
values of a. = 3 and 6 = 1. Thus, making just one step
beyond previous studies, we found that the perturbative
approach reveals, even in the particular case, a possibility
of a decreasing of the second threshold with increasing of
detuning. A general treatment of this problem is given
in the next section.

In order to understand the origin of the quantitative
difference from previous results (i.e. , in coefficients of
these particular expansions) we have repeated all calcu-
lations keeping the quantity (r —1 —6 ) as completely
6'2 independent, and have reproduced the result (119).
Thus, the difference appears to have originated in an in-
consistent treatment of the quantity (r —1 —6~) in [19]
as a b2-independent quantity.

This inconsistency is quite minor; however, it generally
leads to values of the coeKcients which are regularly dif-
ferent from the true values. Fortunately, the qualitative
meaning of the previous results remains valid.

In the double limit of small 6 (e; o) and large o the
second threshold depends linearly on the o variable and
contains only positive corrections in the powers of the
parameter 6'(e; o) (up to the sixth power) to its value in
the case of exactly resonant tuning:

r',"'(6' && 1;o » 6+1)
A,'(6' » 1; o » 2) = o'(36' —1). (125) = cr(1 + 56' + 166 + 486 ) + O(b' ). (127)

B. Various asymptotic expressions

In this subsection, on the basis of our general results,
we derive and consider miscellaneous asymptotic expres-
sions both for the second threshold and for the initial
pulsation frequency. We compare our general expressions
with earlier results, discuss difFerences, and specify more
clearly the physical meaning of the asymptotic expres-
sions.

Comparison with previous results and some
remarks

Let us now compare our results with earlier results
[19,20,22], which we have collected in Sec. VIA. For
instance, at o = 3 and 6 = 1 used in earlier studies one
can get from the general expansion (103) the following

Comparing our expression with the analogous expres-
sion (120), one can conclude that again the coefficients
of powers of 6(e; cr) in (120) are different from the true
values and, in addition, there is strange appearance of
unity in the expansion (120).

The qualitative difference between our results and the
earlier results in this limit of small 6 and large o. is quite
minor: the different coeKcients of the powers of 6 do
not disturb sufFiciently the value of r2"', and unity can
be safely neglected in comparison with large o.. However,
the earlier expansion (120) is not suitable for numerical
treatment.

At these values of 62 and o., the previous particular
asymptotic expression (121) for the initial pulsation fre-
quency Aa contains a coefficient at 6'4 which is difFerent
from our expression (114) when it is evaluated in the
particular case 6 = 1.

The authors of [19] have also considered the case of
6 = 1/3. In this case, we get from (103) at arbitrary
values of 6:
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spaz
~4@ 6 4(—2+ b) (4v 6+ 18'%+ 16%6b ) f 74 28 4bl 1

rz '(h =1/3;o')) b+1 -o
~ + +
~9 b 9b o 27b2 o.

The first term in this our expansion gives in the par-
ticular case of b = 1 the same result as expression (121).
However, a new feature is visible from our expansion
(128) that is b dependent: with increasing b the value
of the second threshold is slowly decreasing.

Our expansion (118) for Aozin this region of parameters
has the same leading term as the previous result (122).

The limit expression for the second threshold in the
case of large detuning has (after a number of possible
transformations) a quite simple form,

r',"'(h' &) 1;o, b)

~
—2+ b+ bz+ 2o. —bcr+ 2oz —2os

b+ b2 —bo.

22r',""(h'; o. » b+ 1) = o' —(3h' —1).
3b

(131)

This relation gives the same value of the second threshold
in the limit of the large bz as expression (130). However,
in the opposite limit of small detuning b2 we cannot now
get expression (127) and, moreover, we get a negative
unphysical value.

We found that the result of the double limit of small
b2 and large normalized relaxation rate of the field o
strongly depends on the order of performing this double
limit because of the implicit dependence of 62 on cr given
in (26) and (31) and discussed in Sec. III A 1.

Thus, in order to avoid an ambiguity in the interpre-
tation of the double limit of large hz and large cr we have
to specify that the double limit of large o and large hz

means not only the inequalities o. )) b+ 1 and 62 )) 1
but rather also

Taking in this expression the additional limit of o ))
b+ 1, we get a very simple dependence of the second
threshold on large hz and the normalized relaxation rates
o andb:

e' » (o + 1)' » (b + 1)'.

C. Laser and maser asymptotes

(132)

2~(o —1&+b —2 2r,'"'(h')&1;o » b+1) = ' ' h'
b

20 2b' (130)

Recalling the analogous result (124) from [19] and set-
ting b = 1 in our general expression (130), we find that
the inconsistent treatment of (r —1 —hz) as an hz-
independent quantity leads to a qualitatively different
result: now the superfIuous addition of b in the limit of
large b2 can give an appreciable absolute correction while
the relative correction may be small because 2oz )) 1.

Summarizing our comparison with previous results
from [19] and [20], we have not only added a few gen-
eral limit expressions to the earlier results but have also
improved the earlier results. However, our study might
not have been possible without those previous studies
which made our work much easier.

Once again we found that r2"' decreases with increas-
ing of b in the presence of detuning, which is opposite to
the increase of r&"0 when b is increasing.

2. On the order of performance of double limits

Another interesting question is whether or not these
double limits in o and 6 depend on the order of per-
forming them or not? In both cases (129) and (130),
which we have already considered, we first varied the de-
tuning 62 and only af'ter this took the large values of o.
Let us see what happens if we will first take the limit of
the large o., and after this will vary the value of b2.

In the limit of the large o we get the very simple ex-
pression

The latter inequalities mean in terms of the atomic
and field relaxation rates and frequencies the following
conditions:

( — )' » ( +~~)' » (~ii+~ )' (»3)
It is clear that this condition can make physical sense in

the framework of the single-mode approximation only for
masers, as pointed out by Oraevskiy [44]. He proposed
[45] that it is more probable to observe experimentally
the transition to chaos as described in the Lorenz model
when dealing with masers rather than with lasers. How-
ever, for the moment there is no experimental verification
of this very interesting proposal.

If the analogous double limit is performed not in the
variables o. and b but in the variables o and e, one
avoids the unnecessary additional requirement (133). It
turns out to be that in the limit of large o. taken without
the additional requirement (133) the second threshold
does not possess a dependence on the normalized detun-
ing e2 at all. The corresponding expression has the form

r2"'(e;o )) b+ 1) = (1+b) o + 2(2+ b)(1+ b)

(4+ 6b+ 2bz + 5ez)(1+ b)s 1

1+b
+&(—,)

1
(134)

The leading term in this expansion, which contains the
squared normalized detuning (u —z)~/pz~ ——e2, vanishes
in the limit of large r/p~ = o, and this asymptotic ex-
pression does not depend on the detuning e2 as should
be expected (see the discussion in Sec. III A 1).

For lasers which have been studied thus far the prac-
tical limit for achieving bad cavities and suKciently high
pump values to reach the second threshold, limit the pa-
rameters to o & 5, ~e~ & 5, and thus h2 & 1. This means
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that neither of the two limits (either that of large cavity
loss or that of large detuning) in the double limit for the
second threshold has relevance to any presently realizable
laser that we know.

Thus, the conclusion is important: the simultaneous
double limit of large 62 and cr (or the double limit of
large e~ and o.) makes physical sense only for masers,
and all our previous results which are derived in these
double limits are applicable only to masers but not to
lasers.

For example, for the cryogenic hydrogen maser, the fol-
lowing numerical values have been reported in the recent
work [46] by Mandel et al. : p& =

p~~
—1 and K = 10

(in sec i). It is evident after our analysis that for such
a maser the expressions obtained in the double limit of
extremely bad cavity and large detuning have physical
sense.

Although the NMR laser cannot be precisely described
by the Lorenz model because of the presence of additional
nonlinear polarization damping [47], the values of the
relaxation constants (0. = 4.875 and 6 —2 x 10 4) give
rise to hopes that for a NMR laser it might be possible to
realize a regime of operation similar to that described by
simple expressions obtained in the double limits discussed
before.

VII. GENERAL PROOF THAT INCREASING
THE DETUNING INCREASES THE SECOND
THRESHOLD FOR THE HOMOGENEOUSLY

BROADENED SINGLE-MODE LASER

A. Motivation for the general proof (failure of
perturbative approach'}

Both the exact analytical expressions (99)—(101) for
the second threshold and the expansion (103) carry a lot

I

(=o —6 —1) 0, (135)

which is always positive due to the bad-cavity condition
(92).

Substituting the variable (135) into (103), we see that
first two terms in (103) are positive at all physical values
of o and 6 [or, in terms of the initial system (1)—(3), at all
physical values of K, p~, and p~~ obeying the bad-cavity
condition (92)]

of the information about the actual position of the second
threshold as a multiparameter function of the square of
the normalized detuning (a —s)/p~ = e.

The natural question is: does the second threshold only
increase with detuning or can the second threshold also
sometimes decrease with increasing detuning?

The common conception based on many approximate
studies (see reviews [22] and [23]) answers that increasing
the detuning can only increase the value of the pump
required to observe the second threshold. We will prove
this exactly; however, for the moment, we will try to get
a feeling for the situation by considering the approximate
expansions.

One might think for the moment that the values of the
parameter 6(e; o) are not more than, for example, 1/2,
in the most physical values of the parameters ~, e, p~,
and K of the initial laser system (1)—(3).

If the first few coefficients of the expansion (103) of the
second threshold in powers of the normalized detuning
are positive in this region of the physical parameters,
then we can assert that inside the most physical region
of the values of parameters the second threshold only
increases with increasing detuning.

Thus, let us check the definiteness in sign of the coeK-
cients of the expansion (103). To this end, we introduce
a new subsidiary variable [48,49]

(1+6+()(86+46 + 10(+106(+5(2)
((2+ 26+ ()

(136)

4(2+() (6+() (1+ 6+() (2+ 6+ 2() (4+ 36+ 2()
(2+ 6+() (2+ 26+()'

while the third term in this expansion is not definite in sign:

(137)

Rs = 4 (2+ () (6+ () (1+6+ () (2 + 6 + 2() (4+ 36+ 2()

(—86 —12bz —4bs + 8( —106( —126 (+ 10( —56( + 3( )X
(2+ 6+()'(2+ 26+ ()

(138)

However, one may consider the perturbation of the
value of the second threshold by the latter term as negli-
gible for small detuning. Actually, recalling the original
definition (26) of 62:

62 ( )
(K+ v~)'

and values of the parameters e and p~ for the class-

]

C lasers [50—53] one might conclude that the first three
terms describe the behavior of the second threshold in
the most physical region 62 ( 1 quite precisely.

In this region one can ignore safely all higher-order
terms in the expansion (103) and assert on the basis of
the approximate expansion (103) that the conclusion of
[22,23] that the second threshold increases when the de-
tuning increases is valid practically always. However, one
cannot ignore the possibility of a failure of the above con-



48 LASER SECOND THRESHOLD: ITS EXACT ANALYTICAL. . . 1651

siderations for higher values of detuning.
Moreover, the presence of the coefficient Bs (which is

not definite in sign and can dominate in the expansion
at large detunings) is a mathematical basis for certain
doubts whether this common conception is valid in gen-
eral, and, in particular, for large values of 6'2(e; o.).

Thus, this evident failure of the perturbative approach
strongly motivates the general nonperturbative consid-
eration of the influence of the detuning on the second
threshold.

B. The proof

not definite in sign.
In relation (140), the denominator M is equal to

M = 2b (cr —b —1) (1 + 3o.) .

It is obviously a positive quantity under the bad-cavity
condition and does not depend on the detuning x
b2(e; cr).

To show explicitly the positiveness of the above-
mentioned quantities we have to introduce once again
the positive variable ( instead of the parameter o:

(=o —b —1 ) 0.

So, we prove in this subsection that the values of the
second threshold r2"' at nonzero values of detuning [i.e. ,

when e~ = (cu —s)2/p& g 0 or, which is the same for
exact treatment, 6 = (cu —s) /(r. +p~) P 0] are alv)ays
(i.e. , at arbitrary values of K and p~ under the bad-cavity
condition) greater than the value of the second threshold
T2 0 for the resonantly tuned laser.

For simplicity of notation in this subsection we denote

Considering n, )9, p, and a as Functions of two posi-
tive parameters ( and b we can write down the following
explicitly positive expressions (after symbolic simplifica-
tions):

c = (b+() (2+b+() (2+2b+() (4+3b+2() & 0,

(141)

x = 6 (e;cr). (139)

—n+ /jx+ p o, (x —xp)'+ —,

(140)

where all quantities n, P, p, and a are strictly positive
under the bad-cavity condition, and the quantity xp is

Thus, all operations with respect to x will be the op-
erations with respect to the parameter P(e; o) which is
proportional to the square of the absolute detuning.

The difFerence between the value of the second thresh-
old r2"' for the detuned laser and the value of the second
threshold for the resonantly tuned laser acquires the fol-
lowing form:

thr rthr

P = 16b' + 20b' + 6b' ~ 40b(+ 66b'(+ 23b'(
+16( +66b( +34b E, +20( +23b( +6/ ) 0,

(142)

p = (b+() (4+3b+2() & 0,

a = (b + ()'(4 + 2b + 3()' & 0.

(143)

(144)

We have succeeded to prove that the difFerence Ar(x)
is always positive using expressions (141)—(144) and the
special representation of quantities through the elliptic
integrals. However, this direct proof is extremely com-
plicated and it is not worth presenting it here.

Instead, we have also found another proof which is
much simpler and based on the properties of the deriva-
tive of the threshold difFerence Ar(x) with respect to x.

DifFerentiating Ar(x) with respect to x, we get

&(&r(x))
a"(x xp)'+-I + ~.(x - xp)

nP)
'7 )

0!
a(x —xp)2 +—

72

(145)

From (145) and from (142)—(144), we immediately extract a very important conclusion: the derivative B(Ar(x))/Bx
is asymptotically, at x ~ oo, a positive quantity:

u- "~'*)))=M- (p+,~))o
2:—+OO

(146)

which means that asymptotically, at x —+ oo, the second threshold r&"' grows monotonically with increasing detuning
x = 6 independent of the normalized relaxation rates o = r/p~ and b = p~~/p~. The expression (146) gives also

the corresponding general asymptotic form of the threshold ratio at large detuning, i. e. , of the ratio of the second
threshold to the first threshold.

But what happens in between, at moderate values of detuning'?
To understand this, we use the following two propositions.
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Proposition 7.1. At zero detuning, (cu —s) = 0 (or, in other terms, x = b' = e = 0), the derivative (145) is strictly
positive at all physical values of the parameters under the bad-cavity condition.

Proof 7.1. Substituting the expression for xp

Xi
X '

2
(147)

where

Xy = —[(2 + b + ()(8b + 12b + 4b —8(+ 10b(+ 12b2(

-10(' + 5b(' —3(')], (148)

x2 = (b + ()'(4 + 2b + 3t,)', (149)

in«expression (145) and setting the detuning equal to zero, we get after symbolic simpiifications the foljowjng
explicitly positive expression:

0(Ar(x = 0)) ~
2b (1 + b+ $) (4+ 3b+ 3() (8b+ 4b2 + 10(+.10b(+ 5(~)

Bx 2+ 2b+( (150)

Fg(x) = Fg(x), (151)

where

Fi(x) = P'&(x —xo)'+
I

(o.Pi '
(152)

F2(x) = —pa(x —xp). (153)

Thus, at this stage we have shown that the derivative of
the second threshold is strictly positive at zero detuning.
This means that at least at the vicinity of zero detuning
the value of the second threshold is growing with increas-
ing detuning.

Let us now consicjer the region of nonzero detuning,
when x ) 0.

Proposition 7.2. The derivative (145) either has no
zeros at x & 0 or has only one zero at x ) 0.

Proof 7.8. Since the denominator of the derivative
(145) is always positive, the derivative (145) can have
a zero when

we have shown that the derivative of the second threshold
either has only one zero or has no zeros at all.

Conclusion from the propositions. Since the derivative
(145) is strictly positive at zero detuning (according to
Proposition 7.1) and is strictly positive asymptotically, at
x ~ oo [according to (146)], it is positive everywhere for
x & 0 excluding, probably, only one point where it might
be equal to zero (according to Proposition, 7.2). It cannot
be negative at x & 0 because in this case the derivative
(145) would have at least ttuo zeros which would be in
evident contradiction with Proposition 7.2.

Since the derivative of the second threshold is posi-
tive everywhere including at zero detuning and exclud-
ing maybe only one nonzero value of detuning, the second
threshold at nonzero detuning is always greater than the
second threshold for zero detuning at at/ physical values
of the parameters of the problem under the bad-cavity
condition.

We have strictly proven here that increasing the detun-
ing has only a stabilizing eKect on the homogeneously
broadened single-mode laser. This is now a rigorous
mathematical statement.

P~a ( pa. (154)

If the condition (154) does not hold then the functions
Fq(x) and F2(x) have no intersections at all. Thus, here

The function F2(x) is a straight line which goes from
the fourth quadrant into the second quadrant. The func-
tion Fq(x) is a curve which lies inside the upper corner
created by two straight lines: f (x) = —Pv a(x —xp)
and f+(x) = /~a(x —xp). At zero value of x the value
of Fq(x) is equal to (nP/p) and Fj (x) approaches the
straight lines f (x) and f+(x) from above when x goes
from xp to +00.

Therefore, the functions Fq(x) and Fz(x) can intersect
each other anty one time. The necessary condition for
this is obviously written as follows:

VIII. COMPACT VISUALIZATION
OF THE SECOND THRESHOLD

The second threshold r&"' can be defined on diferent
but isomorphic sets of variables. If one uses the original
relaxation rates K, p~~, and p~ of the single-mode homoge-
neously broadened laser, the threshold can be understood
as a function of these three variables and of the square of
the detuning (w —s') . The parameter domain in which
the threshold is defined at a fixed value of the detuning is
the infinite area determined by the bad-cavity condition:

P(I +P~ ( K

for positive values of these parameters.
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It is clear that the infiniteness of the domain of exis-
tence of the second threshold does not allow viewing of
the 3d surface of the second threshold as a whole.

The situation is not better if one uses the "hydrody-
namical" parameters 0 = rc/p~ and 6 = p~~/p~ at a fixed
detuning because the domain of existence of the second
threshold is not compact yet but is defined by another
version of the bad-cavity condition:

for positive values of o and b. Hence, one cannot look
at the whole surface of the second threshold because the
domain of its existence is still unbounded.

In order to compactify the domain of existence of the
second threshold, let us note that the parameter r. is
larger than the parameters p~~ and p~ (the parameter 0.

is an upper bound on the sum 5+1 if the second threshold
is to exist).

Therefore, one can easily compactify the domain of
the existence of the second threshold by choosing as a
normalization this largest parameter r (or the parameter
cr)

In view of this, let us introduce new parameters:

(155)

(156)

In terms of these parameters the domain of the exis-
tence of the second threshold is the interior of the triangle
defined by the reformulated bad-cavity condition:

of the parameters F~ and F~~ is that they compactify the
domain in which the second threshold is defined.

We have plotted the 3d surface of the diff'erence Ar(P)
between the second threshold r2h' for the detuned laser
and the second threshold r&"0 for the resonantly tuned
laser as a function of two variables F~ and F~~ for the
following values of detuning: ~cu —e~/(r + p~) = ~b~ =
~el/(o + 1) =

The surface is always above the I'~I'll plane according
to the main statement about the influence of the detuning
on the second threshold which we proved in the previous
section.

In all figures the abscissa corresponds to F~ and the
ordinate corresponds to F~~. The surface is defined only
below the straight line where the sum of the abscissa and
of the ordinate is equal to one.

At small values of detuning ~b~ = 0.01 one does not see
(Figs. 2 and 3) any essential qualitative changes of the
difference Ar(6 ). The lowest values of the difference lie
in the region which is close to small values of I ~ = p~/v
and to large (i.e. , close to one) values of F~~

= p~~/K
According to the contour plot on Fig. 3, the maximal

values of the second threshold are close to the straight
lines F~ = 0 and F~ + F~~

= 1 at large (close to one)
values of I'

ll.
The qualitative changes become evident with increas-

ing detuning. At the large values of detuning ~b~ = 1.0,
and ~6~ = 3.0 (Figs. 4 and 5 and Figs. 6 and 7) the min-
imal values of the difference Ar(6 ) move along the ab-
cissa to the value of F~ = 1.0, being at the same time
near the zero value of F~~

= p~~~/r.
Thus, this approximate information based on 3D plots

shows that at high detunings the minimal values of the
second threshold are located at moderate relative values

I~+I (157)

and by the conditions of the positiveness of these param-
eters:

I'~ & 0, (158)

We note a further physical limit for the physics of the
two-level optical systems given by b & 2 which limits
I

ll
& 2I'g.

The exact expression for the second threshold written
in terms of F~, F~~ and 62 can be easily obtained by
the direct symbolic substitution on a computer of the
relations

(159)

(160)

into the exact expression derived in Sec. IIIB5. How-
ever, it is not worth repeating here the form of the exact
expression for the second threshold even if it is written
in terms of other variables. The resulting expression is
too cumbersome and does not carry new information.

The only but very important advantage of the choice

FIG. 2. The value of squared detuning 6 is equal to 0.01.
The difference Dr(b ) between the second threshold r2"' for
the detuned laser and the second threshold rz"0 for the res-
onantly tuned laser is shown as a function of two variables
1 ~ (the abscissa) and F~~ (the ordinate). The surface of
Dr(6 ) = r2"' —r2"e is determined above the triangle defined

by positive values of I"~ and I'~~ taken under the bad-cavity
condition I'~ + I'l~ ( 1. .
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N, = —1 —51'~ —7I' —3I' —26 + 21'~6 —2I' 6

+21's&6 —64 + 71'~64 —llI' 64 + 51's 64, (162)

D„=(-1+r~) r (1+2r + r', —36'

+21 &6'+ I ~~6'). (163)

At the same time, for the derivative of the second
threshold r2"' with respect to I'~~ at the border I'~~ = 0
one can write

g thr
= g(I'g, 6)'P4(I'~, 6),

r ii=o
(164)

where g(I'~, 62) is a function which is positive-definite in
sign and analytical under the bad-cavity condition, but
'P4 (I'~, 6 ) is the following polynomial of the fourth order
ln I ~.'

FIG. 7. The same as Fig. 3 but for 6 = 9.0.

where

S„(r,, 62) = »m r,'" =
~ll 0 Dpr

0, at ~ = 0 (or p~~
= I'~~ = 0) and at o = 3, and it is equal

exactly to 9. Since the value of the first threshold, ri"', is
equal identically to 1 when the detuning is zero, the ratio
r2"'/ri"' is equal to 9 at this set of parameter values.

It is natural to expect that at least at small values of
detuning b the minimum of the second threshold r "' is
still along the straight line I'~t = 0. Moreover, we will
show that a stronger statement holds: alt minima of the
second threshold r2"' lie On the straight line I'~~ =

p~t
= 0

independent of the detuning.
To show this, we need both to know the shape (the

profile) of the cross section between the second threshold
r2"' and the plane defined by the equality p~~

= I'~~ = 0,
and the sign of the derivative of the second threshold
r~~"" with respect to the variable I'~~ at the border of the
domain of existence of the second threshold r2""(I'~, I'~~)

defined by I
I~

——0.
It is clear that if the derivative of the second threshold

r~"'(I'~, I'~~) with respect to I'~~ taken at the minimum of
the profile of the second threshold at I'~~

——0 is positive,
then this minimum belonging to the profile of r2"' at
I'~~ = 0 is the true one. This follows, provided, of course,
that there are no local minima far away from the border
I'~~ = 0. Our verification of the interior of the second
threshold at chosen values of 6 has shown no such local
remote extrema, i.e. , has shown no zero absolute values of
the gradient inside the domain of existence of the second
threshold r'"'(I'~, I'~~ ).

The profile of the second threshold r2~"' in the plane
rI~ = 0 or, which ls the same, in the plane p~~

——0, is
given by the following expression:

P4(I'i, 6 ) = 1+41'~+ 61'~+ 41'i + I'~ —106
—SI ~b +12I' 6 +8I' 6 —2I' h +56
-j.2r~a'+ 6r' a'+ 4r~a' —3r~e'.

(165)

Thus, the sign and zeros of the whole derivative (164)
depend only on the polynomial P4(I'~, 6 ) of the fourth
order ln I ~.

Zeros of the polynomial 'P4(I'~, 6'2) define the minima
of the profile S~„(I'~,62) which will be the minima of
the whole second threshold rth, if the derivative (164) is
positive at this point.

Depending on the value of detuning 6, the derivative
(164) can be both negative and positive as a function of
I ~ on the physical interval of the values of I'~ between
—1 + 26/gl + 62 and 1.0. We denote the critical value
of I'~ where the derivative (164) becomes positive with
growth of I'~ as (I'~)„.

The criterion whether the minimum (I'~) .,„of the
second threshold is the true one is therefore the following
simple inequality:

(I'~); (166)

As shown in Table III, at small values of the detuning
6 the point (I'~)„does not exist at all, and the deriva-
tive (164) is strictly positive according to the sign of the
polynomial P4(I'~, 62). It is obvious that at these values
of detuning the minima of the profile S~,(I'~, 62) are the
true minima of the whole second threshold rz"', it is not
necessary to use the inequality (166).

The situation changes at higher values of detuning be-
cause there appears a zero of the derivative (164) lying on

the physical interval (—1 + 26/gl + 6~; 1.0). However,
using the values of (I'~)„, we see that the inequality
(166) holds (albeit to show this, one needs very high pre-
cision, for instance, at 62 = 100.02 the value of (I'~)
differs from the value of (I'~)„only in the ninth digit,
see the last two numbers in the last line of Table III).
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TABLE III. The minimal values of the second threshold rz"' and of the ratio r2"'/r', "' for various
detunings.

0.0001 = 0.01
0.01 = 0.1'
0.25 = 0.5
1.0 = ]..0
4.0 = 2.0
9.0 = 3.0
16.0 = 4.0
25.0 = 5.0
36.0 = 6.0
49.0 = 7.0
64.0 = 8.0
81.0 = 9.0
100.0 = 10.02

225.0 = 15.0
400.0 = 20.0
2500.0 = 50.0
10000.0 = 100.0
100000.0

9.0015000549
9.1505437176
12.997288299
25.756497690
76.898272096
161.94945584
280.97038731
433.98068092
620.98644226
841.98997559
1096.9925893
1385.9938937
1708.9950434
3833.9977863
6808.9987527
42509.010012
170009.01028
1700009.64199

( '"'/ '"')
9.00059999499
9.05994427491
10.3978306392
12.8782488454
15.3796544192
16.1949455844
16.5276698418
16.6915646508
16.7834173579
16.8397995113
16.8760451007
16.9023645520
16.9207430044
16.9645919753
16.9800467648
16.9968012098
16.9991998953
16.9999264206

(r ),.„
0.3333889
0.338905641
0.470310748
0.701373622
0.893177820
0.94836852
0.970033754
0.980534257
0.986371027
0.989936964
0.992270466
0.9938790803
0.9950341231
0.9977845457
0.99875214447
0.9998000549
0.99995000343
0.99999500003

(I'~).,

0.2753816
0.66817863
0.8899717
0.94766522
0.96980225
0.9804375
0.98632394
0.98991138
0.99225541
0.99386966
0.99502793
0.997783316
0.998751754
0.999800045
0.9999500028
0.999994997

Thus, at arbitrary detuning, the second threshold rt2"'
has minima lying in the plane defined by the relation

B. Saturation of the rninirna of the threshold ratio

Since the first threshold r&"' does not depend on the
parameters I'~ and I'~~ at all, the ratio rt2h"/rti"' has the
same minima as the second threshold re"' itself but other
values of them.

We know that the value of the second threshold is
bounded from below by 9.0. In view of this, it is very
interesting to note that the minima of the ratio rsvp"'/rtih'

have an evident saturation at the value of 17.0 with b2

going to infinity (Fig. 8):

(167)

The verification of this, based on our analytical exact
results, was done for higher values of the detuning 6 than
are shown in Table III and Fig. 8, and we have restricted
the presentation of the results on the saturation effect to
the most probable physical values.

The following warning is required here. Taking a
straightforward formal limit of the expression

just collapsed into a single point in the limit of infinite
62 and becomes unattainable for the symbolic treatment
by the computer program.

To show the saturation effect analytically, one should
solve the equation

—1+6I' + 8l + 3I' + 2b —20I'~b + 20I' 6

—2I' 6 + 36 —4I'~b —6I' 6 + 12I'

—5r', b' = O, (169)

and then substitute all four roots obtained for l ~ into
the expression for S&,(I'~, b' ).

Dividing the results of substitutions by (1 + b2), one
should try to get the asymptotic behavior of the resulting
expressions in the limit of 6 ~ oo. The result of one of

17"

E

16-

15-

Sp, (I"~,b2)

(1 + b~)
(168)

where S~,(I'&, b'2) is defined according to (161), MATHE-
MATIcA provides us with the limit value equal to 1.0 but
not to 17.0 as it should.

It is not so dificult to understand the reason by just
looking at Figs. 9—11. We see that in (168) we got the
maximum of the unphysical branch for S~,(I'~, b'2) while
the minimum of the physical branch of S&,(I'~, b ) has

FIG. 8. The eEect of the saturation of the minima of the
threshold ratio to the value of 17.0. The minima of the thresh-
old ratio (r~"'/r'i"'), are shown vs detuning b'.
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FIG. 9. The profile Si„(I'~,6 ) of the second threshold r'"'
in the plane 1

~~

——
p~~

——0 vs the normalized polarization re-
laxation rate I'~. The cross section Si„(I'~,6 ) of the second
threshold r "' contains the minima of the second threshold.
The value of the squared detuning 6 is equal to 0.01.

FIG. 11. The same as Fig. 10 but for 6 = 9.0.

'P4(r~, h'
) = 0. (170)

200

0.6 0.8

.00 )

FIG. 10. The same as Fig. 9 but for 6 = 1.0. The phys-
ical branch of S~,(I'~, 6' ) is plotted as a solid line while the
unphysical branch is a dashed line.

these limits (which is the only physical case) should be,
according to the results obtained, equal to 17.0.

Unfortunately, we failed to show this completely ana-
lytically, because of limitations of the computers at our
disposal. We hope that this will be shown symbolically
later, on a more effective combination of computer and
software.

In summary, we showed in this section that inde-
pendent of detuning the second threshold of the single-
mode unidirectional homogeneously broadened laser has
its Iilirlima when the ratio of relaxatiorl rates p~~/K is
equal to zero or, in other words, when the population
relaxation rate

p~~
is really negligible in comparison with

the cavity width z under the bad-cavity condition.
We also showed that the minimum of the ratio of two

thresholds, of the first (or lasing) threshold and of the
second threshold (threshold of exponential instability), is
limited (as a function of detuning) both from below and
from above on the interval between 9.0 (at zero detuning)
and 17.0 (at large detunings) (Fig. 8).

Such minima may be, in principle, attained in a proper
experimental setup by means of reducing the ratio I'I~ =
p~~/r to zero and adjusting (at given detuning) the values
of the ratio r~ = p~/K to the value given by the equation

Another interesting aspect of our analysis is that at
high detunings the domain of the existence of the sec-
ond threshold at p~~

= I'~~ = 0 becomes narrower and
narrower, converting into an almost zero-width region
near r~ = 1.0 (Figs. 9—11). While that domain has the
natural right limit at (r~)„= 1 due to the bad-cavity
condition, the left limit is given by the expression

(171)

It is evident that the left limit (r~)
&

becomes equal to the
right one (r~)„ in the limit of infinite detuning 6 ~ oo.
Thus, the domain ((r~)t, (r~)„), which contains the
true absolute minima (r~),.„of the second threshold,
becomes arbitrarily small at large detunings (Figs. 9—11).

X. SUMMARY OF THE RESULTS

We have treated fully analytically, at arbitrary physi-
cal values of parameters, the threshold functions for the
detuned single-mode homogeneously broadened unidirec-
tional laser, one of the most tutorial but still very phys-
ical models in laser physics.

As main results, we have obtained the following.

(i) It has been shown, by simple example, based on
general analytical expressions, that the neglect of an-
other possible branch for the second threshold, based on
the opinion that this branch gives negative values for the
threshold, was not consistent because that branch also
can provide one with positive second threshold values.
Nevertheless, the direct comparison of Chat branch with
the first threshold, for all physical values of the parame-
ters, shows that this branch is unphysical because it gives
values which are less than the values of the first thresh-
old.

(ii) We have proven that the physical branch of values
for the second laser threshold is always greater than the
values for the first threshold, i.e., there are no other phys-
ical restrictions on the parameter domain of the threshold
functions except for the well-known bad-cavity condition.
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(iii) It has been proven analytically, over the whole
physical region of parameters, that the second thresh-
old only increases with increasing of detuning. This is
now a rigorous mathematical statement for the dynami-
cal model under consideration.

(iv) It has been proven that the second threshold has
its minima at various values of detuning when the ratio
of the population relaxation rate to the cavity relaxation
rate goes to zero. The second threshold has no local
minima (at nonzero values of that ratio).

(v) It has been shown that the ratio of the second
threshold to the first (lasing) threshold has minima which
are bounded not only from below (by 9.0) but also from
above, by 17.0. This is a completely unexpected result-
to our knowledge, there was no hint before that those
ratios when minimized would be bounded from above.

(vi) We have shown that the threshold ratio is a mono-
tonically increasing function of detuning and, therefore,
there is the effect of the saturation of the minima of the
threshold ratio to the value of 17.0.

(vii) Based on the general expressions, we have ob-
tained a number of limiting and asymptotic expressions
for the second threshold and the initial pulsation fre-
quency. This has allowed us not only to improve ear-
lier approximate results which were obtained under more
extreme approximations than ours (and which were also
partially inconsistent) but also to separate in our discus-
sions the laser asymptotes from the maser asymptotes.
The latter allows us to distinguish parameter regions
where the second threshold may be accessible for lasers
and for masers.

(viii) It has been shown that the commonly used di-
mensionless normalization of the absolute value of detun-
ing can lead to ambiguous situations mixing the effect of
detuning with the extent of the "badness" of the cavity.
In such situations, in previous works, a few inconsistent
results have been obtained; we have shown how to im-
prove them.

(ix) We have rigorously shown that the order in which

double parameter limits are taken ("bad-cavity" limit
and large detuning limit) is crucial for obtaining the cor-
rect asymptotic results for threshold functions.

(x) We have managed to compactify the domain of the
existence of the second threshold by proper normaliza-
tion, and to satisfy the common desire to look at the
surface of the second threshold, by plotting it over a fi-
nite domain of the normalized relaxation rates. Quite a
number of subsidiary plots give a complete representa-
tion of the topology and properties of the surface of the
second threshold.

(xi) Trying to make clear the relations between several
representations for the dynamical systems for a single-
mode homogeneously broadened laser (which are still
scattered in laser literature), we have given a complete
and self-contained derivation of the laser versions of the
complex and real Lorenz models from the semiclassical
equations for such a laser. A clear hierarchy for those
standard laser models, based on our derivation, has been
presented.

ACKNOWLEDGMENTS

The authors are grateful to B. B. Govorkov, Jr. for
the discussions of the contents of Sec. II. The tireless
help of M. Bordin (ICTP, Trieste), A. Shiekh (ICTP, Tri-
este), and Susan Coghlan (CNLS, Los Alarnos) in run-
ning MATHEMATICA is acknowledged with pleasure. The
computer centers of the ICTP, Trieste, and of the CNI S,
Los Alamos, are thanked for granting the opportunity to
run large symbolic calculations on their computers. One
of the authors (A.A.B.) expresses his sincere thanks to
Professor A. Salam for the hospitahty in the International
Centre for Theoretical Physics (ICTP), Trieste, as well
as to Professor G. Denardo for his permanent support of
quantum-optics studies in the ICTP.

APPENDIX A: COEFFICIENTS OF THE BIQUADRATIC EQUATION AND THE SIGN
OF ITS DISCRIMINANT

The coefficients of Eq. (89) have the following explicit forms:

k = '6(1 +3o)( 6+1 —o), (A1)

p= 6(2+36+6 +26 —66 —6 6 +4cr+9bcr+26 o +46 o—766 o—86' 6 o+' 17bcr +'56 cr —86 cr

+966 o + 6 6 cr —4o + 3bo —46 o—66 cr —2cr + 66 o ' ), (A2)

q = bo(6+ 56+ 6 —46 —666 —26 6 —106 + 566 + 56 6 + 20o'+ 10bo + 6 o —2866' cr —86 6 cr

4g 6gp40- g2p4g + g4g 2 + yap~2 + g$2~2 2gp2~2 + 2g2p2~2

+86 o + 66 o + 12cr +4bo +466o —126 o +'2o +46 o + 26 cr ). (A3)

Since we use the bad-cavity condition (92), we consider all expressions in terms of parameters cr, 6, and e, i.e. , we
replace the parameter 6(e; cr) by its expression (32) through o and e.

After straightforward calculation the discriminant 'D of Eq. (89) can be presented in the form of a biquadratic
function of the normalized detuning e:

V=@ —4kq=Ae +Be +C) (A4)
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where the coefficients A, B, and C have the following, apart from the common factor of 1/(a + 1)4, form:

A = 1 —2b+ b +4cr —2bcr —2b o —2o + 10bo. + b o —12cr —6bo +9cr,
B = 2 —2b +120 +4bo —20b 0+220. +40bo. —48b 0 +80'

+96bo. —44b 0. —180 + 88b0 —14b 0. —200 + 28bo. —60. ,

C = 1+2b+b +80. +14bo. +6b 0 +280 +42b0. +15b 0'
+560 + 70b0 + 20b 0 + 700. + 70b04+ 15b 0 + 560 + 42b0

6b20.5 + 280.6 + 14b0.6 + b20.6 + 8~7 + 2b0 7 + 08

(A5)

(A6)

(A7)

To use explicitly the bad-cavity condition (92) we replace everywhere the parameter o by the parameter ( according
to (135). The latter parameter [48,49] is always positive under the bad-cavity condition:

(=o —b —1 ) 0.

The coefficient A turns out to be explicitly positive in terms of ( and b:

A

(~+ 1)4
= 16b + 16b +4b + 32b(+ 56b (+ 20b (+ 16( + 64b( + 37b ( + 24( + 30b( + 9( .

After this one can rewrite the expression for the discriminant D as a sum of two terms:

(A8)

(A9)

(A10)

where the quantity K2 is now explicitly positive in virtue of (A9):

, = 64b( (2 + () (1+b+ () (2 + b + () (2+ b+ 2() (4+ 3b + 3() .

Thus, we have shown that the discriminant of Eq. (89) is always positive under the bad-cavity condition.

(All)

APPENDIX B: INITIAL PULSATION FREQUENCY

The exact explicit analytical expression for the initial pulsation frequency Ao at the second threshold rt2h' has the
following form:

0 (B1)

where

Zi = —1 —b —o. —4bo+o —3bo +o +6 (—1+b —o —2bo+5o +bo —3o )

+(1 —o)(1+2b+ b + 2b —2b 6 + 6 —2b6' + b b+4cr+ 6bo'+2b o +.8h o + 4b6 o
—16b b o+4b o —2bb o —2b 6 cr+6o +6bo +b o +4b o +32b6 o —14b 6 cr —26 o

+10bb' cr +b b' o +4o +2bo. —8b mrs+ 28by o.s —12$ o —6bp os+ o —6b cr +9P o ) (B2)

l:2 = 2(1+ b —o). (B3)
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