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Theoretical description of two-photon phase conjugation in polar molecules
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Degenerate four-wave-mixing phase conjugation is analyzed in the case of two-photon transitions be-
tween levels having unequal dipole moments. The theoretical treatment is based upon a nonperturbative
solution of the density matrix and does not require the rotating-wave approximation. We give an analyt-
ical expression for the polarization component oscillating at the field frequency for a medium excited by
stationary waves. In the weak-probe-beam limit, the contributions in the direction of the probe and con-
jugated beams are evaluated. For instance, by using this two-photon process, instead of the usual single-
photon one which is independent of the permanent dipole moments even in the strong-field limit, it is
shown that lower intensities are sufhcient to reach higher reAectivities. The influences of the permanent
dipole moments, relaxation rates, and field frequency are also discussed.

PACS number(s): 42.65.Hw

1. INTRODUCTION

The generation of phase-conjugated waves by degen-
erate four-wave mixing (DFWM) has been the subject of
intense experimental and theoretical investigations dur-
ing the last decade [1—20]. Not only the generation but
arnplification and even oscillation of the conjugated fields
have been predicted and observed experimentally [4—7].
For instance, a few years ago Abrams and Lind did an ex-
tensive treatment of a two-level system interacting with
two counterpropagating pump waves, one probe wave,
and the resulting conjugated wave, all having the same
frequency [8]. In their description, the pump waves can
be intense enough to saturate the medium, while the
dependence of the polarization on the probe and conju-
gate waves is restricted to the linear regime. Their theory
has been generalized by Fu and Sargent to the nondegen-
erate case. Then the signal-wave frequency can deviate
from the pump-wave frequency [9]. Later, Brown includ-
ed the effects of pump absorption and depletion [10].
More recently, further studies have been developed to in-
clude processes such as saturation effects in Doppler-
broadened media [11] or transient phenomena [12—15].
Finally, optical phase conjugation by two-photon DFWM
has also been the subject of many works [16—20].

In this paper, we analyze a two-photon phase-
conjugation process in a medium modeled by two-level
systems having unequal dipole moments. It has been
shown previously that such systems exhibit multiphoton
transitions [21,22], enhanced two-photon transitions
[23,24], second-harmonic generation [25], Raman scatter-
ing and wave mixing of arbitrary order [26], and optical
bistability [27,28]. The effects of permanent dipole mo-
ments on single-photon and multiphoton resonance
profiles of two-level systems interacting with either a
monochromatic field, two nondegenerate optical fields, an
optical field applied simultaneously with a static electric
field, or a short pulse in the presence of a continuous
wave have also been considered in the literature [29—36].

Recently, Lavoine, Hoerner, and Villaeys have calculated
the third-order nonlinear polarization of a homogeneous-
ly broadened two-level system with permanent dipole mo-
ments [37]. The role of the permanent dipole moments,
as well as the inhuence of the rotational diffusion and
field polarizations on a two-photon DFWM process, has
been studied. Moreover, this process has also been dis-
cussed in the particular case of phase conjugation [38].
However, only the weak-field-limit case has been de-
scribed by using a perturbative approach. Therefore it
does not include the case where large reAectivities are
achieved because relatively high intensities are involved.

The purpose of this work is to analyze DFWM phase
conjugation in a medium modeled by two-level systems
having unequal permanent dipole moments under strong
excitation. In Sec. II, the density matrix formalism is in-
troduced to establish the expression of the polarization
oscillating at the field frequency. Assuming that all fields
have the same frequency and parallel polarization, the
Liouville equation has been solved in the steady-state re-
gime. Our treatment does not require either the
rotating-wave approximation (RWA) or a perturbational
treatment. Of particular interest is the inclusion of the
off-resonance polarization terms because the process un-
der study occurs far from the resonance frequency. We
shall assume that the molecules in the medium are paral-
lel. This assumption is not very restrictive since in the
perturbative limit it has been shown that for large de-
phasing rates rotational diffusion has no effect on such
two-photon processes [37]. This softens the limitation of
the approximation. In Sec. III, we evaluate the power-
reAection coefficient and, in Sec. IV, we discuss the
inAuence of the frequency detuning, dephasing rates, and
permanent dipole moments on this coefficient, especially
near the threshold intensity at which coupled-mode oscil-
lations are predicted. Finally, by using this two-photon
process, it is clearly demonstrated that high reAectivities
can be reached very often for lower light intensities than
those required by the one-photon process described by
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Abrams and Lind. A criterion which states this interest-
ing situation is established.

II. THEORETICAL FORMULATION

N ONLINE A R

MEDIUM

Qp i
(3t
P = ——[H, +v,p] —rp. (2.1)

Here, p(t) is the density matrix of the total system, Ho
the unperturbed Harniltonian of the system alone,

(H, ),, =X~„n,j
p the dipole moment, and

(2.2)

The dynamical evolution of a quantum system under-
going relaxation and dephasing processes, and which is
optically excited, is well described by the Liouville equa-
tion which takes the form

z=0

FICx. 1. Representation of the four-wave-mixing
configuration used in the present study. N~ and 8, are the non-
saturating probe and conjugate waves, respectively.

where the subscripts f and b denote the forward- and
backward-directed pump waves and p and s the probe
and reAected signal waves. The k-vector phase-matching
conditions for DFWM are

V= —p.E (2.3) kf+kb —k —k, =0 . (2.10)

(d)r..., =-,(r„.„.+r„„.)+r„„, (2.4)

where I ';" stands for the pure dephasing constant. These
matrix elements satisfy the sum rule

riiii = X rjjii
j (wi)

(2.5)

The active medium is modeled by an ensemble of homo-
geneously broadened two-level systems. We label 1 the
ground state and 2 the excited state. Each two-level sys-
tem is characterized by longitudinal and transverse decay
rates

the dipole radiation-rnatter interaction generated by the
classical optical field E. As usual, I is the tetradic damp-
ing operator. In the Markov approximation, we only
need to consider I;;;; which is the total decay rate of level
i, I;;J, the transition rate of the j~i transition, and the
dephasing constant

P =Tr(itip),

d
812(P21+P12)+ 2

(2.11)

Here, w =pz2 —p» stands for the population difFerence
and is equal to w, in the absence of fields,

r»» —r„„
Ws r»»+r„„ (2.12)

All fields are assumed to have parallel polarizations and
the angle between kf and k is assumed to be small. To
simplify our model, we consider p as a real matrix and all
dipole moments parallel to the field polarization. This
last assumption is not restrictive, most molecules having
lower than 10' angles between the various dipole mo-
ments. Therefore vector notation can be omitted.

The microscopic polarization I' of a two-level system
whose levels have permanent dipole moments is given by

r, =r»»+r„„ (2.6)
The quantity d is the di6'erence between the permanent
dipole moments of the ground and excited states, that is
to say, d=p22 —p». In terms of population difference
and coherence, the Liouville equation takes the form

(2.7)

respectively. The transition energy is defined by
A'co21=fi(co2 coi). We assum—e that the energy levels of
the microscopic two-level systems have permanent dipole
moments so that p have nondiagonal and diagonal corn-
ponents, as well. They can be written as

P» P12

F21 822

Consider the situation illustrated in Fig. 1. The station-
ary electric field is taken as

Bw

at

—2iP, 2 E (P21 P12 ) r 1 ( to (2.13a)

~P12 iP12 id
(~io21 r2)p12+ g

Eui
g EP12 ~ (2.13b)

Bt

P21 P12 (2.13c)

(m)eimcot (2.14)

The nonlinear coupling between field and system leads to
harmonic generation. Therefore the density matrix ele-
ments can be expanded in a Fourier series of the form
[24]

E=he' '+c.c. , (2.8)

with

8= g Aje ', j=f,b,p, and s,
J

(2.9)

where p', . ' are slowly varying terms. Substituting expan-
sion (2.14) along with the field (2.8) into the density ma-
trix equation (2.13) leads to recursion relations between
the coefficients p'; '. These recursion relations are tedi-
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ous. For the sake of simplicity, the Fourier series is trun-
cated to retain only the components of lowest order on
field amplitude up to m =2. Consequently, expression
(2.14) reduces to

w =wo+w, e' '+w2e ' '+w3e ' '+w4e ' ', (2.15a)

(2.15b)

(a)

This treatment is nonperturbative because all the cou-
plings between all the density matrix elements are includ-
ed exactly. In particular, one- and two-photon processes
are included to infinite order. However, this procedure
rejects the rapidly oscillating terms which correspond to
third- or higher-order processes, so that we exclude net
three- and higher-photon absorption.

Furthermore, for our purpose, we have to include in
the model rnultiphoton processes like those described in
Fig. 2. This figure shows clearly that the only terms p';.
which lead to important contributions are those having
the same frequency dependence as the terms appearing in
the perturbative limit: wo and p, near the one-photon
resonance and wo, w &, w2, p„and p3 near the two-photon
resonance. Notice that the dots stand for an arbitrary
number of pairs of absorbed and emitted photons which
are processes having net zero-photon absorption. There-
fore expansion (2.15) reduces to

(b)

FIG. 2. We sketch the diagrams associated with rnultiphoton
processes having net one-photon absorption for (a) ~=m» and
(b) co=co»/2. The dots symbolize an arbitrary number of pairs
of absorbed and emitted photons. In both cases, the three first
arrows represent the diagrams associated with the perturbative
limit. In our model these processes are included to infinite or-
der.

w =wo+ w&e' '+ w2e (2.16a)

e loot+ e 2lcot (2.16b)

i — = Ap+8,. Bp
Bt

where

(2.17)

Also, because w is a real quantity we have w2 =w*, . Sub-
stitution of expansion (2.16) into Eqs. (2.13) yields

Wo

pi

—6 w1 s

0
0
0
0
0
0

(2.18)

0 0 —2XA' 0 2XD 0

0
62
0

0 0

0

—2XD*

0

0

0 2XA'

0 0

0 —X6 0

X@* 0 0

0 X@*
0

G9

0

0

0

6„

0

0

(2.19)

Pi2 dX=
2A

'
2A

Y= 6 = —~I 6 = —ir+~ 6 = —ir —~
(2.20)

67 = l I 2 C02~+CO 69 = l I 2 C02~+2Ct) G]2 = 67 and G$4 69
All previous notations will be useful to simplify the evaluation of the population and the coherences created in the sys-
tern.
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III. EVALUATION OF THE POWER-REFLECTION COEFFICIENT

The evaluation of the power-reAection coefllcient requires the solution of Eq. (2.17). In the steady-state regime, it can
be obtained easily. Therefore the components of the polarization oscillating at the field frequency

dP(~) =V]~]+—w]
2

can be deduced. It takes the form

[I@ (2X G,2+ Y G3)—G]46]~63][l@ (2X + Y ) —G9G2]
P((o) = —i]riw, I,X (o

A, I@I'+A, I@I'+A, le '+ A,

(3.1)

(3.2)

where

A(]= —4X [2X (G]3+67)+Y (63+G2)], (3.3a)
(2X +Y )(2XG —YG )

C((o)= —i]]iw, I,
8X2(21 X2+I ] Y2)

(3.5)

A, =4X (G]46]~63+6]46763+6]36962
+G]3676]+69676$ )

+2X Y' (6,463G2+G]2G26]+G9G3G2

+67G36] )+ Y 63626]
A2 = —2X (G]46]3696362+6]46]267636]

+6]469G76362 +G]2 69G7G26] )

—Y (G]46,2G362G, +69G7G3G2G]),

3 14 12 9 7 3G2G

(3.3b)

(3.3c)

(3.3d)

This polarization characterizes the response of the
medium, oscillating at the field pulsation, for DFWM in
the presence of arbitrary strong fields. For nonpolar mol-
ecules, Y=O and we recover the well-known result ob-
tained in the near-resonant case [39]. In general, when
YAO, P((o) can be written into the form

G9 G2 —G 14 G12 G3

(2X + Y ) (2X 6]3—Y 63)
(3.6)

the quantities x „x2,x 3 being the roots of the equation

A0x + A1x +A2x+ A3=0 . (3.7)

( =( 0+6(o,
with

—ik .r —ik -r
@0 @fe + @b

and

we can expand P((o) as

(3.8)

(3.9a)

(3.9b)

In the weak-probe limit, it is assumed that the probe-
and signal-wave amplitudes are small compared with
those of the pump waves. In that case, P((o) can be ex-
panded to first order in 8, +6 . By taking

( (I( '—yo)(l( I' —y])
P((o) =C((o) (3.4)

P(co) = 6' PD( ])(+oh, @P2((o)+b,@*P3((o) .

Here, we have

(3.10)

(
I
(:Ol' —yo &( I

@ol'—y] )
P]((o)=C((o)

(I &ol' —x] &(I &ol' —x2 &(I @01'—x3 &

'

( OI'[2I ( OI' —(yo+y] )]P,((o)=C((o)

(I@ol'—x &(I@ol'—x, )(l@,l' —x, )
1 — + +1 1 1

(3.11a)

(3.11b)

and
[2I @01 (yo+y] )]

P3((o)=C((o)60
( I @,I' —x] )( I @,I' —x, )( I @01'—x3 &

(I( oI' —yo)(I@oI'—y )

( I
@01'—x] )(

I
col' —x2)( I

@ol'—x 3)
+ 2 +1 1

I
@01'—x3

(3.11c)
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This result constitutes the complete response of the medi-
um for DFWM in the presence of arbitrary strong pumps
but weak probe and signal beams. The quantities P, (co)
and P2(co) correspond to the saturating absorption and
nonlinear dispersion and P3(co) is responsible for the
phase-conjugate signal.

We can now introduce the polarization into the com-
plete set of Maxwell equations to evaluate the response.
The total field vector E satisfies the wave equation

1 BE 1 BP
c Bt 6 c Bt

(3.12)

Bz
= —ah i P6',*, — (3.13a)

s =a@,+iP6* .
Bz

(3.13b)

The quantities a and P are deduced from the Fourier
components of P2(co) and P3(co), respectively. This eval-
uation can be done analytically but the expressions are
quite cumbersome and are not given here. For the solu-
tion of interest, the boundary conditions for Eqs. (3.13)
are specified as

(z=0)=C (0), 6, (z =L)=0,
L being the length of the medium. Therefore the integra-
tion of Eqs. (3.13) yields the power-reflection coefficient

2 2

R = P sin(yL)
6~(0) y cos(yL )+a„sin(yL)

(3.14)

where y =
~P~

—a„, a„being the real part of the
coefFicient a. The magnitude of y gives a measure of
how the strength of the nonlinearity exceeds the absorp-
tion of the medium. If ~P~

~ a„, the oscillation condition
R ~ ~ becomes

tan(yL) =— (3.15)

For an appropriate length of the medium, this device acts
as a reflection amplifier, since the reflected wave ampli-
tude exceeds that of the input. The FWM process, in
analogy to a backward parametric oscillator [40], can os-
cillate without mirror feedback.

IV. DISCUSSION

All along, we assume that the medium is not excited at
the initial time so that w, = —1. In that case, to achieve

where c and E'0 are respectively, the velocity of light and
the dielectric constant in the vacuum, and N the molecu-
lar density of the active species. In general, the coupled-
wave equations for the full set of waves must be solved.
However, in the weak-probe-beam limit the equation for
the pump fields can be decoupled from those of the probe
and the signal fields. Moreover, in the slowly-varying-
envelope approximation, and neglecting the depletion of
the pump waves, we find the standard coupled amplitude
equations of motion considered by Abrams and Lind [8],

large intensities of the phase-conjugate reflected wave,
the nonlinear coupling must be sufficiently strong to
dominate the absorption (~P~ &a„). If this threshold is
exceeded, we can always find a sufficiently large value of
L, inducing coupled-mode oscillations. To reach this
threshold a minimal intensity is required and, of course,
the experimental feasibility depends strongly on the mag-
nitude of this intensity. Our purpose in this paper is to
make clear that, in a number of situations, lower intensi-
ties are sufficient to reach high reflectivities by using the
two-photon process of interest here, instead of the usual
one-photon process.

A. One-photon case

In order to compare the one- and two-photon process-
es, we consider first the case where d%0 and co=co2, .
For this resonant situation, no modifications have been
observed with respect to the situation where d =0, even
in the strong-field limit. According to the results ob-
tained in the perturbative limit [37], this process is not
very sensitive to the presence of the permanent dipole
moments.

In the Appendix we recall briefly the Abrams and Lind
results for the resonant case [8], in order to emphasize
the highest reflectivity which can be achieved for a given
intensity. In short, they have shown that for line-center
operation, co=co2&, the reflectivity saturates but never be-
comes greater than unity. This saturation occurs because
the increase in reflectivity with the medium length L due
to the increasing number of absorbers is compensated by
the increase in absorption of the probe and conjugate sig-
nals as they propagate through the medium. To observe
reflectivities higher than unity requires operation oft line
center. However, the cost of this increase of the power-
reflection coefficient is the requirement that the pump in-
tensity increases as I+5 times I,„(li en-ce tner satur-
ation intensity). The minimal intensity needed to
achieve coupled-mode oscillations is I =2I„„when
I~ —~~iI/12=&3.

A I,I2
sat 2 0

P&2
(4.1)

It is important to note that this saturation intensity de-
pends on the longitudinal and transverse decay rates.
Figure 3 shows the reflectivity for the one- and two-
photon processes. Curve (a) is obtained from expression
(A3) of the Appendix. It is the optimum value of the
power-reflection coefficient which can be achieved for
I (I,„.Curve (b) results from Eq. (3.14) where a and P
have been deduced from Eqs. (3.11b) and (3.11c) by
selecting the phase-matched components. Obviously, the
two-photon process led to higher reflectivities than the
one-photon process, for relatively low intensities. Note

B. Two-photon case

Now we consider the two-photon case corresponding
to the situation ~=m2, /2. In the following, we normal-
ize the intensities with respect to the line-center satura-
tion intensity for the one-photon transition, that is to say,
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that in curve (b) the normalized detuning

FIG. 3. Variation of the reAectivity R vs I/I, „, for
I,=4X10 s ', I =2X10 s ', p, =2 5X10 Cm,
d =10@&z, co»=4X10" s ', and NL =5X10 ' mol/crn, (a)
one-photon transition case with 6=0 and (b) two-photon transi-
tion case with 6'= —1.5.

general behavior is similar to that of the resonant case.
Actually, for small values of XI, the reAectivity increases
linearly with 1VI.. As XI becomes large, the oscillation
condition can be satisfied and amplification of the
rejected wave is observed. The more NL increases the
more the intensity needed to observe amplification de-
creases and this continues up to the threshold value.
Moreover, at low intensities, the power-reAection
coefficient increases proportionally to I, then saturates
before decreasing linearly with intensity. The saturation
occurs for very high intensities here, I„, being about
10000 times the line-center saturation intensity. It corre-
sponds to an intensity of about 0.2 MW/cm for the
values of the parameters shown in Fig. 4. The need for
high intensities occurs because the exciting fields are far
from any dipole-allowed transition of the medium, so that
coupling and absorption coefficients are much smaller
than for the resonant case. The same reason holds to ex-
plain the need of longer samples to achieve high
reQectivities.

As it can be seen in the perturbative limit [37], the two
processes involved are quite different. First, in the reso-
nant case, the second-order population is the basic quan-
tity for the FWM signal. The perturbative chain can be
schematized as follows:

(co —co2, /2)
Qt

I2

(1) (2) (3)
P21 P11 P21

(0)
Pll ( 1) ~ (2) (3)

P12 P22 P12
(4.2)

is not equal to zero as will be discussed later. Figure 3
clearly illustrates the interest of this two-photon process
for phase-conjugation experiments. In what follows, we
are going to study the inhuence of the various parameters
on the efficiency of this device.

First, let us look at the general behavior of the
reQectivity as a function of the normalized intensity
which is plotted in Fig. 4. Here 5' is equal to zero. The

(1)
P21

(o)
P 1 1 ~ (1)

P12
(1)

P21
(0)

P 1 1 ~ (1)
P12

(2)
P21

(2)
P12

(2)
P21

(2)
P12

(3)
P21

(3)
P12

(3)
P22

(3)
P 1 1

(4.3)

(4.4)

For the two-photon process involved here, it has been
shown [37] that the main contribution to the DFWM sig-
nal can be represented by two perturbation chains,

105

10'

10-1o

10' 10 104 106

Unlike the case of two-level phase conjugation, no popu-
lation grating is involved in this process. Therefore the
coherences are the basic quantities.

From the previous discussion it has to be mentioned
that we recover here a situation similar to the one ob-
served in standard two-photon DFWM [18] where at
least there levels are involved. At low intensities, the pri-
mary phase-conjugate contribution results from the con-
jugated signal interacting with a two-photon coherence
term whose pump wave-vector dependence cancels out.
The perturbation chains can be schematized as follows:

(1) ' ' (2) (3) '
P21 P13 P23

P 1 1 (1) (2) ~ (3)
(0) (4.5)

P12 P31 P32
(1) (2) (3)

P21 P13 P21
(0)

P 1 1 (1) (2) (3)
P12 P31 P12

FIG. 4. Dependence of the reAectivity R with I/I„, for the
two-photon process. The values of the parameters are the same
as in Fig. 3, except 5' =0 and (a) NL =5 X 10', (b)
NL =5 X 10",(c) NL =5 X 10', and (d) NL =5 X 10' mol/cm .

A comparison between chains (4.3) and (4.5), (4.4) and
(4.6), shows that owing to a diFerence in permanent di-
pole moments between the two levels, the excited state
acts as the intermediate states in a standard two-photon



1570 Co HOERNER& Je P o LAVOOINE, AND A. A. VILLAEYS 48

process. Here, d =
tion moment between the intermedi

—p22
—p„ takes the role of the transi-

or er oscillating populations pla the ro
th (4.5) B

directly in th
ecause the dia on

'n e expression for the ola
'

'
gonal elements appear

po an o s ho
, osci ating populations take ar

conjugated signal.
s a e part to the phase-

For sufficiently large pump intensities op o

phase conjugation described b Fu
S k- hif l'

pure-in ex phase-con'u at'
'h h e index contribution due
o- hot ho on co erence by the um

first contribution a
''

n arises from the form
pump waves. The

grating and is h
ormation of a spatial

an is t e strong-field analo to a

d fRd d'
nno prevent bleachin . W

11 d h e contribution which results
ts' 1 h to tr

pears that this contrib t'
on ransition by takin d =

tial grating term i ld h
n ri ution is negli ible

tested the res ect'
yie s p ase con'u atij g 'on. We have also

respective contributions of w and
two contributions b h

w& an p, . These
e ave similarly and hav

mately the same m d .e magnitude. For thi
, populations an

in e same ratio. Finall wen . '
y, we can note that the

in ensity seems to behave ro
2 e standard two- ho

Now w, we are interested in the influence
t th lfe se -oscillation threshold in

order to deduce crit t h 'gh reflectivities withcri eria to achieve hi "
o on process. Figure 5 s

reflection coeffi
'

'g shows the power-

di m length than at exact
ing /P/—

an at exact half resonance. By stud-

h h h h 1res o is considerably reduce
frequencies which d'ffic i er from exact half res
amount of a few I . Th'

resonance by an

the absorption is h
2. is arises because thee decrease of

is muc aster than the one
linear coupling coeffi

'
coe cient when the detunin i

e one of the non-

intensities below the
can e dominated.so that absorption c b d d. Furthermore, for

e ow the saturation intensit I
reflectivity behaves sym t '

ll r ps symmetrica 1 with r
en t e pump intensity is increased, this

avior ecomes asymmetric and much hi

inngs than for positive o Th' '
e r

'en s can e achieved for ne ative
e ones. is shift of the r

tl to th py o t e one of the absor
ing coe cient. In this limit w

i h i ( „0).To~ g o g
ems under stron g excitation, a complete

10

10

10'
~ gag

~ ling~

10'I
Q

10-'

10
-5.0 -2.5 0.0

( u3 - 032 1 / 2 ) / I 2

5.0

FIG. 5. De endp dence of the reflectivity R with n

values of the paramet
& for the two- hotonf -p n process. The

arne ers are the same as in F'
( ) NL= 1o2o

mol/cm .
, (b) NL =10 '

, and (c) NL=1.9X10 '

1.5

0.0

-1.5

-3.0
10 10 10' 10

FICx. 6. We represent fPf-
two-photon process. The v l

n —a„as a function of I/I», for the

p
~ ~

e va ues of the aramet

( )

a &=2X10, (b I

quantum-mechanical treatment, such ament, s s t d d-atom
, is necessary. Moreover

have the same fre
er, ere all the waves

e requency and this makes the un

In order to study the influence of ure
th o li dth h ld'res o intensit I
P/

—a„as a function o
y~ thres& we have plotted

s a unction of normalized intensit in Fi
is important to note that th
proportional to the de hasin

a t e normalization factoi Isat is
e ep asing rate. We introduce this



48 THEORETICAL DESCRIPTION OF TWO-PHOTON PHASE. . . 1571

(c)

-3
10

I

10'
I

10 104
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V. CONCLUSION

We have developed a general theory of two-photon
DFWM phase conjugation for a medium modeled by
homogeneously broadened two-level systems having un-

normalization because our purpose is to make a compar-
ison with the resonant process. Figure 6 shows that I,h„,
increases strongly with pure dephasing. The arrow
denotes the normalized threshold intensity for the reso-
nant case, where I„, takes into account the sole depen-
dence on the dephasing rate. The oscillation conditions
are not easily achieved because the off-resonant single-
photon contribution increases as well. In fact, we have
studied the behavior of a„and ~p~ as a function of detun-
ing when the dephasing becomes important, taking
d = 10p]2 and d =0. Fol d = 10p ]2 the spectrum gets
broader, and the broadening is proportional to the de-
phasing rate, as expected. In addition, we observe a con-
stant contribution in this spectral range. We recover this
contribution by taking d =0. Therefore it results from
off-resonance single-photon processes. For the dephasing
rates given in Fig. 6, this background is much more im-
portant for the absorption than for the nonlinear cou-
pling, and consequently prevents more and more ~p~ from
dominating a„.

Finally, in Fig. 7 we have plotted ~p~
—a„as a function

of the intensity for various values of d. Note that the
normalized detuning is 5'= —6. We recover the situation
obtained in the perturbative limit [37], that is to say, the
strong dependence of this two-photon process with the
difference of the permanent dipole moments of the two
levels. It seems that I,h„, but also I», behave propor-
tionally to d . For intensities of the order of I„„the
absorption coefficient is almost independent of d, even if
~P~ increase as d . Therefore the greater the difference in
dipole moments, the smaller the normalized threshold in-
tensity for this near-half-resonant case.

equal permanent dipole moments, and valid for arbitrari-
ly strong excitation fields. In the particular case of weak
probe and signal beams, the reAectivity of the phase-
conjugated wave has been evaluated. Comparisons be-
tween this two-photon process and the well-known one-
and standard two-photon processes have been estab-
lished. We have discussed the influence of frequency de-
tuning, dephasing rate, and permanent dipole moments
on the power-reAection coefficient, especially near the
threshold intensity for which coupled-mode oscillations
are predicted.

For polar molecules, it has been clearly demonstrated
by using field frequencies in the vicinity of the half transi-
tion frequency that it must be possible to obtain much
higher reAectivities than in the near-resonance case. In
this study, we have established a criterion to define the
interesting physical situations. In fact, because the ab-
sorption decreases faster than the nonlinear coupling
when deviating from half resonance, it is of interest
to consider situations where detunings from half reso-
nance are of the order of a few dephasing rates
(~co —

F02, /2~ -I z). Furthermore, pure dephasing must
be small (I 2~ 10I, ), in order to avoid off-resonance
single-photon contributions which increase the absorp-
tion more rapidly than the nonlinear coupling. Finally,
for intensities comparable to the line-center saturation in-
tensity I„„the absorption is almost independent of d
whereas nonlinear coupling increases like d . Conse-
quently, the more d =

p22
—p» is important with respect

to p, 2, the more this device will be adapted to phase-
conjugation experiments.

To conclude, it has to be noted that this two-photon
process occurs on a spectral range where the medium is
transparent. This can be very useful in phase-conjugation
experiments where thermal gratings and sample degrada-
tion should be avoided. Finally, in the region where
high-power-reAection coefficients are predicted, the ab-
sorption and depletion of the pump waves can no longer
be neglected [10]. A complete account of these phenome-
na requires the solution of more complex dynamical
equations for the field amplitudes and their correspond-
ing phases. They will be discussed in a forthcoming pre-
sentation.
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APPENDIX

In this appendix we briefly recall the results obtained
by Abrams and Lind for resonant DFWM phase conjuga-
tion [8], in order to specify the limiting value of the
power-refiection coeKcient for the one-photon resonant
case. If the two pump waves have the same intensity, the
expressions for a and P are given by
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1 —l5 2/ ~ t

I+5 (1+4I/I„, )

(Al)

(A2)

the conjugate signal. From the behavior of ~P~
—ct„one

can see that the smallest intensity needed to reach the os-
cillation conditions is achieved at I/I„, =2 for 5=V3.
Furthermore, for I (I„,no oscillation can be reached.
In this case, the optimum value of the power-reAection
coefficient is obtained for 5=0,

Here ao stands for the line-center small-signal-Geld at-
tenuation coefficient, 5 is the normalized detuning from
the line center defined by 5= (co —

co2i ) /I 2, and
I„t=(1+5 )I,„where I»t is the line-center saturation
intensity. We shall be interested in the optimization of

2I/I„,
1+2I/I,„++1 +4I/I„,

2

(A3)
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