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Theory of radiation forces and momenta for mobile atoms in light fields
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A theory for a bound system of charges interacting with electromagnetic fields is developed, with spe-

cial emphasis on the radiation-pressure effects imposed by the fields on the gross motion of the charges.
The theory is particularly simple and transparent for the case of two opposite charges of finite mass M in

the electric-dipole approximation. This enables a rigorous description to be given for the quantum elec-

trodynamics of the problem with the various interaction terms affecting the gross motion being easily

identified. Here, too, it becomes clear that, even in the dipole approximation, the conventional interac-

tion term should be supplemented by the so-called Rontgen term. Besides ensuring the consistency of
the theory for the overall (charges plus fields) system regarding conservation laws, the Rontgen term has

dynamical consequences. This is established by explicit calculations of the expectation values of the
mechanical momentum (MR) and the radiation pressure force (MR ) on a two-level atom in the dipole

approximation. Results of calculations are displayed for the case of a single light beam and for counter-

propagating beams. The feasibility of experimentally observing the transverse force is explored. Gen-

eralizations of the well-known friction force arising in one-dimensional optical molasses are given and

discussed.

PACS number(s): 42.50.Vk

I. INTRODUCTION

The advent of tunable lasers has led to the detection of
previously undetected phenomena in which the atomic
gross motion is the main ingredient [I]. A well-known
model for exploring the basic physics in this context in-
volves the interaction between laser light and a mobile
two-level atom. This simple model has been very useful
in providing insight into the radiation pressure force and
the corresponding momentum exchange between light
and matter in a number of physical situations —for exam-
ple, in atomic beam deflection and focusing [2], and for
elucidating the so-called Doppler mechanism in laser
cooling [3]. It is also useful for studying the collective
properties of laser-cooled trapped atoms and ions [4].

In a recent paper [5], a general theory was presented
dealing with an ensemble of an arbitrary number of
charges forming a bound system interacting with trans-
verse electromagnetic fields. One of the main features of
the results emerging from the theory was the need to dis-
tinguish between the canonical and mechanical momenta
of the gross motion of the ensemble and, in so doing, the
formalism automatically led to the prediction of addition-
al interaction terms involving a coupling of the fields to
the Rontgen current.

The purpose of the present paper is twofold. First, we
show that similar conclusions as regards the presence of
the Rontgen contribution are obtained when we consider
a system of two bound charges of finite total mass M.
This simplifies considerably the formalism needed for
effecting the division of the motion into an internal plus a
gross motion, which also involves application of a unitary
transformation on the corresponding Hamiltonian.
Secondly, we apply the formalism, including the addition-
al interaction, to the calculation of specific dynamical at-

tributes of the gross motion, namely the time evolution of
the expectation values of the mechanical momentum and
of the pressure force due to irradiation. The method is
the only canonical, and therefore rigorous, procedure
that allows for the introduction into the formalism of
velocity-dependent terms. As will be shown, this treat-
ment enables a number of interesting special cases to be
considered.

The plan of this paper is as follows. In Sec. II we con-
sider the system of two charges as a prototype atomic
system interacting with light. We follow the usual pro-
cedure leading from the conventional Lagrangian in the
Coulomb (radiation) gauge to the Hamiltonian, identify-
ing the canonical variables and corresponding momenta.
On the Hamiltonian we perform a unitary transformation
which has the advantage of facilitating the division be-
tween the center of mass and internal variables. The non-
relativistic Hamiltonian is then derived, which is valid in
the electric-dipole approximation, and in which gross
motion attributes are explicit. The additional interaction
term, in the dipole approximation, is pointed out and
shown to involve a coupling between the field and the
internal and gross motions of the atomic system. In Secs.
III and IV we apply the formalism including the new in-
teraction terms to explore the dynamics of a finite-mass
mobile electric dipole interacting with various forms of
light. In particular, calculations are given for a single
monochromatic beam (Sec. III) and counterpropagating
beams (Sec. IV). In all cases we show that the new in-
teraction is responsible for changes of conventional re-
sults. Furthermore, there are additional effects whose
main feature is the scattering of the system in directions
transverse to the light beam. Section V contains our
main conclusions and we comment further on the possi-
bility of experimentally observing the transverse force,
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one of the main manifestations of the Rontgen interac-
tion in the case of irradiation with a single beam.

II. THEORY

A. Canonical formalism

The theory of a mobile dipole is derivable from conven-
tional quantum electrodynamics as follows [6]. We con-
sider an electrically neutral system of two opposite
charges e1 and e2 of masses m1 and m2 in the presence of
electromagnetic fields. The conventional nonrelativistic
Lagrangian in the radiation gauge is given by

~ 2 ] ~
e1e2L= —,'m, q, + —,'m2q, + + f Jdr,

4~e, /q,
—q, /

where

X=J A +—,'co[A —c (V X A ) ]

with q, and q2 the particle position vectors and q, and q2
the corresponding velocities. The Coulomb effects have
been separated out, as accounted for by the static inter-
particle interaction, so there is no scalar potential. The
field variable A is the vector potential in the transverse
(radiation) gauge formally defined by the equations

m q =e (E(q )+q XB(q )), a=1,2 .

We seek to express the Hamiltonian in Eq. (10) in a mul-
tipolar form. Our ultimate aim, however, is to arrive at a
version of the Hamiltonian which is valid in the electric-
dipole approximation. We begin by defining a canonical
transformation characterized by the following generating
function:

S=e' =exp P(r) A (r)dr (12)

m1q, +m2q2R=
M

M=m1+m2 . (14)

Formally, the effect of the transformation is to give rise
to a new Hamiltonian H„,„,which is identical in appear-
ance to the old Hamiltonian H, except that the momen-
tum variables are primed. We have

where P is the polarization field relative to the center-of-
mass coordinate R,

1P(r)= g e (q —R) f dA5(r —R —A(q —R)), (13)
a=1,2 0

where R is given by

/=0 .

In Eq. (2) J(r) is the total current density

J(r) =eiq, 5(r —qi)+e2q25(r —q2) .

(3)

Ep pp

H = +[p', +e, A'(q, )]' [p,'+e, A'(q, )]'
trans

2711 2'711 1 2

II' B
4~e, /q,

—q, /

The canonical variables in this framework are q, , q2,
and A(r). The corresponding momenta are pi, p2, and
II (r),

In this framework we can show that the particle veloci-
ties are given by

p= =m q —e A(q), a=1,2,BL

Bq
m q =p'+e A(q). (16)

(6) The canonical momenta p and II are related to the
new ones p' and II' as follows:

The commutation relations are p' =e '
p e' =p +i[p, A), (17)

[p;,q ~ ]= iiri5 5, —

[II,(r), A (r')]= —ifi5;~(r —r'),
(7)

(8)

4me, (q, —q, ~

' eo po
(10)

It can be checked that the above formalism yields the
equations of motion as Maxwell's equations and
Newton's law with the Lorentz force. In particular, we
have for the latter

where 5; (r—r') is the transverse 5 function [7]. The cor-
responding Hamiltonian is

H=qi. pi+q2. p2+ f A .II dr L. —(9)

Using B=VX A, we obtain

H= [pi+ei A'(qi)]' [p,+e, A'(q, )]'
+

2&l 1 2m 2

(18)

p'=p +%V A, (19)

II' (r)=II (r) —P'(r), (20)

where V in Eq. (19) refers to differentiation with respect
to the coordinate q . In Eq. (18) we have introduced P
as the transverse part of the polarization vector given in
Eq. (13), having made use of the commutator in Eq. (8).
The gradient V A can be straightforwardly evaluated.
We have

RV A= —e A (q ) —f e (r)X(V'X A (r))dr .

The vector e is given by

(21)

The series in Eqs. (17) and (18) both terminate at the first
commutator on account of the form of A in Eq. (12). We
have
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0 (r)= g e& f di(A5
&

— [A, —1])(q&—R)
P=1,2

X5(r—R—A,(qp —R)) .

Note that different versions of V A and 0 were quot-
ed in Ref. [5], where the theory was designed to deal with
an arbitrary atomic system. In Ref. [5] there was need to
introduce equations of constraint in order to preserve the
number of degrees of freedom when the center of mass
was invoked as an independent dynamical variable. The
version of V A given here in Eqs. (21) and (22) is con-
venient for the two-particle case, the details of which are
found elsewhere [8]. The complete multipolar Hamiltoni-
an follows from Eq. (15) by direct use of Eqs. (19) and (20)
and the division of the motion into internal plus gross
motion can subsequently be carried out. However, since
our aim is to obtain the electric-dipole version of the
Hamiltonian, it is much more convenient to impose this
approximation at this stage.

II'~(r) =II'(r) —P'(r) . (31)

~trans
a=1,2

[p + —,'d X B(R)]
2m a

2

4~eoq

(32)

The next steps involve the division of the motion into
translational and internal motions. We define the
center-of-mass momentum P conjugate to the center-of-
mass position vector R, Eq. (14),

P=P1+P2 ~ (33)

and the internal momentum p conjugate to the internal
variable q by

Finally, substituting from Eqs. (30) and (31) in Eq. (15),
we obtain the transformed Hamiltonian in the following
form:

B. Decoupling of motions in dipole approximation

We introduce the internal variable q as follows:

q=q1

and we also set

e1= —e2=e .

Then clearly we have, using Eq. (14),

m2 m1
q, —R= q, q2

—R= — q .

(23)

(24)

(25)

m2P1 m1P2P= q=q1 —
q2 . (34)

We can then express P1 and p2 in terms of P and P as fol-
lows:

p = P+( —1) +'p, a=1,2 . (35)

Equation (35) enables the explicit change from the par-
ticle canonical variables q and p to internal variables
(q, p) and gross motion variables (R, P). That the new
pairs are independent canonical variables can easily be
checked. We have

The electric-dipole approximation corresponds to re-
taining the leading terms in the expansions of the 6 func-
tions appearing in the polarization vectors P and B in
powers of q

—R. It is convenient to continue to use the
same symbols for the electric-dipole version of various
quantities. We have from Eq. (13) after making use of
Eqs. (23)—(25),

[P, ,R ]= i fi5;~, . — (36)

(37)[p;,q ]= iA5;—

(38)

which follow by direct use of the commutator
(26)P= —d6(r —R),

(39)[p „qp ]= i%5 p5,
—

where d is the electric-dipole moment vector of the sys-
tern The relationships in Eqs. (36), (37), (38), and (39) ensure

that the new variables conform with the requirements for
independent sets representing two independent motions
in the absence of coupling. Substituting from Eq. (35) in
Eq. (32), we get

(27)d= —g e (q —R)= —eq .
a=1,2

[(P/M )m + (
—1) + 'p+ —'d XB(R)]

~trans 2m0 = —
—,'d5(r —R), a=1,2 . (28) a=1,2

Similarly, the dipole approximation version of 0 is ob-
tained from Eq. (22) after some algebra using Eqs.
(23)—(25) in the simple form

Substituting in Eq. (21), we have

fiV A= —e A (q )+—,'dXB(R) . (29)

e' rl'r — r ' 82r
47TEop ~o Po

p' =p —e A (q )+—,'dXB(R), (30)

Hence we can write for the transformed momenta, Eqs.
(19) and (20),

On expanding the squares we find that the sum in the first
term of Eq. (40) simplifies considerably, and we obtain
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2 2 2P p e

p 4&6 q
+—,

' J + d +—d II (R)+ (P dXB(R)+dXB(R).P)
eo go eo 2M

+ dX 8(R) 1+ I P (r) dr+(magnetic-dipole terms),
8p 2eo

(41)

where p is the reduced mass

m im2
(42)

tions is discussed in detail in Ref. [5]. In the radiation
gauge the relationship between the vector fields E and
II is given by Eq. (6), so that the equal-time commuta-
tion relation, Eq. (8), can be written at once as follows:

The magnetic-dipole terms arise from the product be-
tween p and d XB and, when explicitly written, are seen
to lead to the usual form as a purely internal interaction
that is negligible in comparison with the electric-dipole
interaction [9].

The result given in Eq. (41) is the nonrelativistic Ham-
iltonian for a system of bound charges in interaction with
the transverse radiation field. In this Hamiltonian the
internal motion of the charge system is clearly dis-
tinguished from the gross motion. It is seen that the
zero-order Hamiltonians of the three subsystems (gross
motion, internal motion, and fields) are exactly separated
off and given by the first three terms of Eq. (41). The rest
of the terms represent the interaction in which the three
subsystems are coupled. The fourth and fifth terms con-
stitute the leading interaction and will therefore be re-
tained. The sixth term is a diamagnetic-type energy
which is relatively small. The term involving the integral
of the square of the polarization is a self-energy which is
known to contribute to the Lamb shift and may be ab-
sorbed in any renormalized energies pertaining to the
internal motion.

The effective Hamiltonian Hd is defined as the version
of H„,„, in the electric-dipole approximation and restrict-
ed to the following truncated form:

eo[E; (r), AJ (r')] =iiri5; (r —r') . (46)

Equation (43) is the starting point for the investigation of
gross motion effects. The interesting feature is the ap-
pearance of the P-dependent terms, which we refer to as
Rontgen-type interaction terms.

C. Mechanical momentum and pressure force

m q =p + —,'dXB(R) . (48)

The form of the Hamiltonian in Eq. (41) suggests that
an additional vector field which is proportional to dXB
plays the role of an electromagnetic vector potential
modifying the kinetic-energy term of the Hamiltonian
pertaining to the gross motion in a manner that is analo-
gous to the case of a single charge in an A field. There is
therefore a need to distinguish between the canonical and
the mechanical momenta of the gross motion.

From Eq. (30) we can write

p'+e A (q )=p + —,'dXB(R) .

The left-hand side is precisely m q associated with the
transformed Hamiltonian and given by Eq. (16). Thus we
obtain

p2
Hd= +H, +Hf —d E (R)

2M

Introducing a sum over a in each term, we get

m q = g p +dXB(R). (49)

+ (P dXB(R)+dXB(R) P),1

2M
(43)

where H, is the hydrogenlike Hamiltonian describing the
internal motion while Hf is the field Hamiltonian. In
quantized form the field Hamiltonian becomes

a=1,2 a=1,2

On making use of Eq. (14) we find at once that we can
identify the left-hand side of Eq. (49) with MR and the
first term on the right-hand side with P. Thus we can
write

(44)
MR=P+dXB(R) . (50)

A (r)=g g e„
26pTcokg

corresponding to quantized A given by
' 1/2

Qkge +H. C. (45)

Equation (50) establishes the difference between the
canonical momentum P and the mechanical momentum
MR. The result also follows as a Heisenberg operator
equation based on the Hamiltonian in Eq. (43). We have,
using Eq. (36),

where ~ is a quantization volume and ek& is a unit polar-
ization vector. Note that in Eq. (43) the electric-dipole
interaction is written in the conventional form—d E (R), i.e., in terms of E rather than II, as it
correctly appears in Eq. (41). The importance of distin-
guishing between the roles of the electric field vector and
the true field canonical momentum in various formula-

~ i P+d XB(R)
(51)

By analogy with the case of a single charge we expect
that the relevant dynamical quantity should be the
mechanical momentum MR rather than the canonical
one P. Once this important distinction is established the
radiation pressure force on the dipole follows from Eq.
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(50) as follows:

F= (MR)= + (dXB) .
dt dt dt

(52)
(58)

sociate the usual annihilation and creation operators ak
and a&. The atomic operators are defined by [11]

m.t =
/
e ) (g /, m-= fg ) ( e [

The force also follows from Eq. (51) as a Heisenberg
operator equation in the form

such that the anticommutator holds

(59)
MR= [H—~, (P+d X8)]

=V(d.E(R))+ (d X8),
dt

(53)

The Hamiltonian of this system corresponding to Eq. (43)
can now be written as a Heisenberg operator

where T refers to differentiation with respect to the com-
ponents of R and we have explicitly evaluated the first
commutator (i/A)[ H&, P]= V( dE) but left the second
commutator as a time derivative.

The result in Eq. (53) is consistent with a simple deriva-
tion [10]based on the Lorentz force expression [Eq. (11)],

Hg = +Amp~ m. +ficokakak +Hi+Hi, ,

where

H, (R, t ) = —d.Ei(R, t ),
H„(R,t)= —j(dx[kxE ]) P1

2Mcok

(60)

(61)

F= g e (E(q )+q XB(q )) .
a=1,2

(54) +P (dx[kxE'])] (62)

In the dipole approximation and making use of Eqs. (23),
(24), and (27) we have by Taylor expansion

e E(q )=(d V)E
a=1,2

=V(d E)—dXVXE

with E givenby

E'(R, t)= —A'(R, t)
1/2

Acok—l
2Epv

(t) [k R(t] (63)

=V(d E)+dX
Bt

Similarly, we can write

pe q XB(q )= XB .Bd
Bt

(55)

(56)

We are interested in the evaluation of the expectation
value of the mechanical momentum (MR) and of the
force (MR) as functions of time and we restrict treat-
ment further to the rotating wave approximation. Con-
sider first the expectation value of the momentum defined
by

Thus we obtain using Eqs. (55) and (56), (MR(t)) = '„(q~e' " [H, R(t)]e ' ~1P), (64)

F=V(d E)+ (dXB) .
dt

(57)

III. ATOMIC SYSTEMS IN SINGLE BEAMS

A. Derivation of ( MR ) and (F )

We consider a mobile atom with its internal motion
subject to the two-level approximation involving only a
ground state ~g) and an excited state ~e). Both states
are eigenstates of R, and are separated by an energy %coo.

The system is taken to be in interaction with a single laser
mode of the transverse radiation field of wave vector k,
polarization e, and frequency cok. With this mode we as-

We have therefore established that both dynamical at-
tributes, namely the gross momentum and the corre-
sponding pressure force, receive contributions which are
directly attributable to the inclusion of the Rontgen term.
The complete Hamiltonian in the dipole approximation
(including the Rontgen term) is essential for studying the
time evolution of the system. In the next sections we car-
ry out calculations that explore the implications of the
formalism developed so far for the dynamics of specific
physical situations involving interaction of various forms
of light with mobile systems of charges.

where l(] is a general state of the overall system in the ab-
sence of the coupling. The commutator in Eq. (64) is ob-
tained straightforwardly as follows:

r

[HR()] APdX[kXE]M (65)

Thus we have from Eq. (64)

(
~, Hr Ill dX[k'XE ] 'Hr'Ill

)
MR)= e " P+ -e

~k

p + ci X k XE
o

dt d).

The procedure requires first calculations of the commuta-

(66)
The next steps require use of the standard expansion of

the exponential operators and collecting terms. To lead-
ing order and ignoring all counter rotating terms, we
have

(MR(t) ) =MR(0)
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tor in Eq (67) using Eq. (60), keeping terms up to order
1/M, then substituting the appropriate time dependence
of the operators R(t), a(t), m.(t), etc. We obtain after
much algebra the following result:

&MR(t) & =MV+fik I Gkk+ Uk@]

X[—n, n—k(2n, —1)]I(t), (68)

Equation (68) is one of the main results of this paper. It
gives the mechanical momentum vector that an atom, of
excitation frequency cop, will acquire at time t as a result
of interaction with the laser mode of frequency cok, wave
vector k and polarization e.

Next, consider the derivation of the corresponding
pressure force. This is defined by

where k is a unit vector in the direction of k and V is the
initial velocity

V=R(0) .

The functions Gk and Uk are given by

(F-„,)=(MR)=( MR) .

The analog of Eq. (64) is

&MR& = —
& /le " [Hd, [Hd, R(t)])e

Q2

(82)

COp

Gk — gk(gk+Sk(V) },
COp

COp

U„= 1 — f„{gk+T„(V))
COk

with gk and fk the velocity-independent factors
1/2

COk

gk =(d e)
Reps.

1/2

(70)

(71)

(72)

We may therefore follow an analogous procedure to the
one that led to Eq. (68). We obtain

& Fz, &
=A'k [ Gk k+ Uz e J [ n, —nk—( 2n, —1 ) ]

(84}

Direct comparison with Eq. (68) reveals that the follow-
ing simple relationship holds:

COk

fk =«.&)
A'ep~

(73)
&Fq, &= &MR(t)& . (85)

while Sk and Tk depend on the velocity and are given by

k V
COk

+kft e V +
COk COp

(74)

k V
Tk = —

gk
COk

+kfk
COk

k-V
COg COp

(75)

[1—cosh, t ],1

Q2

where 6 is given by

6—CO CO k'V .0 k

We have also assumed that

&gl '(0)l@&=0=&Pl (0)lg& .

(76)

(77)

(78)

The symbols n and n, are the initial occupation proba-
bilities for the ground state and the excited state, respec-
tively,

,=
& pl (0) t(0)

I @&, ,= & pl t(0) (0)
l @&,

such that

(79)

n, +n =1. (80)

The time dependence in Eq. (68) is entirely contained
in the function I(t) which is defined by

y~ sinb, t
0

Equation (84) generalizes previous results of the pressure
force and is the second main result of this paper.

The results can now be discussed for a number of spe-
cial cases involving irradiation with single and counter-
propagating beams.

B. Velocity-independent terms

1. The large-t limit

Consider first the case in which we ignore the velocity-
dependent terms. This corresponds to setting V, Sk, and
Tk to zero in Eqs. (68), (74), (75), and (77). We then see
from Eq. (68) that there are two components to the atom-
ic momentum acquired by the interaction with radiation,
instead of the single conventional component in the
direction of k. There are in fact two new contributions,
one modifies the conventional result in the direction of k
and the second is in a direction transverse to k. Both
modifications are direct consequences of the inclusion of
the Rontgen-type interaction term in the calculations.

The time dependence of &MR& is determined by I(t),
Eq. (76). The oscillations at large t average to zero leav-
ing only the time-independent part as the gross momen-
tum change due to interaction with light. It can be
checked on assuming that n, =0 that the t-independent
part is identical to that obtained using energy arguments
[12].

Consider next the force as given by Eq (84) on ignoring
the velocity-dependent terms. We assume that in the
large-t limit we can write

Finally, nk is the mean photon number

(81)

sinhpt
lim

~p I'+602 ' (86}
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where

and 1 is the linewidth of the atomic transition. Thus we
have for the velocity-independent pressure force on the
atom

Gkk+ Uk@
& F-, , ) =n„l.ek r'+a,' ~, t —moo

The result in Eq. (88) can now be compared with conven-
tional results [13]. First, we note that, just as in the case
of the momentum, there are two components to the pres-
sure force acquired by interaction with radiation. There
are two new contributions which are directly attributable
to the inclusion of the Rontgen terms, one modifies the
old result in the direction of k and the second is in a
direction that is transverse to k. It is easy to check that
at exact resonance the new contributions vanish.

From the above formalism we can proceed to derive
rate-equation results applicable in the case of broadband
incident light in which nk varies slowly with ~k across a
distribution of transition frequencies. A discussion of
this special case beginning with the less general result
analogous to Eq. (88) is given by Al-Hilfy and Loudon
[14].

2. Transverse oQ resonance con-tributions

Thus e occurs twice, and any tendency to average to zero
can be overcome for suitable vector orientations. This
contribution will be referred to as the transverse force to
distinguish it from the longitudinal contribution
represented by the term in the direction of k in the force
F given by (88).

Consider the example of the light beam that propa-
gates along the z axis with linear polarization parallel to
the x axis. In this case we have

(d k)(d e)e=(d d„0,0), (89)

and there is a nonvanishing transverse force whenever the
transition dipole moment d has nonzero components in
both the x and the z directions. The sign of the force
clearly depends on the signs of these components. There
are, however, quite stringent requirements on the elec-
tronic initial and final states that must be satisfied if the
transverse force is not to vanish. It is, for example, easy
to see that the force is zero for an isotropic atom, where
the dipole moment, e.g. , for an s —+p transition, can al-
ways be chosen parallel to the polarization e of the radia-

The above discussion has established that in ofF'-

resonance conditions and with velocity-dependent terms
ignored, there are contributions to both the momentum
and the pressure force that are in the direction of e. At
first sight this looks improbable since one expects that
any component in the direction of the polarization should
average to zero. However, it is seen with the use of Eqs.
(71), (72), (73), and (88) that this part of the force F is
proportional to

(d k)(d e)e .

tion field.
The transverse force does not vanish, however, for

electronic states that have an imposed spatial anisotropy,
as, for example, in a beam of appropriately oriented mol-
ecules. The required anisotropy can also be achieved, at
least in principle, for a double resonance experiment with
an atomic beam in which atoms are first excited to a p
state and selectively filtered so as to remove all except
one of the degenerate orientations; if the filtered atomic
beam now encounters an appropriately polarized light
beam, it experiences a nonzero transverse force.

It is seen from Eqs. (71) and (88) that the transverse
force is directly proportional to the detuning, so that
both the magnitude and sign depend on the magnitude
and sign of Ao. However, the force F in Eq. (88) is also
inversely proportional to 1" +60, so that the transverse
force takes its maximum value for a detuning of order I".
By contrast, the longitudinal force takes its maximum
value for zero detuning, when it is larger than the max-
imum value of the transverse force by a factor of coo/I .
The transverse force thus has a relatively modest size, in
addition to the rather carefully designed experiment that
is needed to be able to observe it in principle. Neverthe-
less, the existence of the transverse force is clearly estab-
lished by our calculations, and its experimental
verification will no doubt occur as measurement tech-
niques continue to develop.

C. Velocity-dependent contributions

Besides the initial mechanical momentum MV appear-
ing in Eq. (68) the dependence of the results on the initial
velocity V is contained in the functions Sk and Tk as
given explicitly by Eqs. (74) and (75). There are further
velocity terms entering through the dependence in Eq.
(68) on b, as contained in I(t) and explicitly in Eq. (84).
As expected, the magnitudes of the velocity-dependent
efFects are largely determined by the angular orientation
of the particle motion relative to the beam propagation
and light polarization. This clearly means that in an en-
semble of such a system, atoms moving in difFerent direc-
tions relative to a fixed beam configuration sample
different velocity-dependent contributions. However, for
a fixed atomic beam the presence of the velocity-
dependent terms can, in principle, lead to additional
efFects whose importance increases with velocity. They
are prominent in the particular arrangements in which
the velocity-independent terms are electively cancelled
out as we discuss next for the case of counterpropagating
light beams.

IV. COUNTERPRQPAGATING BEAMS

In principle, the atomic system can be subject to irradi-
ation with an arbitrary configuration of laser beams. We
continue to exclude the high-field regime and assume that
the system is amenable to analysis in terms of perturba-
tion theory as applicable to the single-beam case. Then
the e6'ects of irradiation by a complex configuration of
light beams can be analyzed using the superposition prin-
ciple. The case involving two beams of light propagating
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&F,.„&=&F-„-,&+&F -, -,, &, (90)

where the first term arises from interaction with the beam
of frequency uk and polarization e propagating in the
direction k, and the second from that with polarization
vector e' and frequency cok. propagating in the direction
of —k.

Substituting from Eq. (84), we obtain

in opposite directions is one of the most widely discussed
configurations in the field of gross-motion dynamics. An
atom situated between the sources experiences effects
arising from both as simply the sum of their individual
effects. This configuration is the basis of the effect known
as one-dimensional optical molasses leading to laser cool-
ing [15].

Consider for convenience only the force arising from
interaction of the atomic system discussed here with two
such linearly polarized counterpropagating beams. The
beams normally have the same frequency cok, but their
directions of propagation are taken as k and —k, and the
corresponding linear polarization vectors may either be
the same for both, i.e., e, or in opposite directions, i.e., e
and —e. The general case of interest may involve beams
having different frequencies and general polarization vec-
tors. We can then write the average force as the follow-
ing sum:

where

Gk
F„=haik I r'+(a, —k.v)'

G k,r'+(a,'+k'. v)'

(97)

Uk@ U k.e'
F,=Wkr, , +r'+(a, —k v)' r'+(a;+k' v)'

(98)

Equation (96) has a number of interesting special cases
which we consider next.

A. Optical molasses

The simplest case is when the beams have the same fre-
quency cok = amok. , (i.e., b,o

=b,o) and the same polarizations
e=e. This is the configuration normally considered,
leading to optical molasses.

Furthermore, we consider the limit in which either the
velocity is small in magnitude or its orientation is such
that k-V«h, . This limit corresponds to the following
expressions for F& and F,:

(F,o„i&=6k [Gkk+ Uke]
(coo/cok ) 2(k V)gkhoF„=24k I
I 2+F2 I 2+g2 kgk (99)

sink't+[—G kk+U kg]

X( n, —n—k [2n, —1]), (91)

aIld

F,= —haik I
(25O/cok ) 2(k V)bogk fk

+Tk k e, (100)
I 2++2 I 2++2

where for convenience we set nk =nk. The functions
6', G k, and U k. are defined by

b'=co —cok +k'.V=A'+k'. V, (92)

COp

G —k' gk'(gk' ~k'(V)) ~

Q)k~
(93)

U k. = — 1—COp

fk.(gk. —Tk (V)), (94)

where we have made use of the identities

g —k' +gk

S k
— Sk. ,

f-k = —fk

T—k' +k'
(95)

In the large-t limit the time dependence in Eq. (91) can be
handled in an analogous manner to that in Eq. (88). ~e
obtain, from Eq. (91), in the large-t limit, a result which
we can rearrange as follows: (1+6,o/cok ) 2(k V)gkb. oF =2WkI —S g kr'+(k. v)' r'+(k v)' (101)

where we have retained only terms up to those that are
linear in the velocity in the expansion of the denomina-
tors in powers of k V/Ap.

It can now be easily seen that the first term in Eq. (99)
corresponds to the well-known friction force in one-
dimensional optical molasses [15]. Clearly, with V as-
sumed to be in an arbitrary direction we have here a
theory that yields a generalized friction force. Moreover,
we have additional terms that account for the velocity
orientational dependence of the force in the direction of
propagation k. For velocities almost perpendicular to
the propagation direction, the friction force is dominated
by the last term in Eq. (99). There are also new terms
arising in the direction of e which completely dominate
the total force when the dipole is parallel to the propaga-
tion direction. We comment further on these results in
the final section.

The opposite regime hp «k.V in the optical molasses
configuration considered above corresponds to the fol-
lowing expressions for F& and F,:

(F„„,& =
I
—n, nk[2n, —1]]—(Fk+F,), (96) alld
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(26O/~k)
F,= —A'kI

I +(k V)

2(k V)b,ogkfk ++kI" +(k V)

(102)

The above expressions are applicable at high velocities,
corresponding, for example, to the early stages of laser
cooling.

B. Optical molasses for opposite polarizations

It is easy to check that on reversing the signs of both e
and k both fk and gk change sign. The corresponding
functions 6 k and U k, however, will have the same
form as Gk and Uk. In this case we obtain the analogs of
Eqs. (99) and (100),

( 1 +Ao/co/ )(k'V )g/ EQ
Fk =44k 1

Z 22(+2++2)2
(103)

and

4b, o(k V)g„f„
F,= —AkI

cok(I +b,o)
(104)

The above result, Eq. (103), shows that it is this
configuration that gives rise to the usual friction force at
low velocities. In addition, there is a new friction force,
Eq. (104), in the transverse direction.

V. COMMENTS AND CONCLUSIONS

The primary concern in this paper has been the gross-
motion effects arising in the near-resonance interaction of
a two-level system with electromagnetic fields. A simple
formalism was developed in Sec. II for a neutral two-
particle system as a prototype atomic dipole in the pres-
ence of electromagnetic fields. This formalism was shown
to lead transparently to the appropriate quantum electro-
dynamic description of the system, especially for the pur-
pose of investigating the gross-motion effects. The focus
of the results is on the Rontgen-type additional terms as
shown in Eq. (43). The subsequent calculations are of in-
terest, especially as we have shown in a previous paper
[5], because the Rontgen-type effects are important for
correctly accounting for the energy-momentum proper-
ties of the whole system. It then seems natural to investi-
gate their dynamical consequences in possible experimen-
tal setups.

The first task has involved evaluations of the expecta-
tion values of the mechanical momentum and of the pres-
sure force appropriate for the two-level atom interacting
with a single monochromatic beam of light. The results
as given by Eqs. (68) and (84) are general as far as the
various parameters of the system are concerned; they are
applicable to the case of arbitrary velocity directions and
arbitrary dipole orientations. They are therefore in a
convenient form for further applications, for example, for

ensemble averages involving a collection of such atoms
moving in all possible directions and whose dipoles have
all possible orientations.

One of the conclusions arising from our results is that
the momentum changes and pressure forces due to the ir-
radiation are not confined to the direction of light beam
propagation. Components in transverse directions exist,
in general, which have velocity-dependent as well as
velocity-independent parts, as can be seen by inspecting
the expression Uk of Eq. (71). The velocity-independent
parts are directly proportional to the detuning Ao defined
as the difference between the atomic excitation frequency
coo and the frequency of light uk. Such velocity-
independent terms vanish, therefore, at exact resonance
for which Do=0. Nevertheless, the presence of such
terms away from resonance is a prediction of the theory
which stems directly from the inclusion of the Rontgen-
type interaction terms in the formalism and which in turn
arise from the requirement of energy-momentum invari-
ance of the whole (atom-radiation) system. The velocity-
dependent terms arising in the single-light-beam case are
smaller in magnitude than the velocity-independent ones.
Note that a residual transverse velocity-dependent contri-
bution exists even at exact resonance. However, in the
context of an experiment of the type envisaged here (see
Sec. III B 1), the velocity-dependent terms are expected to
be negligible, except, perhaps, at high velocities.

By contrast, velocity-dependent effects provide the
principal mechanism for modifying atomic gross motion
in the case of counterpropagating beams, which consti-
tute the second main application of the formalism in this
paper. We have argued that in the perturbative regime,
the results for an arrangement involving two counterpro-
pagating beams acting simultaneously on a two-level
atom are obtainable simply by adding effects from indivi-
dual beams. The general results are given by Eqs.
(96)—(98). For two identical counterpropagating beams
the velocity-independent effects arising from the single-
beam arrangement are effectively made to cancel out,
leaving only velocity-dependent terms. Of these, the
leading terms are attributable to the Doppler effect and
the corresponding force, conventionally known as the
friction force at low velocities, is directed along the com-
mon axis defined by the propagation vector of one of the
beams. The results for this case too are obtained as gen-
eralized results in the sense that they are applicable to ar-
bitrary velocities and dipole orientations. There are also
additional terms arising from the corresponding trans-
verse effects in the single-beam arrangement and whose
inAuence is important when the velocities are high.

Finally, we focus attention on the main consequence of
the Rontgen interaction which is manifest in the single-
beam case, namely the existence of a transverse off-
resonance contribution to the pressure force. We also
comment on its possible experimental observation. We
have seen that this transverse force, in principle, exists
for electronic states that exhibit spatial anisotropy, as for
instance in a beam of appropriately oriented molecules
[16]. The required anisotropy can also be achieved, at
least in principle, for a double resonance experiment in-
volving, for example, s —+p transition in Rydberg atoms
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[17],which are first excited to a p state and then selective-
ly filtered so as to remove all except one of the degenerate
orientations. If the filtered atomic beam now encounters
an appropriately polarized beam of light, it experiences a
nonzero transverse force. It is of considerable interest to
see if such a picture can be realized in future experiments.

Note added in proof. Recent work by Wilkens revealed
the presence o' spurious velocity-dependent terms in the
calculated spontaneous emission rate of moving atoms if
only the conventional —d E (R) is used [18]. Wilkens
subsequently proved (in agreement with our work) that

such nonphysical e6ects vanish only if the Rontgen in-
teraction is included [19]. We would like to thank Dr.
Wilkens for drawing our attention to this point.
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