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Two-photon absorption and nonclassical states of light
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We investigate the dynamical evolution of nonclassical states of light undergoing a two-photon ab-
sorption process. We consider two distinct cases of initial states, a squeezed coherent state and an eigen-
state of the two-photon annihilation operator (a superposition of macroscopically distinct coherent
states). We analyze the fluctuations in the photon-number operator and in the quadrature components
of the field. Whereas one-photon linear damping rapidly destroys quantum features such as squeezing,
we demonstrate that substantial coherence is retained when such light interacts with a two-photon-
absorbing reservoir. This surviving coherence is responsible for the preservation of squeezing in the
steady state despite the effect of dissipation. We relate the origin of squeezing of initially unsqueezed
light interacting with two-photon absorbers with the squeezing generated by simple superposition states
of light.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

Quantum features of light are usually very sensitive to
dissipation. Squeezing, oscillations in the photon-number
distribution, and interference effects are dramatically
reduce when the physical system is coupled to a macro-
scopic environment [1]. Yet we know of methods to pro-
duce squeezed light through a two-photon absorption
mechanism [2]. How is it that nonlinear damping, far
from removing quantum features, actually creates them?

In this paper we analyze the effects of two-photon ab-
sorption. Because of the two-photon nature of the pro-
cess, all the even-photon-number state components cas-
cade down to the vacuum and the odd numbers to the
one-photon state. Remarkably, the photon distribution
during its decay becomes narrower than the Poisson dis-
tribution, revealing a specific quantum feature of the field
generated by the damping mechanism. One might expect
this to be the end of the rnatter, with a final state which is
a statistical mixture of these two states ~0) and ~1),
characteristic of equilibrium. But the most striking result
is that this is not the case at all. As shown by Simaan
and Loudon [3], there is an additional constant of motion
leading to a nonvanishing degree of coherence between
the two relevant states. It is precisely the existence of
this coherence, preserved by the damping process, which
is responsible for squeezing, and as we will show, this
squeezing is identical to that described by Wodkiewicz
et al. [4] in superpositions of quantum field states.

II. THE MODEL

Ao=iiicod a+8+,
Ht =iris', (it f'+a f' ),
H~ =figcod;,

(3)

(4)

The boson operators 8,& and the two-level atom annihi-
lation and creation operators &,&+ satisfy the canoni-
cal commutation and anticommutation relations, respec-
tively. We have assumed exact two-photon resonance be-
tween the atoms and the field. The atom-field density
operator y satisfies the Liouville equation of motion:

iR = [A, (t),j(t)], (6)

where p;(0) is the thermal-equilibrium density operator
for the ith atom. Using standard Born-Markov tech-
niques [6], we obtain the following master equation for
the radiation field:

where the operators are expressed in the interaction pic-
ture. We also assume that at the initial time the photon
field and the atomic system are decoupled:

y(0) =p(0)P„(0),
p„(0)= /p;(0),

We consider a model of two-photon absorption by a
reservoir of two-level atoms from a single mode of the
electromagnetic field. We follow the treatment of Tornau
and Bach [5]. The reservoir consists of an ensemble of in-
dependent two-level atoms and is characterized by the
operators f' and f' . The total Hamiltonian can be writ-
ten as

where

( [g2~ gt2]+ [g2 ~t2] )

and

%2p=a2([it p, it ]+[a,pa ]) .

(10)

1050-2947/93/48(2)/1582(12)/$06. 00 1582 1993 The American Physical Society



48 TWO-PHOTON ABSORPTION AND NONCLASSICAL STATES OF LIGHT 1583

""=-2., &etc &,
at

(12)

The two Liouville operators X,p and X2P describe, re-
spectively, the absorption and the emission parts of the
two-photon damping process. In this paper we consider
only the absorption part, i.e., we suppose the reservoir is
at zero temperature (F2=0). We may show then easily
from (9) that

III. GENERAL SOLUTION
OF THE MASTER EQUATION

We solve the master equation (9) at zero temperature
with v2 =0 using the generating-function approach
developed by Simaan and Loudon [3]. We calculate the
matrix elements of the field density operator between
Fock states (n

~
and n +p) (I2=0, 1,2, . . . ) and define a

normalized time ~=2m]t. It is also convenient to define
transformed matrix elements as follows:

a(a u&
&

t2 2)
at

(13)
(14)

We see from these two equations that the rate of change
of each moment of the field operator depends on the next
normally ordered higher moment, leading to an infinite
set of coupled equations. This makes the evolution high-
ly dependent on the statistical properties of the field.
Several authors have presented analytical solutions to
this problem using different techniques such as Laplace
transform [7], density-matrix approach [8], stochastic
Langevin equation [9], and more extensively a
generating-function method [10]. Explicit calculations
have been carried out for coherent and thermal fields.
They have shown that the field loses its classical features
through two-photon absorption. Obviously, a nonlinear
absorber removes preferentially the large amplitude Auc-
tuations and reduces the amplitude noise of the field. The
field second-order coherence falls below unity and the
fluctuations in the quadratures below the vacuum level
for appropriate interaction times. It is the purpose of
this paper to provide a transparent physical explanation
of these effects, and to show how these results are
modified when the initial state of the field is already non-
classical, for example, one prepared as a squeezed
coherent field or as a macroscopic superposition of two
coherent states out of phase. These nonclassical states
display initially reduced Auctuations. We show the com-
petition between the squeezing present initially and the
squeezing efect of the two-photon absorption process.
We may regard this as the first step in understanding the
stability of nonclassical field states such as squeezed light
and Schrodinger-cat-like states in an environment in
which two-photon absorption is the dominant loss mech-
anism. For example, in a semiconductor whose band gap
is substantially greater than the energy of a single photon
such effects may be of significance. Indeed, quantum well
structures of this kind have been proposed as sources of
squeezed light through their large parametric susceptibil-
ities. We will discuss elsewhere the combined effect of
the parametric coupling and two-photon losses within a
single system as a possible scheme to produce eigenstates
of the two-photon annihilation operator. The paper is or-
ganized as follows: in Sec. III we briefly review the solu-
tion given by Simaan and Loudon [3] for the diagonal
and oF-diagonal density-matrix elements, in Sec. IV we
analyze the Auctuations in the photon-number operator,
and in Sec. V those of the quadrature components of the
field. In both cases, we summarize first the known
coherent-state results for comparison purposes.

—[n(n —1)+pn + —,'p(p —2)]f„. (15)

The system of differential equations (15) couples only ele-
ments with the same off-diagonality parameter p, which
means that the How of change is propagating along paral-
lels to the main diagonal. In particular, we obtain the
equation of motion for the photon-number distribution
I'„=&n~pg2-) n & when p=o:

BP„ =(n +2)(n +1)P„+2 n(n ——1)P„.

Because the two-photon absorption cannot empty the
Fock states ~0) and ~1), we expect a nonvanishing value
in the steady-state limit (r—+ ~ ) for pQ Q and p» ..

Po, o( ) 2+2 (r) 2+2 (0) 10
n=0 n=0

(17)

Pl 1( ) X 2n+1(r) g 2n+1( ) Vl
n=0 n=0

(18)

The constants of motion yo and y, are related only
through the normalization relation

QO+ j I 1 o (19)

Dissipative interactions of the above kind might be ex-
pected to generate merely a statistical mixture of the
one-photon and vacuum state with no interesting statisti-
cal properties. Surprisingly, this is not the case. Simaan
and Loudon have pointed out the existence of an addi-
tional constant of motion for the elements on the first
of-diagonal, leading to a non-vanishing value in the
steady state for po i.

(2n —1)!!
Po, i( ~ ) =Co(1 ~ )=X,l

Pz (1 0) ='Yoi .
(2n )!!

(20)

We observe indeed in the master equation (9) that the
second normally ordered moment of the number operator
acts on both sides of the density operator, allowing coher-
ence between the one-photon and the vacuum state to
survive in the steady-state solution. Thus the steady-state
density matrix reduces to a 2X2 nondiagonal matrix

The transformed matrix elements g„satisfy then the
equation

a@„ =(n+1)(n +2)g„+2
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defined by the three constants of motion y0, yi, and y01,
which depend only on the initial conditions:

0.50

VO 701

701
(21)

701 0.40
(b)

The positivity of the density operator gives a relation be-
tween the three constants:

0.30

2
7071 F01 —0 ~ (22) 0.20

where the lower bound is reached for a pure state. This
remarkable result can be generalized to an arbitrary @-

photon absorption process. In this case the only nonvan-
ishing elements f„(p) in the steady state are such that
(n+p)!/(n+p k)!=—n!/(n —k)!. They form a kXk
nondiagonal density matrix. This shows that nonlinear
dissipative processes preserve a certain degree of coher-
ence. The actual value of yo1 depends only on the initial
state. We see from (20) that for an initial thermal field
y01=0. In Fig. 1 we plot the off-diagonal constant of
motion as a function of the square of the displacement
parameter for initial coherent and squeezed states defined
in (43). In the limit of a large mean photon number, the
amount of preserved coherence saturates to a common
value for both fields.

In order to solve the system of coupled differential
equations (15) we define a generating function by

0.10

0.00
0.00 5.00 10.00 15.00 20.00

FIG. 1. Off-diagonal constant of motion y0& for initial (a)
coherent states, (b) squeezed states, vs the square of the dis-
placement parameter. For (b) the squeezing parameter r =0.5.
The maximal degree of asymptotic coherence is smaller for
squeezed states and is independent of the squeezing parameter
when the coherent component is dominant and tends to the
value of 0.4.

The set of functions Fk(x ) then satisfies the differential
equation for the Gegenbauer polynomials [11]:

Q(x, p, r)= g x "g„(p,r),
n=0

where ~x
~

( 1. The inverse transform is given by

(24)

Fk (x)= Ck (x ),
with

(r =
—,'(p —1),

and

(27)

(28)

Multiplying Eq. (15) by x" and summing over n, we ob-
tain the following equation for the generating function:

(1 2)
O'9 BQ

(25)
BT Qg Bx

Ak =k(k+)M —1)+ 'p(p 1) . — — (29)

The coefIicients Ak of the superposition are determined
by the initial conditions. Using the orthogonality rela-
tions for the Gegenbauer polynomials we can express
them as

The infinite set (15) of coupled equations for g„()M, r)
reduces to a single linear differential equation for the gen-
erating function. The two-photon-order process leads to
a second-order equation. We solve this equation by sepa-
ration of variables and write the generating function in a
factorized expansion form as

(k+o )I (cr)
2k /2

Xg ()u, ,0), o&0 . (30)

oo m!I ( —'m ——'k+ —')
(m —k)!I ( —,'m+ —,'k+o +1)

(m —k even)

Q(x, )M, 7 ) —g elk Fk (x)exp( Xk'r)
k=0

(26) Using Eq. (24), we find the following corresponding ex-
pression for the normalized density-matrix elements:

f„()L(,r) =
k=n

(k —n even)

1 )( I/2)k —()/2)n2nl (
1 k+ ~ n +o )2 2"

n!I (o )I ( —,
' k ,'n + 1)—— (31)

The case o =0 must be treated separately because the orthogonality relation used to derive (30) does not hold in that
case. One way to overcome this problem is to use Chebyshev polynomials of the erst kind which are related to the
Ciegenbauer polynomials of order zero by

C„(x)=—T„(x), n&0 .2
(32)
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The resulting expression for itj„( l, r) is given by

P„(i, r) =
k=n

(k —n even)

( 1)(1/2)k —(1/2)n2n —1k' (
& k+ & n )

n!D —,'k ,'—n +—1)
(33)

where

Bk
m!

(m —k even)

Xg (1,0), (34)

contains n photons and the other proportional to
(n +2)(n +1) if the field contains (n +2) photons. The
two-photon absorption nonlinearity appears through the
quadratic dependence on n. The rate of change for the
first moment of the number operator is easily obtained
from (16):

1 if k)0"k'= o f k=o. (35)

= —2&8'(R —1) &

87

= —2& &t'u'& (39)

g —1/2

g —1/2

(36)

(37)

while the second solution gives the off-diagonal constant
of motion (20):

Bo=rai . (38)

The existence of these constants of motion induces a pari-
ty selection rule in the expression of the relevant series.

So far we have established general equations which
govern the two-photon absorption. We have seen that
the nonlinearity of the process makes the evolution of
field observables highly dependent on the field statistics.
We next first briefly summarize the results for a coherent
state and then investigate the cases of an initial squeezed
state and of eigenstates of the two-photon annihilation
operator, namely, the even and odd coherent states. We
present numerical evaluations, and compare a squeezed
vacuum field to a squeezed field containing a coherent
amplitude, at equal mean energy for the number fluctua-
tions and at equal squeezing for the quadrature fluctua-
tions. We start with an analysis of the fluctuations in the
photon-number operator in the next section.

IV. FLUCTUATIONS IN THE NUMBER OPERATOR

In this section we analyze the evolution of the fluctua-
tions of the diagonal part of the density operator. From
the equation of motion for the photon-number distribu-
tion (16) we note two opposite contributions to the
change of P„: one proportional to n(n —1) if the field

Equations (30), (31), (33), and (34) provide a complete
time evolution for the transformed matrix elements
g„(p,r) which are related to the matrix elements

p„„+„(r)through the relation (14). The exponential de-
cay of the series (31) and (33) provides a cutoff in the ex-
pansion. In particular, we note that in the steady-state
limit the only contribution to the two series arises when
A,k=0. From Eq. (29) we see that this condition is
satisfied only for p=0 when k =0 or 1 and for p=1
when k =0. The first solution leads to the two constants
of motion (17) and (18) for the diagonal elements:

In terms of the Glauber second-order correlation func-
tion [12] defined as

&~'8"
g (2)(0)— (40)

&pter&2

we can rewrite (39) as

(41)

This equation makes the absorption rate highly depen-
dent on the field statistics. It is proportional to the
second normally ordered correlation function of the field.
In a similar way, the rate of change of the second mo-
ment depends on the next-order factorial moment:

a&R'& = —4[& &(R —1)(R' —2) &+ &
R'(R' —1) & ]a~

(42)

Thus, for equal initial mean photon numbers, a super-
Poissonian field [g (0) & 1] is more rapidly absorbed than
a sub-Poissonian one [g (0)( 1], at an enhanced rate in
direct ratio of their second-order coherence functions. In
particular the absorption rate for chaotic light is twice
that for coherent light. This result has of course been
known for some time [13].

A. Coherent-state results

If the initial state of the field is a coherent state, we
find from the previous analysis that, surprisingly, the
photon distribution becomes narrower than its initial
Poisson width during the evolution. This means that the
two-photon absorption influences the photon statistics to
such a degree that it loses its classical characteristics.
The variance relative to the mean photon number falls
below unity. The more intense is the initial field, the fas-
ter is the absorption rate and the greater the deviation
from Poissonian statistics. The second-order Glauber
coherence function [12] decreases, causing a decrease in
the absorption rate, and tends to zero in the steady state.
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B. Squeezed coherent-state analysis 0.80—

We now examine how these general principles apply to
an initial squeezed coherent state. We follow the
definition given by Stoler [14]. In this definition the vacu-
um field l0) is first squeezed through a squeezing opera-
tor S(r) then displaced through a displacement operator
D(p). For simplicity we consider the case of squeezing
along the displacement and take a real squeezing parame-
ter. This initial field state can then be written as

P(n)
0.60—

0.40—

I p) =8 (p)s(r) lo & . (43) 0.20—

The squeezing operator is

S(r)=exp[ —,'r(d —a )], (44) 0.00
0 1 2 3 4

I I I

5 6 7 8 9 10

and the operator D(p) is the Glauber displacement
operator [12]:

D(P)=exp[P(a —8)] . (45)

Expanding the squeezed state (43) in the number basis,
we get the following expression for the transformed ma-
trix elements defined in (14):

FIG. 2. Photon distribution for an initial squeezed vacuum
with mean photon number equal to 1. The dashed and solid
lines correspond, respectively, to the initial state (~=0) and the
state after an interaction time ~=0.1.

( —,
' tanhr )"+"

g„(p,0)= exp[ —P +P tanh(r)]
n!coshr

(8'(0)) =P +sinh r,
and the fIuctuation in the mean number:

(49)

XH„(P[2sinhr coshr ]
'~ }

XH„+„(P[2sinhr coshr] ' ), (46)

where H„(x) are the Hermite polynomials of order n

[15],and

P=f3(sinhr +coshr ) . (47)

Squeezed states have been studied in detail [16] because
of their unique nonclassical properties. Examples include
osci1lations in the photon-number distribution, sub-
Poissonian and super-Poissonian statistics, and reduced
quadrature Auctuations. In particular we obtain from
(46) the number distribution for a squeezed vacuum state
(P=0):

([bR'(0)] ) =P exp( 2r)+2si—nh r cosh r . (50)

We see from (49) and (50) that the squeezed vacuum al-
ways displays super-Poissonian statistics and satisfies

((&&)'&, =2(tt), ((&&, +1), (51)

1.00—

(ata) o.so:

whereas sub-Poissonian statistics can be found for a
squeezed coherent state, if the coherent component is
dominant in the Incan number. In Fig. 3 we compare the
time evolution of the mean number for a squeezed vacu-

( —,
' tanhr ) "(2n )!

Psv(2n ) =
(coshr )(n!)

Psv(2n+1)=0 .
(48)

0.60—

0.40—
Equation (48) illustrates a maximal quantum interference:
the squeezed vacuum contains only even photon numbers
leading to the maximal value of 1 for yo defined in (17).
We show in Fig. 2 the time evolution of a squeezed vacu-
um photon distribution under the inhuence of the dissipa-
tive master equation (9}. We see that the two-photon ab-
sorption preserves the two-photon nature of the field as
expected. Indeed, the coefficients Ak are given in Eq.
(30) by a sum over even numbers for even indices k and
by a sum over odd numbers for the odd indices. Similar-
ly, the expression for the field matrix elements f„(p,r) in
Eq. (31) contains the even coefficients Ak for n even and
the odd coefficients for n odd. Thus the initial oscilla-
tions in the photon distribution are retained. We calcu-
late easily from Eq. (46) the initial mean photon number:

0.20—

0 00 I I I I I I I I I
i

I I I I I I I I I
i I I I I I I I I I ] I I I I I I I I I

i
I I I I I I I

0 00 0 20 0 40 0 60 0 80 1 00

j
FIG. 3. Time evolution of the mean photon number. The ini-

tial value is equal to one. The curve (a) refers to a squeezed field
with a coherent component equal to P =0.8, whereas the curve
(b) refers to the squeezed vacuum. We observe a much faster
absorption rate for the squeezed vacuum due to super-
Poissonian statistics. The relative absorption rate is equal to the
ratio of the second factorial moments. From Fig. 4, we see that
it is equal to 5 at the initial time.
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([ae(~)]'& . 4p22(1 P22)
lim

( fi'( ac ) & P22 o 2P22
=2. (52)

The two-photon contribution cancels out in the asymp-
totic relative variance. In contrast, the asymptotic rela-
tive variance for the squeezed coherent field, due to a
one-photon contribution, is equal to yo defined in (17):

([&fi( )]'&

«( )&
Vo (53)

In Fig. 6, the initial relative number fluctuation is equal
to its value in the steady state. The intermediate evolu-
tion presents first a sharp increase followed by a smooth
decrease on a long-time scale. We compare in Fig. 7 the
relative variance for two fields which have the same de-
gree of sub-Poissonicity initially. Their markedly
different behavior during the interaction illustrates how

um and a squeezed state with a coherent amplitude. We
observe a faster decay of the squeezed vacuum excitation
number. Its absorption rate on a short-time scale is, ac-
cording to Eq. (39), roughly five times higher than for the
sub-Poissonian squeezed coherent field. The asymptotic
value (r~ ~ ) is equal to y& defined in Eq. (18). Figure 4
shows the evolution of the second factorial moment
which controls the mean number evolution. We note the
enhanced absorption rate ratio due to third-order mo-
ment dependence. In Fig. 5 we display the variance rela-
tive to the mean number which measures the deviation
from Poissonian statistics [((b&) &/( & & =1]. The
squeezed vacuum remains super-Poissonian. The asymp-
totic relative variance is equal to two, although the
steady state is the vacuum state. This is due to the
unique nature of the squeezed vacuum photon distribu-
tion. Indeed, we approach the asymptotic state when the
contribution of the two-photon Fock state tends to zero.
Since the squeezed vacuum does not contain a one-
photon state contribution, this leads to

4.00—

((&n)')
(n) 3.00—

2.00—
(b)

1.00—

(a)

0.00» «««& ( &» & & ««
~
««»

0.00 0.50 1.00 1.50 2.00

FIG. 5. Time evolution of the number variance relative to
the mean number. The initial conditions are the same as in Fig.
3. In particular, the initial number variance is equal to the
second factorial moment of the number operator since the mean
number is equal to one. (a) refers to the squeezed coherent field.
The asymptotic value is equal to y0 defined in (17). (b) Squeezed
vacuum. The asymptotic value is equal to 2. We note the
discontinuity between the two asymptotic values due to the par-
ticular nature of the squeezed vacuum state.

C. Even and odd coherent-state analysis

We now analyze the effect of two-photon absorption on
another kind of nonclassical state of light, a superposition
of two coherent states out of phase. We choose for sim-

0.65

the dynamical evolution depends on the field statistics as
mentioned earlier.

4.00—
0.63

(at a~)
3.00—

0.60

0.58—

2.00—
0.55—

0.53—

1.00—
0 00 1 00 2 00 3 00 4 00 5 00

0.00
0 00 0 20 0 40 0 60 0.80 1 00

FIG. 4. Time evolution of the second factorial moment of the
number operator, for the same initial condition as in Fig. 3. (a)
Squeezed coherent field, (b) squeezed vacuum. Because the evo-
lution of this quantity is related to the higher-order moments,
the relative decay rate is initially enhanced.

FIG. 6. Relative number variance for an initial sub-
Poissonian field. The Auctuations in the photon number are ini-
tially reduced to half the mean number. The squeezing parame-
ter r is equal to 0.4 and P =5.45. We note a rapid increase of
the fluctuations on a short-time scale until a saturation time is
reached followed by a smooth decrease in the fluctuations until
the steady state is reached. During the overall evolution the
field remains within the sub-Poissonian boundary.
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((&n)')
(n)

0.80

0.70

P, (2n ) =0,
where P„l,(n) is the Poissonian distribution

exp( —P )(i33)
"

P„h n-
n.!

(62)

(63)

0.60

In Fig. 8 we plot the photon statistics evolution for an in-
itial even coherent state. Akin to the squeezed vacuum,
the two-photon absorption perfectly preserves the oscilla-
tory pattern of the initial distribution. The even coherent
state exhibits super-Poissonian field statistics according
to

0.50 I I ( ( I I I
i

I I I I I I I I I
i

I I I I I I I I I
i

I I I I I I ( I I i
I ( I I I ( ( ( I

0.00 1.00 2.00 3.00 4.00 5.00

4P exp( —2P )=1+ , )1,
( 6' &, 1 —exp( —4P )

(64)

FIG. 7. Comparison between the relative number variance of
two sub-Poissonian fields whose distributions have initially the
same degree of sub-Poissonicity equal to 0.8. The curve (a) cor-
responds to a squeezing parameter r =0.3 and $2=0.512 while
(b) corresponds to r =0.7 and P =2.44. (b) displays a strong os-
cillation pattern in the photon distribution leading to a very
different evolution on a short-time scale. The rate of change is
first negative and very high in absolute value, then is positive
during a significant time compared to the initial decay time, and
ends negative relaxing slowly to the steady state. (a) shows only
a negative rate of change. The photon distribution does not
display an oscillation pattern.

plicity the two coherent states with real displacement pa-
rameter. Various methods have been proposed to gen-
erate these so-called even and odd coherent states [17].
These states have been investigated mainly by Janszky
and Vinogradov [18] and Buzek, Vidiella-Barranco, and
Knight [19]. They are described by

(54)

whereas the odd coherent state displays sub-Poissonian
statistics according to

(65)

In Fig. 9 we plot the time evolution of the variance in the
number operator relative to the mean number for both
states. We observe deviation from super-Poissonian
statistics for the even coherent state when the coherent
amplitude is large enough. For P=2 the initial even
coherent state is nearly Poissonian and at ~=0.13 the
field is 26% below the coherent level. It becomes then
super-Poissonian again and relaxes to the vacuum state.
Because the two-photon nature of the field is conserved
during the damping, the steady-state value is 2, as for the
squeezed vacuum. The odd coherent state presents a to-
tally di6'erent behavior. The field remains sub-
Poissonian. The relative number variance reaches its

0.80

where the normalization constants are given by

N, = I2[1+exp( —2P )]]

N, =
I 2[1—exp( —2P ) ] j

(55)

(56)

(57)

P(n)
0.60

0.40

P, (2n ) =4N, P„„(2n),
P, (2n+1) =0,
P, (2n + 1)=4N, P„„(2n+ 1),

(59)

(60)

(61)

They are eigenstates of the square of the annihilation
operator:

(58)

The interference between the coherent states IP & and
I

—P& is responsible for pairwise oscillations in the
photon-number distribution. The even coherent state
contains only even photon numbers, while the odd
coherent state is a superposition of odd Fock states.
Their photon statistics are, respectively,

0.20

0.00
0 1 2 3 4 5 6 7 8 9 10

FIG. 8. Photon distribution evolution for an initial even
coherent state with P=2. The dashed line represents the initial
distribution and the solid line the distribution after an interac-
tion time ~=0. 1 with the two-photon absorber. We observe
perfect preservation of the pairwise oscillations as for the
squeezed vacuum (Fig. 2) case. This shows that the dissipative
mechanism does not remove strong quantum features of the ini-
tial field.
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2.00 B. Squeezed coherent-state analysis

((»)')
(n) 1.50

The initial squeezed state (46) is a minimum uncertain-
ty squeezed state and satisfies

&~,(0) &&~,(0) &=-, , (69)

1.00
and the initial uncertainty in the two quadratures is given
by

0.50

& W, (0) &
=

—,'exp( —r ),
& ~ (0) &

=
—,'exp(r) .

(70)

0.00
0.00 1.00 2.00 3.00

FIG. 9. Photon-number variance relative to mean number
for (a) initial even coherent state with P=2, (b) initial even
coherent state with P= 1, and (c) initial odd coherent state with

P=2. The two-photon dissipation reduces the fluctuations in
the field operator below unity for even coherent states with
large amplitude component as shown in (a). When the damping
proceeds, the initial coherent state relaxes to the vacuum
characterized by a super-Poissonian value 2. This was found
also for an initial squeezed vacuum. The odd coherent state on
the contrary keeps reduced fluctuations relaxing to a one-
photon state with maximal sub-Poissonicity.

& d 8 &
= g n ltd„(0, r),

n=0

&&&= g g„(l,r),
n=0

(72)

These are independent of the coherent amplitude P. So,
it is natural to compare fields which differ only through
their squeezing parameter ~. The variance of the quadra-
ture operators is expressed as

&(~, , )'& =-,'+-,'(&~'~ &+&~'&)+ &~ &',

where we used the fact that we have real squeezing and
displacement parameters. We calculate the averages us-
ing (31) and (33):

minimal possible value of zero. The steady state is a pure
state containing one photon.

In the next section we analyze fluctuations in the quad-
ratures of the field which involve off-diagonal elements of
the density operator.

&~'&= y q„(2, ) .
n=0

In the steady state, the field density matrix is given by Eq.
(21), hence we obtain

)&=y, ,

V. FLUCTUATIONS
IN THE QUADRATURE OPERATORS

)&=) „,
&~'( )&=0.

(73)

We decompose the annihilation and creation operators
into their Hermitian components X, and X2 ..

The steady-state variances of the quadratures can then be
written as

e=J, +tX', ,
(66)

& [~i,z( ~ ) 1' &
=—.'+ —,')'i + )'oi

and squeezing in X', is found if

(74)

The quadratures X'„X'2 then satisfy the canonical com-
mutation relation

[X'„X',]=u2,
leading to the Heisenberg uncertainty principle

(67)

(68)

A. Coherent-state results

It has been shown [2] that the two-photon absorption
leads to the development of squeezing. Maximal squeez-
ing increases in magnitude and occurs at shorter times as
the mean number in the initial coherent field increases.
The maximal value of squeezing which can be obtained is
33%. Squeezing is found to persist in the steady state
only for initial mean photon numbers less than 1.

—,'Xi —ro& &o .2 (75)

C. Link with superposition-state squeezing

Wodkiewicz et al. [4] have studied squeezing in super-
position states of the field and found squeezing for a simi-

We plot in Fig. 10 the fluctuations in X', in the steady
state as a function of the square of the displacement pa-
rameter for initial coherent and squeezed states. Squeez-
ing is found only for very small values of P . Maximal
squeezing occurs for an initial coherent state. In Fig. 11
we plot the dynamical evolution of the uncertainty in X',
for three different values of displacement parameter. The
squeezed vacuum shows a transient saturation region fol-
lowed by a slow increase leading to the isotropic vacuum
Auctuation level. We note the existence of squeezing in
the steady state for small displacement parameters.
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0.00 0.50 1.00 1.50 2.00

FIG. 10. Fluctuations in J, in the steady state as a function
of P, where P is the displacement parameter of the initial field.
(a) initial coherent state, (b) initial squeezed state and we choose
the squeezing parameter to be r=0.5. Maximal squeezing
occurs for an initial coherent state. We find squeezing in the
steady state when P is less than 1 for the coherent-state case
and this value is reduced when the initial field is squeezed.

FIG. 12. Fluctuations in Xz for the same initial states as in
Fig. 11. We note the greater rate of change in this quadrature.

over a longer time than in Fig. 11. Then they evolve
apart, reaching their steady-state values given in Eq. (74).
We show the product of the uncertainties in the canoni-
cal quadrature operators (W, (0))(Wz(0)) in Fig. 13.
We observe a general departure from the initial minimum
uncertainty state value —,'. The loss of minimum uncer-
tainty due to the Auctuations inherent in the irreversible
absorption process illustrates the noninvariance of the
squeezed states under two-photon absorption. Only the
squeezed vacuum is reduced to a vacuum state which is
trivially a minimum uncertainty state. Figures 14, 15,
and 16 represent the same quantities as in Figs. 11, 12,
and 13 respectively, but for different initial conditions.
The squeezing is less intense and the squeezed vacuum
state no longer presents the saturation region observed in
Fig. 11. When the displacement parameter is different
from zero the steady state is reached more rapidly. We
still note the presence of squeezing in the steady state for
a small coherent amplitude.

lar range of parameters to those found above. When the
coherent part of the field in our present case increases in
size, extra noise is added in the steady state. In Fig. 12
we plot the uncertainty in the conjugate quadrature X2.
We note the asymmetry in the evolution compared to the
previous figure. Comparing the rate of change of both
quadratures using Eq. (71), we see that noise introduced
by the damping mechanism changes the fluctuations at a
lower rate in the squeezed component X&. The three
different fields in Fig. 12 display the same Auctuations

0.65—

(c)0.60—

(&Xi) o.s5—

0.45—0.50—
(c)(b)

0.43—0.45—

(AXi) (AX@)o 4p
0.40

0.35—
0.38—

0.30—

0.35—0.25—

0.20—

0 1 5 I I I I I I I I 1 i I I I I I I t I I [ I t I I I I I I I i I I I t I I I I I

0.00 2.00 4.00 6.00 8.00

0.33—

0.30—

0.28—
(b)

0 25
0.00 2.00 4.00 6.00 8.00

FIG. 13. Product of the fluctuations in 5', and X'2 for the
same initial states as in Fig. 11. General departure from the
minimum uncertainty value shows that the squeezed state is not
invariant under two-photon absorption.

FIG. 11. Fluctuations in J, for various displacement param-
eters. The squeezing parameter r= 1. In (a) P =0, in (b)
P2=0.01, and in (c) P2=0.5. We note that the squeezing per-
sists in the steady state when the displacement parameter is not
too large. There is a change in the dynamical evolution around
~=0.2 for the three fields, but the squeezed vacuum state shows
the most notable change, displaying a plateau which does not
exist when the field contains a coherent component.
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0.260

0.255
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FIG. 14. Same as Fig. 11,but the squeezirig parameter is now
chosen to be r=0. 5; (a) corresponds to P =0.1, (b) for the
squeezed vacuum.

FIG. 16. Same as Fig. 13, except initial conditions given in
Fig. 14.

The existence of squeezing in the steady state is due to
the nonvanishing value of (a( ao ) ). Contrary to linear
absorption, the two-photon absorption retains phase in-
formation in the steady state. The system does not un-
dergo a simple diagonalization, but preserves coherence
and decays to a mixture of two states,

~

+ ) and
~

—),
which are a rotation of the vacuum and the one-photon
state. We calculate from Eq. (21) the eigenstates and ei-
genvalues of the steady-state field density matrix:

The eigenvalues A,+ satisfy

k+ +X j p+P] 1

~+~— XoX ] Vp&

(78)

0~ k+k (79)

Deviation from pure state values appears through the in-
equality

T

~+ ) =cos —~0) +sin —~1),0
2 2

~

—) = —sin —~0)+cos —~1),0
2 2

(76)

S[p( ~ )]=—X ln(A, ) —A+in(A+), (80)

for difFerent displacement parameters versus the squeez-
ing parameter. Even a small coherent component leads

The lower bound corresponds to a pure state (p =p) and
is reached by an initial squeezed vacuum, while the upper
bound gives the maximal mixed state (degenerate eigen-
values, A, + =A, =0.5), with an entropy equal to -0.69.
In Fig. 17 we plot the asymptotic field entropy [20]

tan(8) =2yo, (yo —y, ) ', 0 ~ 0 ~ ir . 0.80—

0.85—

0.80—

s [P(oo)]
0.60

0.75

0.70—
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0 50 i & i i & & i «
~

& i i i » i & t ] i i r

0.00 2.00 4.00 6.00 8.00

7

FIG. 15. Same as Fig. 12, except initial conditions are those
given in Fig. 14.

FIG. 17. Asymptotic field entropy vs the squeezing parame-
ter (a) P =0.01.; (b) P =0.25; (c) P = 1; (d) P =4. Even a small
degree of coherent amplitude leads to a significant deviation
from a pure state.
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p2

1+exp( 2/3 )—
&(~,)'&, .=—'+ p"""

e, o 1+exp( —2P )

&(~, )'&, .=—+e, o 4

(82)

U sin the
'

g the expressions (54) and 5
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odd coherent states which decay to a one-photon state re-
tain extra noise.

VI. CONCLUSIONS

We have studied the dynamical evolution of two
different kinds of nonclassical states undergoing a two-
photon absorption process, respectively, squeezed
coherent states and eigenstates of the two-photon annihi-
lation operator, namely, the even and odd coherent
states. We have shown that initial super-Poissonian fields
give rise to the highest absorption rate. For appropriate
initial parameters, a squeezed variable can retain reduced
fluctuations in the steady state, although the excitation
levels are of course very small. This effect therefore is
likely to be of little importance in optical squeezing but

will be of interest in micromaser systems where the mean
number of photons is already small. Finally, the nonin-
variance of the squeezed states has been demonstrated in
the uncertainty relation as a departure from the
minimum uncertainty squeezed state value. Deviation
from super-Poissonian statistics accompanied by extra
noise in the squeezed quadrature of an initial even
coherent state shows in the same way the noninvariance
of eigenstates of the two-photon annihilation operator.
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