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A laser Ginzburg-Landau equation with fourth- and higher-order diffusion terms is derived from the
Maxwell-Bloch equations describing a laser. It is shown that the higher-order diffusion terms in the

laser Ginzburg-Landau equation are crucial for the transverse structure formation.

Laser-

hydrodynamical equations are derived, and the correspondence between laser light dynamics and the dy-
namics of a compressible, viscous, quantized fluid is demonstrated.

PACS number(s): 42.60.Jf, 42.65.—k

I. INTRODUCTION

Recent investigations of multi-transverse-mode lasers
have shown similarities between laser dynamics and the
dynamics of fluids. In particular, the optical vortices
found in laser radiation [1-3] are one of the phenomena
with a direct analog in superfluids [4,5]. This analogy
hints of the existence of further-reaching correspon-
dences between optics and hydrodynamics.

The similarity finds its explanation in the possibility of
reducing the laser equations in a limiting case to the com-
plex Ginzburg-Landau equation (CGLE), and further to
hydrodynamic equations. Several attempts have been
made in the past to obtain a CGLE describing correctly
the dynamics of laser radiation. In [6], the problem was
solved for class-A4 lasers emitting a single longitudinal
and transverse mode. The material variables were con-
sidered to be enslaved by the electromagnetic field in a
“good cavity,” and adiabatically eliminated.

In [1,7,8], a CGLE for the multi-transverse-mode laser
field (with the dependence on transverse coordinates in-
cluded) was derived. It possesses diffraction and diffusion
terms that communicate information within the laser
beam cross section, and give rise to the transverse struc-
ture formation.

The CGLE obtained in [1,8] (which at present is re-
garded as the most precise laser CGLE) possesses a
diffusion term that is proportional to the cavity detuning.
For negative detuning, the diffusion changes to unphysi-
cal ““antidiffusion,” causing the appearance of field singu-
larities and leading to ‘“blowup” of the solutions. The
case of negative detuning is significant because the excita-
tion of higher transverse modes, and with it the genera-
tion of nontrivial patterns is achieved experimentally usu-
ally for negative detuning [3].

In the present paper, the laser CGLE (LGLE) is de-
rived in a higher-order approximation. It possesses
fourth- and higher-order diffusion terms, which prevent
the “blowup” for negative detuning. It is shown (Sec. III)
that this modified CGLE describes correctly the excita-
tion of transverse modes and structure formation in a
laser.

The structure of the LGLE derived in the paper is
similar to the structure of the Swift-Hohenberg equation
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[9], describing in particular the dynamics of convective
fluids [10]. Thus the pattern formation in the lasers has
the same origin as the convective pattern formation in a
fluid layer heated from below, in particular.

In Sec. IV, a further reduction of the LGLE is made to
obtain laser hydrodynamical equations. For all laser
variables and parameters, the hydrodynamical correspon-
dences are found, which helps to understand the analogy
between laser optics and hydrodynamics of a compressi-
ble, viscous, and quantized fluid. A vortex flow obtained
numerically from the LGLE (Sec. V) illustrates the
correspondence.

II. THE LASER COMPLEX-GINZBURG-LANDAU
EQUATION

The Maxwell-Bloch equations provide a semiclassical
description of the slowly varying fields in a single-
longitudinal-mode, ring cavity laser [7]:

)
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Here E (r,t), P(r,t), and D (r,t¢) are two-dimensional en-
velopes of electric field, polarization, and population in-
version, correspondingly; k, ¥, and v are decay rates of
these variables, D,(r) is the unsaturated value of popula-
tion inversion, and the frequencies w4, and w, are the
central frequencies of atomic gain line and resonator
mode. The vector r is the position in the plane (#,¢) nor-
mal to the laser beam propagation direction z.

The term iakV?E in Eq. (la) is the diffraction
term, a=(4FT)"! is the diffraction constant, where
F=mr}/(AL) is the resonator Fresnel number, r, is the
resonator mirror radius, L is the full resonator length, A
is the wavelength of the emitted radiation, and T is the
resonator mirror transmittivity. The transversal coordi-
nates x and y are normalized to resonator mirror radius
o

In the “good-cavity” limit, i.e., when both the polariza-
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tion and population inversion are decaying much more
quickly than the electromagnetic field (k <<y,,y,), the
former variables can be adiabatically eliminated, and the
Maxwell-Bloch equation system (1) can be reduced to a
complex Ginzburg-Landau equation (CGLE) [7]:

94 _
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where A (r,t) is the order parameter proportional to the
electromagnetic field: A(r,t)=E(1,t)(Dy /Dy, )2
where D, =1+ is the threshold pump value, and the
parameter B=w¢/k is the laser resonator detuning,
where the frequencies o’y and w¢ are now with respect to
a reference frequency w,=(kw 4+ ,wc)/(k+7y,), given
by the standard mode pulling formula. The normalized
time 7 is 7=tk/Dy,, and the diffraction parameter is
d =aD,. Equation (2) is valid near the laser threshold:
the derivation of the nonlinear term uses a cubic approxi-
mation, thus requiring this “near-threshold” assumption.

The solution of the CGLE (2) displays an instability be-
cause of the absence of a diffusion term; in particular, in
the limit of the large negative f3, it becomes the nonlinear
Schrodinger equation, which is known in two dimensions
to give finite-time blowing up. Thus Eq. (2) is structural-
ly unstable, and even a small diffusion would stabilize it.
The diffusive term appears when the polarization is not
fully enslaved by the electromagnetic field (e.g., if it is
changing with a delay with respect to the field changes).
It means that the spectral profile of the amplification line
must be considered no more flat than in the adiabatic lim-
it used to derive (2) (k <<y ), but it retains its shape.
Thus, in this case, the next approximation for the polar-
ization P'V(r,¢) is calculated from (1b):

P(O)
ot

where P%(r,¢) is the zero-order approximation for the
polarization used to eliminate it adiabatically when deriv-
ing (2):

PU=pO)_

(i, +v)7 1, (3)

ED ED,
PO=(1+iB) =(1+if)—7
Dth Dth+|E|2
ED, R
=(1+ip) (1—|E]?/Dy,) . (4)
Dy,

Note that the cubic approximation is used in the last ex-
pression in (4).

The polarization time derivative 3P’ /3¢ is calculated
from (4) and (1a) to obtain the corrected value of polar-
ization P'V. The correcting terms appear to be of the
higher order of smallness in the “good-cavity’ approxi-
mation (k <<y ,). Only the correcting term including V?
in a linear way is relevant:

DO
2
th

PY=pO—idn(1+iB)?—-V3E ; (5

here n=k/y | is the cavity finesse parameter. Note that
the nonlinear term containing V(E|E|?) is dropped in (5)

because of its smallness compared with the term that con-
tains V?E in a linear way. The expression (5) is then
again inserted into (la) to obtain

34 _
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where all terms are defined as in (2), and the diffusion
coefficient is d, =a2nD,/Dy,.

Equation (6) is the CGLE in its classical form, and also
was derived before [1,8] from the laser equations using
the central manifold technique. Equation (6) was used to
investigate dynamics of optical vortices in a laser in the
case of positive detuning . But, as noted before, nega-
tive detuning 3<0 produces unphysical ‘“antidiffusion,”
causing the “blowup” of the solutions.

This “blowup” can be prevented using the next higher
corrections for the polarization:

(n—1)
o,y @)
and after the same procedure as was used to obtain (5)
and (6), the polarizations of higher order are calculated:

P(n)zp(n—l)_.
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(8)

and the following equation of the CGLE family is de-
rived:

%_f: (Do—Dy, (1+iB) A +idV? A —(1+iB)| 4|4
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Noting that the diffusion term series is formally a
geometric progression, Eq. (9) can be rewritten in a more
compact form:

%_f:(DO—D,h)(1+iB)A +idV?A4 —(1+iB)| A|* 4
(1+iB)oV?
—D, || 4 .
0 [ 1+oV? 1o

here o is defined as o=idn(1+iB)/D%. Due to the
presence of the higher-order diffusion terms, Eq. (10) is
no longer a CGLE in its classic form, and will be referred
to as the laser Ginzburg-Landau equation (LGLE).

Equation (10) is derived in the good-cavity limit 7y <<1.
On the other hand, 7 is nonzero, since the finite width of
the amplification line is taken into account in (10). Thus
(10) is valid for class- A lasers with an amplification line
broader than the resonator mode, and than the
transverse-mode separation.

In order to simplify (9) and (10), the infinite series of
higher-order diffusions can be truncated. As shown in
Sec. I1I, the truncation to the fourth-order diffusion term
retains all the basic properties of the LGLE:
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a—‘:= (Dy—D g, )(1+iB)A +(id +d,)V*4 +d,V*4
—(1+ip)l 4’4 , (11
where d,=—a’y’D,/D,, is a fourth-order diffusion

coefficient, and Eq. (11) will be referred to as CGLE IV
throughout the paper.

Note that the second- and fourth-order diffusion terms
in (11) can be rewritten in the form d,(y +V?)?*—d,y?
where y =d, /(2d,). This is exactly as the diffusion term
in the Swift-Hohenberg equation [9] used to describe con-
vective fluid dynamics. (The formation of Reyleigh-
Bénard convective patterns in a fluid layer heated from
below are described by these equations correspondingly
[10].) The pattern-formation processes in CGLE IV,
therefore, can be expected to be similar to those in con-
vective fluids.

Before the properties of the solutions of Egs. (10) and
(11) are investigated, some terms must be added phenom-
enologically to obtain better correspondence with a real
laser. Characteristic for the real lasers is a pump nonuni-
formly distributed in space (often of Gaussian spatial
profile), and the presence of curved (spherical) mirrors.
With the pump profile u,(r)=exp(—r*/rl,,,) [corre-
sponding to the unsaturated population inversion of the
form Dy(r)=Dyu,(r)], and the curved mirrors causing
the phase shift (phase gain) 3® /97=p,(r), one finally ob-
tains for CGLE IV:

%i}: [(Dopy(P)— Dy (1 +iB) +ipy(r)] 4
+(id +d,)V? A +d,V* A —pu,(r)(1+iB)| A]°4 ,
(12)
and correspondingly for the LGLE:
%—‘;‘= [(Douy(r)— Dy (1 +iB)+ipy(r)] 4 +id V> A
(1+iB)oV?
—D e e
ot (r) [ 1+0V?
—u(r(1+ip) 4]*4 . (13)

The phase gain profile caused by the curved mirrors is
of the form p,(r)= —ar?, where a =Ff*D,, /T. Parame-
ter f is the cavity mirror curvature parameter depending
on the cavity configuration: for stable cavities it varies
from O (plane mirror cavity) to 2 (concentric mirror cavi-
ty); for a confocal cavity, e.g., f =1.

To check the validity of definitions of parameters a and
d, Egs. (12) and (13) were linearized, and the parameters
of fundamental Gaussian mode TEM,y, were calculated to
yield the beam radius r2=2(d/a)'">=(Ff)"! (the dis-
tance is normalized to the radius of the mirror), and the
frequency wo=—2(ad)'’?=—fD, /T (the frequency is
normalized to the width of the cavity mode divided by
D,; it is also the separation of transverse modes). The
product r2w,= —4d does not depend on the focusing pa-
rameter f, as it ought to be in lasers.

Note that the definition of parameters a and d is

different from the careful derivation in [11], since the dis-
tances, for convenience, are normalized to the mirror ra-
dius ry, here. Nevertheless the definitions here are com-
patible with those in [11].

III. LGLE INSTABILITIES

One of the simplest ways to obtain information about
the capability of a nonlinear system to generate spatial
structures is the linear stability analysis of its homogene-
ous solutions. Such an analysis was performed for the
LGLE (10) and the CGLE IV (11) with spatially homo-
geneous parameters. The equations were linearized
around the trivial solution 4 (r)=0, and the growth ex-
ponents for the spatial modes were calculated:

AcoLe v=Do— Dy —Do(2Bk>+ Dy k'),
2B+k"D,,
(1+BKk"212 4k’
here Acgrg v and A; gy g are the real parts of eigenvalues
in the linear stability analysis for Egs. (11) and (10), cor-
respondingly, and k' is a normalized spatial wave num-
ber: k'>=k?an/Dy,.

In the case of positive detuning (5> 0), the perturba-
tion with k'=0 has the maximal growth exponent, as
Egs. (14a) and (14b) show. This means that if the laser is
above generation threshold (D,> Dy, ), the plane wave
with the wave vector parallel to the laser axis will grow
fastest and will largely define the stationary pattern in the
laser beam cross section. (The stationary pattern in this
case B> 0 is trivial: a homogeneous spatial distribution).
In the case of negative [, according to (14), the modes
with particular (nonzero) transverse wave number k be-
come unstable and grow. The growth rates depending on
the transverse wave number k are given in Fig. 1 for the
CGLE IV and the LGLE. The corresponding curve for
the classical CGLE (6) is also given. The latter shows
that all short-wavelength perturbations are unstable and
grow, thus causing “blowup” of the solutions of Eq. (6)
for B <0.

In Egs. (10) and (11) for 3 <0, the waves propagating at

(14a)

AroLe=Do— Dy —Dok™ (14b)

FIG. 1. Stability analysis of the trivial solution A(r)=0:
perturbation growth exponents vs perturbation wave number
for the different laser models: [O—classical CGLE (6), O —
CGLE IV( 11), A—LGLE (10) (coinciding with the corre-
sponding curve for the full MBE system in case of y |,y >>k).
The parameters are B= —2, Dy =2.
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a particular nonzero angle to the optical axis of the laser
are most strongly amplified, and will prevail in the gen-
erated radiation (see also [12], for a case of full MBE sys-
tem). In the case of a real laser [nrodels (12) and (13) to-
gether with corresponding boundary conditions], these
“tilted waves” will arrange in standing or traveling
waves, and correspondingly a nontrivial stationary or dy-
namic pattern will occur in the cross section of the laser
beam.

The corresponding stability analysis was performed for
the initial MBE system (1), too. The dependence of the
perturbation growth exponent on transverse wave num-
ber k for the full laser equations coincides with good ac-
curacy with the corresponding curve for the LGLE (the
difference is less than 3-5%).

The following point is worth noting: due to the non-
linear coupling of the electromagnetic radiation with the
material variables, as well as due to radiation diffraction,
the spectral amplification profile is transformed into the
transversal wave vector (k) domain in the case of nega-
tive detuning. As can be seen from expressions (14) and
from Fig. 1, the Lorenzian gain line profile reappears in
the k space for the LGLE. In the case of the CGLE IV,
the Lorenzian growth exponent curve is approximated by
a second-order polynomial. It is found that this
difference does not alter the qualitative features (see, e.g.,
the numerical results in Figs. 2 and 3) of the transverse
structure formation. The classical CGLE’s (2) and (6), in
fact, approximate the Lorenzian gain line by lower-order
polynomials (the zero- and the first-order, corresponding-
ly). This permits one to understand why these equations
are not capable of describing the laser transverse dynam-
ics correctly.

For the most unstable wave number k,, both expres-
sions in (14) yield

Tty B (15)
an an

This coincides with the expression for the case of the full
laser equations (see also [12] for the MBE case).

In the case of small negative detuning, only the modes
of long wavelength become unstable; this causes no
modulation of the laser beam until the maximum-
instability wavelength is smaller than the beam radius.
With increasing negative detuning, the maximum-

A

FIG. 2. Laser intensity vs resonator detuning for two
different pump values: 0 —Dy=2.6, X —D;=3.0. CGLE IV
(11) with the following parameters was calculated: 7=0.2,
T=0.05, f2=0.5, F=10. The pump profile u,(r) was of
Gaussian form with 7,ym, =0.5 (normalized to mirror radius).

instability wavelength decreases. When it becomes com-
parable with the characteristic spatial modulation length
of the next higher transverse laser mode, the instability
destroys the initial Gaussian field distribution, and the
laser switches to a higher transverse mode (TEMg, —so
called “doughnut” for a cylindrically symmetric laser).
Further increase of negative detuning makes the
maximume-instability wavelength comparable with the
spatial modulation length of the next transverse-mode
family, etc. Thus the mode (and transverse structure) for-
mation in a laser beam may be well explained with the
help of the LGLE (12),(13).

The numerically calculated total power of radiation
emitted by the laser (integration of the CGLE IV), is
given in Fig. 2, as a function of detuning 3. The excita-
tion of a few transverse-mode families is evident, indicat-
ing that the CGLE IV can describe the transverse dy-
namics of the laser.

In addition to the structure formation discussed, which
results from the short-wavelength instability of the zero
solution, there exists another structure-forming instabili-
ty in the laser. It is an instability of the homogeneous
nonzero solution (Benjamin-Feir or modulation instabili-
ty; in the case of model (1), this instability has been first
pointed out and analyzed in [7]). From the sideband
perturbation analysis of the homogeneous solution
A(r)=(Dy—D)"? for the pure CGLE (2), one obtains

A=Dy —Dyt[ (Dy—Dy,)*—2BaD y(Dy—Dy, )k?
—a’D%k*] . (16)
This yields the wave number of maximum instability:

Dy—D
2=— __0...—tl}._
k3 B aDy 17

For the sake of simplicity, the sideband perturbation
analysis was performed here for the pure CGLE (2). The
more effortful analysis for the modified CGLE (6), (10),
and (11) was performed numerically and yielded approxi-
mately the same result.

This latter structure formation occurs as a result of a
combination of the imaginary part of the nonlinear term
and the diffraction term in Egs. (2), (6), (10), and (11).
The instability due to this mechanism is self-focusing.
(Self-focusing of light is a result of a combination of a
Kerr-type nonlinearity and diffractive propagation: it
causes the well-known intensity singularities in two-
dimensional cases [13], and optical soliton formation in
one-dimensional cases [14].) In the classical CGLE
theory, this mechanism leads to the spatial instability [15]
and is considered as a principal mechanism leading to the
structure formation and turbulence of the CGLE. It
turns out, though, that at least in class- A4 lasers, where
7 <<1, near the laser threshold, structure formation is
mainly caused by the first mechanism—the short-
wavelength instability. The ratio of wave numbers of
maximal instabilities relating to both mechanisms is

(18)
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(a)

(d)

FIG. 3. Metastable patterns (a), (b), (c), and the stable pattern (d) appearing during numerical integration of the CGLE IV. The in-
itial field distribution was homogeneous; the parameters used are as for Fig. 2 and B= —4.25, D,=3.0. States (a)—(d) are the steady
states of the laser as calculated by mode expansion and experimentally observed in [3].

This means that, in the case Dyn>>Dy,, the instability
caused by self-focusing (Benjamin-Feir instability) dom-
inates the structure formation in the laser, the short-
wavelength instability caused by the limited width of the
laser gain line (the laser instability) being less important.
Usual operating conditions for a class-4 laser are
Dyn<<Dy, thus the pattern formation in such lasers has
a different origin from the one in the classical CGLE.

To end this section, additional evidence of the capabili-
ty of the modified CGLE to describe the transverse pat-
tern formation in lasers is given. Figure 3 shows numeri-
cally obtained distributions of laser field intensity. These
are the steady-state patterns emitted by a laser tuned to
the transverse-mode family 2p +/=2. These are as
found in experiments and mode expansion calculations
for different pump strengths and diameters [3]. (Here p is
the radial and [ the angular index of the Gauss-Laquerre
modes.) When the state d is stable, the transverse distri-
bution of the laser radiation is found to evolve through
the patterns (a), (b), (c), to the final state (d), after the

FIG. 4. Intensity of the CGLE IV solution evolving in time.
The parameters are as in Fig. 3. The plateaus correspond to the
existence of indicated metastable patterns.

laser is switched on, as shown in Fig. 4 for the particular
laser parameter set. It appears that the patterns (a), (b),
(c), which under these conditions are unstable, actually
behave metastably. If the laser parameters are changed
(width of spatial pump profile, pump intensity), the laser
emission evolves towards another one of the patterns
shown as the final state.

It must be noted that the results in Figs. 3 and 4 were
obtained, not in the mode expansion calculations as in
[3], but by solving numerically partial differential equa-
tions.

IV. LASER HYDRODYNAMICAL EQUATIONS

Some features of transverse laser pattern dynamics
resemble the dynamics of fluids. In particular, the ex-
istence of optical vortices found in lasers [1-3] has a
direct counterpart in superfluids [4,5]. This analogy hints
of the existence of further-reaching correspondence be-
tween optics and hydrodynamics. A formal mathemati-
cal analogy is difficult to show with the full laser equation
system (1). The LGLE and CGLE IV derived in the pre-
vious sections, however, are structurally more similar to
hydrodynamic equations, and can consequently be used
as a connection between laser optics and hydrodynamics.

As mentioned, the diffusion terms in CGLE IV are
analogous to those in the Swift-Hohenberg [9] equation.
Consequently, the structure formation in lasers must be
similar to the one in convective hydrodynamics describ-
able by the model.

The CGLE in the form (2) is used to describe the dy-
namics of the order parameter in superfluids [4,5], where
the intensity | 4|? corresponds to the fluid density, and
the gradient of the field phase V& to the fluid velocity u.
The LGLE also can be rewritten in terms of these fluid
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parameters, and the dynamical equations for “laser pho-
tonic gas” dynamics can be obtained.

The correspondence between the laser equations (1)
and compressible superfluid equations of motion has re-
cently been investigated in a limiting case in [16]. Here
the purpose is to obtain “laser-fluid” dynamics equations
for more general cases.

Rewriting Eq. (12) in terms of p=| 4| and ®=arg( 4),
analogically as in [16], and separating the real and imagi-
nary parts, one obtains

% — Y Dopy—D g Jp—2dV-(pV®)— 2,07 ,

a3 (19a)

-aa%=y2+B(DO,u1—Dth)+d4V4<I>+d2 v2<p+v<1>-—vpﬂ
2 2

+d %—%—(V@Z —Bup ; (19b)

here all terms with factors d,,d, in (19a) and with factor
d, in (19b) have been omitted because of their smallness
(d4 <<d, <<d), except for the significant one: d,V*®, in
(19b).

Equations (19) are of the form of hydrodynamical
equations. The first one is a continuity equation (with
spatially distributed sources and sinks corresponding to
the amplification and saturation in the laser media); the
second one is the Euler equation analog. A further
simplification of system (19) is possible in a case of zero
detuning (8=0):

% 2 Dopty— Dy Jp— 241>~ V-(pVD) ,

Y (20a)
2
.z;_‘;+v%=—v4v4u—VV(r)—Vp/p. (20b)

The transverse coordinate r has been renormalized
here: r?/2d —r?, and the velocity u is u=V®. The pa-
rameter v,=n°D,/(4D} ) is the fourth-order viscosity
parameter (the second-order viscosity is zero for zero de-
tuning). The function V (r)= —pu,(r)=ar? is the effective
external force potential due to the inhomogeneous phase
gain [curved mirrors in the laser, as introduced in Eqgs.
(11) and (12), Sec. II]. The internal pressure p(r,t) is a
function of the “laser photonic gas” density p(r,?) and
density gradient V In[p(r,?)], and is defined by the follow-
ing differential expression:

V3n(p) 4 [Vin(p)]?

4 3 (21)

&p =—pd
Equations (20) describe the dynamics of a “laser pho-
tonic gas” enclosed in the potential well ¥ (r), in the pres-
ence of spatially distributed sources and sinks. The gas is
compressible and viscous as seen from (20) and (21). In
the case of negative detuning, the additional convective
forces are present, where the detuning is the direct analog
to the temperature gradient in corresponding hydro-
dynamical systems.

The parameter that defines the complexity of a hydro-
dynamical system is the Reynolds number Re=Lv /v
[4,17]. Here L, v, and v are characteristic length, veloci-
ty, and viscosity in the system. For the characteristic
viscosity, v=v}/2=7D}/? is used (the square root is need-
ed to retain the nondimensionality of Re); the charac-
teristic spatial dimension of the system is the laser beam
diameter 2rg, and characteristic velocity is evaluated
from (20a) in a stationary case (dp/dt =0): it is the max-
imal radial velocity of ‘“laser photonic gas” flow in the
case of a flat pump: v =rz(D,—1). Then

D,—1 r3
f-t (22)
D)? an

Re=

The threshold for the Nth transverse-mode family is
Dy =1+[wyn(N +1)]? (for zero detuning!), and the beam
radius is roughly rz =r,(N +1)!/2, where w, is the mode
frequency separation, and r is the radius of TEM, mode
as found in Sec. II. Then taking into account the relation
between 7, and wy: r3w,= —4d, the laser Reynolds num-
ber is Re=4(N +1)?, if the laser is above threshold for
the Nth transverse mode.

It is suggested that the expression of the laser Reynolds
number can be formally extended into the region of <0,
where the short-wavelength instability of the “laser pho-
tonic gas” occurs. The laser Reynolds number is then
proportional to the square of the number of the
transverse-mode families above the threshold under the
particular operating conditions [in Fig. 5, the laser Rey-
nolds numbers in the plane (3,D,) are given].

The maximum Reynolds number for a particular laser
configuration is proportional to the square of the highest
transversal-mode family possible to excite, and is given
by the Fresnel number: Re,,, =4F2

An explicit analytic expression of the density profile,
allowing a solution for 8~0 from (19), does not exist in
general. (It can be found in a perturbative way as in
[18].) Numerical solutions show that the density (as well

1 e
Re=100 Z
Re=64 i
Re=36 |
Re=16 Re=4

5

FIG. 5. Laser Reynolds number as a function of pump D,
and detuning B. The cavity focusing parameter f2=0.4 (chosen
to make the transverse-mode frequency separation AB=1).
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as the pressure) is maximal in the middle of the potential
well, and decreases with the radial coordinate 7, while the
distribution of both variables is roughly Gaussian. Such
a stationary distribution of laser fluid density corresponds
to the Gaussian beam of the fundamental TEM,-mode
shape.

Another stationary solution of the system (19),(20) is
the vortex solution, which in the limit » —O0 is of the fol-

lowing asymptotic form:
2
plr)= ; , u=(—3‘%ﬂ ; (23)

core r

here m is a unit vector transverse to the plane (r,¢) and
directed upwards (along the z axis) for a vortex with posi-
tive charge, and downwards for a negative charge; r . is
the characteristic vortex radius. Such vortices (with a
vanishing density and a infinite fluid velocity at the
center) were found in lasers recently [1-3].

Detailed investigations of optical vortex behavior, de-
scribed by the LGLE equations (10)-(13) and the laser
hydrodynamics equations (19),(20), will be given else-
where (see also [18,19]). It is noted here that the forces
causing the optical vortex drift have direct counterparts
in hydrodynamics. For example, the radial motion of a
single vortex in a laser beam cross section is easily inter-
preted as a drift caused by radial “laser photon gas” flow.
(There is, in general, a nonzero radial flow in a stationary
distribution because of the presence of sources and sinks.)
On the other hand, the angular circling of a vortex
around the optical axis of the laser beam (observed exper-
imentally [20] and numerically investigated [18-20]) can
be interpreted as a Magnus drift caused by a buoyancy
force. (The vortex is a hollow object and thus experi-
ences a buoyancy caused by the internal pressure gradient
and directed away from the laser beam center. The
Magnus drift of the rotating object is directed perpendic-
ularly to the force acting on the object and causes a cir-
cling of the vortex around the optical axis of the laser in
this case.)

The optical vortex is supported by the topological con-
straint; thus it is extremely stable (it cannot be destroyed
alone—just two vortices of opposite topological charge
can annihilate). This allows one to consider the “laser
photonic gas” as a quantized one, like the superfluid
[4,5]. On the other hand, the laser hydrodynamical equa-
tions (20) and optical vortex interaction [18] in the lasers
show the presence of viscosity. These two facts suggest
that the laser photonic gas is similar to a two-component
superfluid, where the superfluid and normal-fluid com-
ponents are simultaneously present, as in finite-
temperature superfluid heliumlII [4,5].

It is also noted that the existence of a single vortex cir-
cling in the laser beam is connected with the excitation of
modes TEMy, and TEMJ; simultaneously; it thus corre-
sponds to a laser Reynolds number: Re=20. It is well
known in hydrodynamics that the existence of vortices
requires approximately the same minimal value of the
Reynolds number of the system [17].

On the other hand, turbulence in hydrodynamics sets
in if the Reynolds number of the system exceeds =2000.
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This means that real turbulence in optics (defect-
mediated turbulence [21]?) will occur under conditions in
which the N =20-30-mode family can be exited (or the
average number of the vortices N is roughly more than
N, =N?=500).

V. THE KARMAN VORTEX STREET
IN LASER RADIATION

In this section, a numerical simulation example is
given, to illustrate the correspondence between lasers and
fluids. The idea to generate numerically a vortex street
behind a moving obstacle in a superfuid was given in [22],
where the nonlinear Schrodinger equation was studied.
Here the LGLE (13) is investigated. Here the “laser pho-
tonic gas” flow is created by introducing an inhomogene-
ous phase gain function, depending linearly on the trans-

FIG. 6. Intensity and sine-of-phase snapshots of vortex gen-
eration behind the obstacle: temporal sequence of a vortex-pair
generation period. The parameters of the laser are F =10,

f*=0.1, n=0.1, T=0.1, Dy=10, B=0, b=5a, Fpymp,=0.5,
Fnole —=0.05. The temporal step between snapshots is A7=0.075.
The white spot in the center of the intensity snapshots (upper
pictures) corresponds to a hole in one mirror; the “laser photon-
ic gas” flow caused by mirror tilting is directed to the right.
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FIG. 7. Trajectories of the vortices generated behind the obs-
tacle in the flow. The crosses mark the positions where the vor-
tex pairs are generated or annihilated. The dotted arc indicates
the half-intensity contour line of the laser beam; the solid circle
represents the mirror hole. The parameters are as in Fig. 6.

verse coordinate x: u5(r)=—ar?+bx. In a laser, this
can be realized by tilting of a mirror. A circular obstacle
was created numerically by introducing higher losses in a
circular area around the laser axis (a ‘“hole” in the
center of one of the resonator mirrors): pu;j(r)
=exp(—r?/r}ump) —exp(—r2/rie).

In Fig. 6, the temporal sequence of radiation intensity
and sine-of-phase is presented. The periodic generation
of optical vortices (the white spots in the intensity picture

and phase singularities in the sine-of-phase picture) is
clearly observed. A cavity with Fresnel number F =10
was assumed, which does not allow one to observe simul-
taneously more than two vortex pairs in the laser beam
cross section. The Fresnel number (and the correspond-
ing Reynolds number) is too small. This case, however, is
close to experiments, where large Fresnel numbers are
usually difficult to obtain.

Figure 7 gives the trajectories of the vortices. It is seen
that two vortex pairs are generated behind the obstacle in
the stream. Two of the vortices are caught by the stream
and are carried away from the obstacle, while two other
vortices quickly annihilate in the deadwater of the obsta-
cle.

The numerical calculation shows that the vortex gen-
eration occurs when the laser flow velocity (phase gra-
dient induced by laser mirror tilting) is beyond a thresh-
old value. The corresponding threshold Reynolds num-
ber (Re'=ry Vg /v, Where ry . is a radius of the hole in
the cavity mirror, and v,;,=V® is the numerically evalu-
ated velocity of the laser photonic gas flow due to mirror
tilting) is approximately Re;, =40 and again corresponds
well to the minimal Reynolds number in hydrodynamics
to generate the Karman vortex street [17].

Further increase of flow velocity leads to quasiperiodic
dynamics, and to irregular (chaotic) vortex-pair genera-
tion.
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