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Minimum-uncertainty states in variables which are quadratic in mode creation and annihilation

operators can be used to increase the accuracy of interferometric measurements. For a general inter-

ferometer we show how to find the relevant uncertainty relation. We consider two specific examples, a

Mach-Zehnder interferometer and a Mach-Zehnder interferometer in which the first beam splitter has

been replaced by a four-wave mixer. For both devices su(2) squeezed minimum-uncertainty states can be

used to achieve phase-measurement accuracies of 1/N, where N is the total photon number at the input.
We also describe a method of producing approximate versions of these states.

PACS number(s): 42.50.Dv, 42.25.Hz, 07.60.Ly

I. INTRODUCTION

Squeezed states have been a topic of major interest in
quantum optics for the past ten years [1]. Much work,
both theoretical and experimental, has been done on their
properties and on methods of producing them. One of
the principal reasons for the interest in squeezed states is
their utility in increasing the accuracy of interferometric
measurements [2].

An interferometer typically has two input ports and
two output ports. The quantity to be measured, usually a
phase shift, is determined by measuring the difference in
the numbers of photons emerging from the two output
ports. The minimum phase shift which one can measure,
the accuracy of the interferometer, is determined by the
fluctuations in the input light. If a coherent state is sent
into one of the input ports and the vacuum into the oth-
er, then the accuracy is I/&N, where N is the mean
number of photons in the input state. If a standard
squeezed state with squeezing parameter r )0 is sent into
the second port instead of the vacuum, then the accuracy
becomes e "/&N. It is possible to do better.

This was shown in a general and elegant analysis of in-
terferometers by Yurke, McCall, and Klauder [3]. They
showed that a Mach-Zehnder interferometer can be ana-
lyzed using the group SU(2) and that other interferome-
ters, in which the beam splitters are replaced by four-
wave mixers, can be analyzed using SU(1,1). These obser-
vations have been employed by subsequent authors to ex-
amine how different input states are transformed by beam
splitters and four-wave mixers [4,5]. Their group-
theoretical analysis allowed Yurke, McCall, and Klauder
to find an input state which allows one to measure a
phase shift of order 1/N.

In a separate line of work the idea of squeezing was
generalized to operators more complicated than the
quadrature components of a field mode. In particular,
operators quadratic in the mode creation and annihila-
tion operators have been considered [6—8]. For example,
one can find squeezed states for the operators which con-
stitute the Schwinger representation of the angular-

momentum operators [9]. Because these operators form
a representation of the su(2) Lie algebra, the resulting
states are called su(2) squeezed states.

The angular-momentum operators satisfy an uncertain-
ty relation which is an inequality. States which obey this
relation as an equality will be referred to as minimum-
uncertainty states. A particular subset of su(2) squeezed
states are also minimum-uncertainty states. These states
were first derived by Aragone et al. , who called them "in-
telligent states" [10,11].

This paper will show that these states are useful for in-
terferometry and can lead to phase-measurement accura-
cies of order 1/N. We show this for both a standard
Mach-Zehnder interferometer and a modified Mach-
Zehnder interferometer in which the first beam splitter is
replaced by a four-wave mixer. The modified interferom-
eter can achieve the same accuracy as the standard one
with a lower level of su(2) squeezing. We will also de-
scribe how to produce approximate versions of these
states. We are thus able to extend the results of Yurke,
McCall, and Klauder and also to show that an explicit
connection exists between higher-order squeezing and im-
proved interferometric measurements.

We also consider more general interferometers and
show that each interferometer has a set of minimum-
uncertainty states associated with it. The interferometers
can consist of different combinations of beam split-
ters, four-wave mixers, and degenerate parametric
amplifiers. The specific arrangement determines the
operators which describe the phase-measurement accura-
cy of the device. These operators obey an uncertainty re-
lation which, in turn, leads to a family of minimum-
uncertainty states. These states should prove useful in
analyzing the performance of the interferometer. In the
case of the standard and modified Mach-Zehnder inter-
ferometers, this procedure yields the su(2) minimum-
uncertainty states.

II. DESCRIPTION OF INTERFEROMKTKRS

In this section we review the description of a Mach-
Zehnder interferometer developed in Ref. [3] and show
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—1 —1
out

= U a1in U, a2out U a2in U (2.1)

Because the beam splitter is a linear device, we can
represent the action of U by a unitary 2 X 2 matrix, i.e.,

a 1out U11 U12 a1

U21 U22 a21n
(2.2)

how it is related to minimum-uncertainty states. We also
show how these considerations can be generalized to in-
terferometers containing elements other than beam split-
ters, such as four-wave mixers or degenerate parametric
amplifiers.

A Mach-Zehnder interferometer consists of two beam
splitters. Each beam splitter has two input ports and two
output ports (see Fig. 1). It can be described by a unitary
operator U, the scattering matrix, which relates the in an-
nihilation operators to the out annihilation operators by

where k, m, and n run from 1 to 3 and ek
„

is the com-
pletely antisymmetric tensor of rank 3. As was shown by
Yurke, McCall, and Klauder, a Mach-Zehnder inter-
ferometer can be described in terms of these operators
alone [3]. This is because what is measured at the output
of the interferometer is J3 and the beam-splitter transfor-
mations act like rotations which transform the angular-
momentum operators among themselves. Therefore, the
measurement of J3 at the output corresponds to the mea-
surement of a variable which is a linear combination of
J1, J2, and J3 at the input.

The operator U can be expressed as the exponential of i
times a linear combination of the operators in Eq. (2.4)
[3,4]. We shall be interested in two particular examples.
The first is described by the operator U,
=exp( —im J, /2), which corresponds to the 2X2 matrix
[see Eq. (2.2)]

If we work with states instead of operators, then U is the
operator which transforms the input state lin) into the
output state lout),

a1put 1 —i 1 a 2in

1 —i a»n
(2.6)

out) = Ulin) . (2.3)
and the second is given by Uz =exp(ivrJ, /2), which cor-
responds to

J, =(a &az+a&az)/2,

J2 ———i(a tlaz —a la zt)/2,

J3 (a la 1 a2a2)/2

(2.4)

These operators are the Schwinger representation of the
angular-momentum operators [9]. They obey the su(2)
commutation relations

[Jk J 1 i~k (2.5)

~2out
sk

At this point we shall adopt the convention that opera-
tors without an "in" or an "out" subscript are "in"
operators. Because most of the operators which we shall
be considering will be in operators, this convention will
prove to be convenient.

It is also useful to look at the action of U on the opera-
tors [3,4]

a1out

a2out

1 j a ]in1

3/2 i 1 a2n
(2.7)

We are now ready to form a Mach-Zehnder inter-
ferometer (see Fig. 2). The first beam splitter is described
by U, and the second by U2. The device producing a
phase shift P in one of the le~s is described by the unitary
operator U(P) =exp( i/a, a—, ). It is changes in the
phase shift which we wish to measure.

If we consider the interferometer as a whole, the out-
put state is related to the input state by

lout) =UzU(P)U&lin) . (2.8)

In order to measure changes in the phase shift P, we
usually measure the difference between the photon num-
bers at the output ports, i.e.,

J3()gf (a ]()/ta )0/i a 2()/ta2&)gg ) /2

Changes 5P in the phase angle are detected by the

~1out

u, U2

2ln
2ln 2out

FIG. 1. Beam splitter. The annihilation operators al;„and
a2;„correspond to the input fields and a &,„,and a2,„,correspond
to the output fields.

FICx. 2. A Mach-Zehnder interferometer. The first beam
splitter is described by the unitary operator Ui and the second
by the unitary operator U&. The device between the beam split-
ters produces a phase shift P.
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changes they create in the expectation value of J3ong.
Since there are fluctuations in J3,„„aphase change is
detectable only if it induces a change in (J3,„,) which is
larger than EJ3,„,. Therefore, the minimum detectable
phase change is given by

5p=b, J3,„, d(J,.„,)
(2.9)

= —sing(inl J, lin) +cosP(inl J3 lin), (2.10)

from which one concludes that

d&J,.„,) = —cosP(inl Ji lin) —sing(inlJ3 lin& . (2.11)

To consider small changes about /=0 we shall evaluate
the above equation at /=0. We also find that

b,J„„,=AJ„„=[(inl J,'lin) —(inlJ, lin)']'~',

so that

ny=~J, /l & J, ) l, (2.12)

where we again remark that quantities without "in" or
"out" subscripts are "in" quantities.

The commutation relations obeyed by J„J2,and J3
imply that these operators satisfy the uncertainty relation

(2.13)

This, in conjunction with Eq. (2.12), implies that

5/~ 1/(2b J2) . (2.14)

This relation will be satisfied as an equality by states
which satisfy Eq. (2.13) as an equality, i.e., minimum-
uncertainty states in Jz and J3. Such a minimum-
uncertainty state with a large value of AJ2 would allow
us to measure small changes in the phase. This strongly
suggests we examine the minimum-uncertainty states in
order to see what kind of accuracies they will produce.

Before doing so, however, let us see whether such a
connection between minimum detectable phases and
minimum-uncertainty states holds for other kinds of in-
terferometers. The interferometers we consider consist of
a device with two input ports, followed by something
which produces a phase shift, followed by a second device
with two input ports. So far, we have been assuming that
the two-port devices (we label devices by the number of
input ports) are beam splitters, but this need not be the
case. Another possibility is a four-wave mixer, which is
described by the 2 X 2 matrix [3,5]

We are interested in which input states will produce a
small value of 6P, so it is useful to express Eq. (2.9) in
terms of the input state. Using Eqs. (2.6)—(2.8), one finds
that

(J,.„,& =(outl J3lout)

where p is real, v is complex, and p —lvl =1. Another
possible two-port device is a beam splitter followed by
two degenerate parametric amplifiers, one at each output
port of the beam splitter. If this device is followed by a
standard beam splitter, one has an interferometer of the
type considered by Raymer and Yang [12].

Let us consider the general interferometer depicted in
Fig. 3. The action of the first four-port device is de-
scribed by a unitary operator U~ and the action of the
second by a unitary operator U~. The output state is
given in terms of the input state by

lout) =Us U(P)U„lin) . (2.16)

Let us also define the state l% ) =U„lin ), which is the
state of the field after the first two-port device. Suppose
we are measuring a variable 8' at the output in order to
determine small changes 5P in the phase. As before, we
can measure a phase change if the change it induces in
the expectation value of 8' at the output is larger than
the fluctuations in 8'. Therefore, the minimum detect-
able phase is

6p=b, W,„, d( w,„,)
(2.17)

Let us assume again the we are looking at small phase
changes about /=0. This assumption is not necessary,
but it is made for the sake of simplicity. We find that

s w.„,l~,= [& el v'le &
—

& el vie &']'"—=avl, ,

d( w',„,)
y=o

(2.18)

sy=~ vl, /I & el[+„v]le& I . (2.19)

The numerator and denominator of this expression are

(inl U~ 'U(P) 'Uii 'WUii U(P)U„lin) lp=o

= (e l[x„v]le),
where V = Uz '8'U~ and X& =a &a i. The minimum
detectable phase change is then given by

a rout

P & 2in
(2.15)

FIG. 3. A general interferometer. The Grst two-port device
is described by the unitary operator U~ and the second by the
unitary operator U&.
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again constituents of an uncertainty relation. In particu-
lar, we have tlIat

(2.20)

genvalue of J3 and runs from —j to j in integer steps.
Therefore, the state

lj,m ) satisfies the eigenvalue equa-
tions

which gives us the condition for 5$,

5$ ~ 1/(2b Ni l q, ) . (2.21)

Equality will hold in this relation for states which satisfy
Eq. (2.20) as an equality, i.e., minimum-uncertainty states
in N, and V. This again suggests that these minimum-
uncertainty states will be useful in exploring the accuracy
of the interferometer. One would find a minimum-
uncertainty state l%), which yields a small minimum
measurable phase angle, and then apply Uz ' to find the
corresponding input state. The ultimate utility of these
states depends upon how the total photon number at the
input is related to bN, for the state lV). This is because
the interferometer accuracy is expressed in terms of the
input photon number. Therefore, the final step of the
analysis is to express b,Ni l~ in terms of N and to substi-
tute the result into Eq. (2.21).

We now return to the specific case of the Mach-
Zehnder interferometer. For this we need the su(2)
minimum-uncertainty states. We shall discuss these
states and their properties.

III. su(2) MINIMUM-UNCERTAINTY STATES

Consider the uncertainty relation

(3.1)

where k is real. These states are related via a rotation to
those which satisfy Eq. (2.13) as an equality. This will be
discussed subsequently in more detail.

The parameters P and A, can be related to the proper-
ties of the state itj). The eigenvalue P is related to the
expectation values of J, and Jz, i.e.,

& ql Jily& =«(P), & pl

July�&

=(I/~)lm(P) . (3.3)

The parameter A, is a squeezing parameter. This can be
seen from the following relations, which follow from Eq.
(3.2) (see Appendix A):

Therefore, if lA, l) 1, the state lg) is squeezed in J2, and
if lA. l

( 1, then the squeezing is in J, .
Before proceeding further, we need to specify the space

of states in which we want to solve Eq. (3.2). The repre-
sentations of su(2) are labeled by the parameter j which
assumes non-negative integer and half-integer values.
Every state in the carrier space of the representation cor-
responding to j is an eigenstate of the Casimir operator
J =J, +J2+J3, with eigenvalue j(j+1). This carrier
space is spanned by the states

l j,m ), where m is the ei-

We would like to find the states which satisfy this relation
as an equality. They satisfy the eigenvalue equation
[10,13]

(3.2)

J, lj, m)=mlj, m) .

Let us connect these rather abstract, but familiar, con-
siderations back to the Schwinger representation of su(2).
If we define the total photon number %=a,a, +a~a2,
then X commutes with J„Jz,and J3, and J is given by

J =(N/2)[(N/2)+1], (3.5)

so that j is just the eigenvalue of N/2. Therefore, each
representation of su(2) corresponds to a fixed total photon
number. The operator J3 is one-half the difterence be-
tween the number of photons in the first mode and that in
the second. Therefore, the state lj, m ) corresponds to a
state with j +I photons in mode 1 and j —m photons in
mode 2, i.e.,

l j,m &
=

lj +m ),I3t
lj—m ) z . (3.6)

mO

X g ( i (/k —1)~ + [1—/( m 0
—m )!]

m= —j
X [(j—m)!/(j+m)!]'~ lj, m ) .

(3.7)

In this equation, c (A, ) is a normalization constant and
gmO

the angle 8 lies between m/2 and vr It is spec.ified by the
condition A, cosO= —1. The eigenvalue corresponding to
lg(j, mo, l, )) is P= —imo'!/A, —1. The derivation of this
equation is given in Appendix A. Another, more com-
pact form for the states is

lg(j, mo, A, )) =c'. (A, )e

Xexp(iJ /+A, —1)lj,mo), (3.8)

where 0 is as before, J is the angular-momentum lower-
ing operator, and c'. (A. ) is a different normalization

JmO

constant. Therefore, we have a two-parameter set of
minimum-uncertainty states: one parameter mo is
discrete, and the other, A, ) 1, is continuous.

We want to calculate hJ, and EJz for the states
lf(j, mo, k)). From Eqs. (3.4) we see that if we find

Here, lj+m ), designates a mode-1 number state with

j +m photons and
lj—m ) 2 designates a mode-2 number

state with j —m photons.
We want to solve Eq. (3.2) separately for each represen-

tation of su(2), i.e., for fixed j. This means that the solu-
tions will be linear combinations of the state

l j,m ), with

j fixed and m running from —j to j. We shall be interest-
ed in a certain subset of the solutions corresponding to
X) 1. Equations (3.4) imply that these states are
squeezed in J2. The states are given explicitly by

l1ij(j, mo, A, ))e =c (A, )e
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&p(j mo &)IJ3lg(j mo, k)), we can immediately find
these uncertainties. In order to find this expectation
value, we need to find c~ (A, ). From Eq. (3.7) we see thatJmp

the normalization constant is given by

The expectation of J3 can also be found. This is done by
noting that

i OJI —i OJl
e ' J3e ' = (sin8) J2+(cos8)J3

lc,
mp

(k —1)J+ [I/(mo —m)!]
m= —j

X [ (j —m )!/( j +m )!] (3.9)

= (i/2)(sin8)( J, —J+ )+ (cos8)J3, (3.10)

where J+ =Ji+iJ2 are the angular-momentum raising
and lowering operators. Use of Eqs. (3.7) and (3.10) gives

mp

&g(j, m„&)lJ3l@(j,mo, k)) = lc, (A) '(I/A) g (1, —I)~+ [I/(mo —m)!]'
m = J

X [(j—m)!/(j+m)!][(A, —1)(mo —m) —m] . (3.11)

=( I/A )[(j +mo)( j mo+ I—) —mo], (3.12)

which, in conjunction with Eqs. (3.4), implies that

(b J& ) = [(j +mo )(j —mo+ 1)—mo]/2

for large A, .

(3.13)

We shall be interested in the states g(j, mo, k) ) in two
difFerent parameter regimes. The first is the highly
squeezed A, ~ao (or, more specifically, A, &&j) regime.
For very large A, we retain only the terms with the highest
powers of X in the equations for the normalization con-
stant and the expectation value of J3. This leads to

The second regime is when j is large, A, is of order j,
and mo «j. We again need to develop approximate ex-
pressions for lc (A, )l and & J3). Let us set A, =xj,Jmp

where x is of order 1 or smaller (exactly how small it can
be, we shall see shortly), which implies that A,

—1 -=x j .
An examination of the sums appearing in the expressions
for lcJ (A, )l and & J3) shows that the most important
terms are those for which m is close to mo. This is true
because the factor [1/(mo m)!] suppresses terms for
which mo —m is large. For m close to mo and j »mo,
we have

(j —m)!/(j+m)!=j ' (j —mo)!/(j+mo)! . (3.14)

Inserting this into the expression for lc~ (A, )l, we find
pmp

JIVE p

lcJ (A)l -=x Jj ' [(j—mo)!/(j+mo)!] g x [1/(mo —m)!]
m = J

' j ' [(j—mo)!/(J +mo)!]Io(2/x)] (3.15)

where we have extended the range of the sum and intro-
duced the modified Bessel function

Io(z)= g (z/2)'"/(k!)' .
k=0

The series

(3.16) X [ (j—m o )!/( j +m o )!]jI&
(2/x )

—=jI, (2/x)/Io(2/x),

where

(3.17)

mp

x ' [1/(mo —m)!]

starts to cut ofF' when mo —m & 1/x, so that its replace-
ment by Io(2/x) should be a good approximation as long
as (1/x)((j. This gives us a restriction on how small x
can be. A. similar analysis of the expression for & J3)
gives

(3.18)

(AJ) ) =—(xj /2)I)(2/x)/Io(2/x) . (3.19)

Finally, let us note that in Sec. II it was stated that

I, (z)= g (z/2) " '/[k!(1+1)!].
k=0

Making use of Eqs. (3.4), we find that in this regime
(j»1, j»mo, and x of order 1 or less but much larger
than 1/j),
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minimum-uncertainty states in J2 and J3 would lead to
very sensitive interferometric measurements, whereas in
this section we have considered minimum-uncertainty
states in J, and J2. It is possible to convert one into the
other by means of a rotation. Consider, in particular, the
rotation

—i nJ2/2 —i wJ3 /2Uz=e ' e (3.20)

i.e., a rotation about the 3 axis by m. /2 followed by one
about the 2 axis by vr/2 Th. is rotation maps the opera-
tors J&, J2, and J3 into each other as follows:

U~ JI U~ —J2,
UR J2U~ ' —J3,
Uz J3Uz JI ~

(3.21)

or

Therefore, the state Ui, p( j,mo, A, ) ) satisfies the eigenval-
ue equation

[ UR( Jl +i~2)UR ] UR Q(J~mO~~) ) PUg ly(J~mp~~) )

(3.22)

Qp= 1/t &2[(j +mo)( j—ma+ 1)—mo]' (4.1)

which achieves a minimum value of 1/[2j (j + 1)]'~ for
mo =0. Because j is )ust half the total number of photons
going into the interferometer, we see that the phase-
measurement accuracy is of order 1/N.

We shall first describe how to construct a state close to
lg(j, mo, A, )) and then show that it has the desired prop-
erties. We begin with the two-mode coherent state
u, iu ), where u, the amplitude of mode 1, is real and the

amplitude of mode 2, iu, is imaginary. We then send
each mode through degenerate parametric amplifiers.
Mode 1 is sent through an amplifier described by the
squeeze operator

with an su(2) squeezed minimum-uncertainty state as an
input. We shall also show how to produce a state which is
close to i'(j, mo, k, )) by using standard nonlinear optical
devices and evaluate the accuracy of the interferometer
with this input state.

Let the input state to the interferometer be

Uz le'j(j, mo, A, )), where A. is large (A, ))j). The fiuctua-
tions in Jz will then be given by Eq. (3.24). Substituting
this result into Eq. (2.14), we find that the minimum
detectable phase shift is

(Jz+iAJ3)Util/(j, mo, k, ))=PUzlg(j, mo, A, )) . (3.23) Si =exp[ —r (a i
—a i )/2], (4.2)

This means that U~ l g(j,m o, A, ) ) is a minimum-
uncertainty state in J2 and J3 which is squeezed in J3 for
A, ) 1. We also note that the properties of J2 in the state
U~ l g(j,mo, A, ) ) are identical to those of J, in

lf(j, mo, i,)). Therefore, for this state in the very-large-X
regime, we have

(b Jz) —= [(j+mo)(j —mo+1) —mo]/2, (3.24)

and in the regime j )&1, j )&mo, and A, of order j or
smaller, we have

(b,Jz) =(xj /2)Ii(2/x)/Io(2/x) . (3.25)

( Jz ) =0, ( Jz ) =( —mo/A, )+A, —1 . (3.26)

Finally, let us find the expectation values of JI J2 and
J3 in the state Uz lf(j, mo, k)). Equations (3.3) and
(3.21) give us that (for A, ~ 1)

and mode 2 is sent through an amplifier described by

Sz =exp[r(az —az)/2] . (4.3)

S i
'a

i S i
= (coshr )a i

—(sinhr )a ti

Sz 'azSz=(coshr)az+(sinhr)az .
(4.4)

The two squeezed modes are now sent into the two input
ports of a four-wave mixer. This is described by the
operator

Siz =exp(2irKi ), (4.5)

where K, =(aiaz+a, az)/2. Siz transforms the opera-
tors a I and a2 as

S, and S2 transform the operators a I and a2, respective-
ly, as

In the large-i, regime, we find from Eqs. (3.12) and (3.21)
that

S,z'a, S,z =(coshr )a, + i(sinhr )az,

S,z azS, z=(coshr)az+i(sinhr)a, .—1 ~ ~

(4.6)

(J, ) =—[(j+mo)(j —mo+1) —mo]/A, , (3.27)

(Ji ) =jIi(2/x)/Io(2/x) .

Therefore, the vector ( (Ji ), (Jz ), (J3 ) )

Uz le( j,mo, A, ) ) lies in the 2-3 plane.

(3.28)

for

and in the regime j »1, j »mo, and A. of order j or
smaller, we have

—ical /2
l@)=e ' S,zSiSzlu, iu ) . (4.7)

The state S,zS, Sz l u, iu ) is similar to the state

l g(j,mo, A, ) ) without the exp( i OJ, ) fact—or. its fiuctua-
tions in J3 are small. We now note that if A, is large, then
0—=m/2. Therefore, we take for our approximation to
lg( j,mo, A, ) ) the state

IV. APPLICATION TO THE MACH-ZEHNDER
INTERFEROMETER

We are now in a position to examine the Mach-
Zehnder interferometer and to determine its accuracy

The final transformation in Eq. (4.7), the operator—im.J l /2
e ', can be accomplished by a beam splitter.

Now let us examine the properties of the state
l
@) .

For the expectation values of (J„),n = 1,2, 3, and (K),
we have
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(J, &=0,

(J, &=0,

(J3 &
= —u + —,

' sinh (2r),

(N & =2u +2 sinh (2r),
and the Auctuations in J

&
and J2 are

(6J& ) = (u e "/2) +—' sinh (2r),

(b Jq) =(u e "/2)+ ~~ sinh (2r) .

Let us first note that if u ))e ', then

(4.8)

(4.9)

b J& =(u/+2)e ", b Jz=(u/V2)e ", (J3& —= —u

It might be suspected from a quick examination of Sec.
II that su(2) minimum-uncertainty states are the ones to
use in this new device. The analysis there shows that the
operators in the expression for the minimum detectable
phase shift depend on the part of the interferometer
which the light passes through after the phase shift has
been introduced. As our new interferometer is the same
as the Mach-Zehnder interferometer after this point, the
same states which were of use there, the su(2) minimum-
uncertainty states, should also be of use in analyzing our
new device.

It is useful, however, to go briefly through the analysis
in order to illustrate the use of the general formalism.
Let us choose our beam splitter to be described by the
operator exp( i srJ—z/2), i.e.,

(4.10) —i ~J2/2
U~ =e (5.1)

so that AJ, b,J2——- l( J3 & l/2, i.e., lN& is approximately a
minimum-uncertainty state. If the state 4'& = U~ 4&,
were the input state to an interferometer, the minimum
detectable phase, using the approximate expression in Eq.
(4.10), is

V = Ug
'J3 Ug = —J (5.2)

and also assume the we are measuring J3 at the output.
This means that the operator V is given by

—= e "/(u &2)

and the minimum detectable phase change is

sy=sJ, ,/l(el [N„J,

]le�

& l, (5.3)

=e -'"/&(N &, (4.11)

V. FOUR-WAVE-MIXER INTERFEROMETER

Let us now consider an interferometer with an element
which provides gain. In particular, let us replace the first
beam splitter in a Mach-Zehnder interferometer by a
four-wave mixer (Fig. 4). What we shall find is that
1/(N & accuracy is achievable with lower amounts of
su(2) squeezing than in a standard Mach-Zehnder inter-
ferometer.

which can be a considerable enhancement over the usual
I/&(N & result. For r sufficiently large, i.e., when u is
comparable to e ", the behavior of lC& & will deviate con-
siderably from that of a minimum-uncertainty state. In
fact, a more careful examination of the minimum detect-
able phase shows that with N & one achieves an accuracy
of (1/(N&) ~ rather than the 1/(N& which can be
achieved by a true minimum-uncertainty state. The de-
tails of this calculation are given in Appendix B.

If l%'& is an su(2) minimum-uncertainty state in the vari-
ables J, and J3, then Eq. (5.4) becomes

5/=1/(2b, J3 q, ) . (5.5)

The input states for which Eq. (5.5) holds are found by
applying U„ to an su(2) minimum-uncertainty state in
the variables J& and J3. The operator Uz describes the
action of the four-wave mixer. In order to be specific, we
shall assume that Uz is given by exp(2ir'K& ), where r' is
a real, positive number. This is the same as the operator
Si2 in Sec. IV if r'=2r.

First, we need the su(2) minimum-uncertainty states in
the variables J, and J3. If we define the rotation

i mJ3 /2 i m J2 /2Uo=e ' e (5.6)

where l'0 & is the state of the two-mode field just after the
four-wave mixer. Because N =N&+N2 commutes with
J„andN, can be expressed as N

&

=J3+ N /2, we can ex-
press 5$ as

(5.4)

A

then Uo transforms the operators Ji, J2, and J3 as

UoJ1Up =J3

UoJ2Uo =J
UoJ3Uo =J2 ~

(5.7)

FIG. 4. Interferometer with a four-wave mixer and a beam
splitter. The four-wave mixer is represented by the box.

The state Uo l g( j,m 0, A, ) & is a minimum- uncertainty
state in J

&
and J3 and is squeezed in J, for k & 1.

We must now relate the number of photons in the state
l
4 & to the number in the input state, lin &

= U„'
l
4 &. It

is at this point that the analysis of this interferometer
difFers from that of the standard Mach-Zehnder inter-
ferometer. In a Mach-Zehnder interferometer, the pho-
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ton number is the same in 4 & as in lin &. This is no
longer true if the initial beam splitter is replaced by a
four-wave mixer. In particular, we find that

In the large-A, limit, this leads to a minimum detectable
phase shift of

(inlNl lin& =2I (+lK3l+&coshr' 5$ —= (&2 coshr')/( inlNl in & . (5.9)

where

—( 4l K~ l
4 &sinhr'I —1,

and

K3=(N+1)/2 .

K2= i (a—]a2 —a, a2)/2

(5.8) This is essentially the result in Eq. (4.1) multiplier by
coshr' and a poorer result than that of the Mach-Zehnder
interferometer. On the other hand, we would expect that
by adding an element that provides gain, we would not
degrade the performance of the device. This suggests
that we have not chosen our input state properly.

We can correct this problem by realizing that any state
of the form

The operators K&, K2, and K3 form a representation of
the su(1, 1) Lie algebra.

Equation (5.8) leads rather quickly to the conclusion
that the state U„'Uolp( j,mo, A, ) & is not the optimal in-

put state. The operator K2 acting on a state with j =jo
produces a state which is a linear combination of states
with j=jo+1 and j =jo —1. The state Uolte(jo, mo, A, ) &

is a linear combination of states, all of which have the
same value of j. Therefore, K2 acting on this state leads
to a state which is a linear combination of states with j
values of jo+1 and jo —1. Because states with different
values of j are orthogonal, this leads to the conclusion
tl at (q le, lq &=0 if

l+&=Uolte(jo, mo, A, )& .

(5.10)

where the dJ are arbitrary, will be a solution to Eq. (3.2)
with eigenvalue p= imo—'(/A1 , a—nd is, therefore, a
minimum-uncertainty state in J, and J2. If we choose
for our state l%'& the state l'P &

= Uo l@ &, we shall still be
dealing with su(2) minimum-uncertainty states, and Eq.
(5.5) for 5$ will still hold.

We now must find the number of photons in the state

lin&=exp( —ir'K, )le& .

Making use of Eq. (5.8), we see that

(inlNlin&=2 (coshr') g ld, . l (@(j,mo, k)lUo 'K3Uol@(j, mo, A)&

j2 —1

—( sinhr
'

) g d *+&d. ( g(j + 1,m o, A ) l Uo 'K2 Uo l g(j, m o, k ) & +c.c. (5.11)

where c.c. denotes complex conjugate. The first matrix element in this equation is relatively simple to evaluate because
IC3 commutes with Uo, and lg(j, mo, i, ) & is an eigenstate of K3 with eigenvalue j+—,. The evaluation of the second ma-
trix element requires considerably more effort. Let us first note that

Uo 'K2 Uo ( Y~~
—

Y2~ ) /2,
where the operators Y2& and Yzz are given by

(5.12)

Yz& =i(at —a
&
)/2, Y22=i(a2 —a2)/2 . (5.13)

These operators appear in the definition of a form of higher-order squeezing known as amplitude-squared squeezing [7].—iOJ)We also find that [J„(Y2, —Y22)]=0, so that the factor e which appears in the definition of lg(j, mo, A. ) & cancels
out. Finally, we have that for k) 1,

(g(j + l, mo, A)lUo 'E U2lQo(j, m Ao) &

mo mo

( —1)J+ (i!/A1) J+ . —'[1/(mo — )!]m[1/(m mo')!]
m = —j—1 m'= —j

X[(j—m+1)!/(j+m+1)!]' [(j—m')!/(j+m')!]'~

X (j+ l, ml( Yz&
—Y22)/2l j,m'

& (5.14)
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(Q(J+1,mo, A)lU It, U, ly(J mo ~))
—= —(ij/2)Ii(2/x )/Io(2/xj ) .

Our result for the number of input photons is then

(5.16)

(in N~in) —=(coshr') g 2j d.
~

j2 —].

+i(sinhr') g j(d*+,d —d. +,d.*)
J =Jl

XIi(2/x )/Io(2/x ) .

(5.17)

Finally, let us assume that Aj =j2 —j, «j, , but Aj ))1.
We also define jo = (ji +j2 ) /2 and then set
d~

= ( i )J/v'bj For —( in
~
N~ in ), we now find

( in
~
N~ in ) —=2jo [coshr ' —[Ii (2/x ) /ID(2/x ) ]sinhr

' ],
(5.18)

where k=xojo.
Now we must find the minimum detectable phase shift

for this state. From Eqs. (5.5), (5.7), and (3.4), we have

fip=l/(2b J3lq)=1/(25Ji lg )= I/(2~&e~J3~@))' '
(5.19)

With the same choice of d as in the previous paragraph
and by making use of Eq. (3.17), we have

and

(j + l, m~( Y2, —Y22)~j,m')

=(i/2)[5 ~,[(j+m)(j +m +1)]'
—5 +,[(j—m +1)(j—m)]' ] . (5.15)

We shall be interested in these expressions in the re-
gime where A, is of order j or smaller. For this device,
this produces the best results; the results in the A, —+ ~ re-
gime are similar to those in Eq. (5.9). As in Sec. III, we
set A, =x.j, where x is of order 1 or smaller, and make
use of the approximations embodied in Eqs. (3.14) and
(3.15). When j»1, j »mo, and x. is of order 1 or less
but much larger than 1/j, we have

5P—= I/((in~N in) ) . (5.25)

If we choose xo «1 and e' ))1, we are in the regime in
which the approximations which we have made in deriv-
ing Eq. (5.25) are valid. Therefore, we can achieve a 1/N
accuracy with this device as well.

Note that this interferometer achieves a 1/N accuracy
at lower levels of su(2) squeezing than does the Mach-
Zehnder interferometer. In particular, we found that the
squeezing parameter A, must be of order j or larger to
achieve 1/X accuracies in the Mach-Zehnder interferom-
eter, while in the modified device this accuracy can be
achieved when k is much smaller than j.

It is of interest to see if the approximate su(2) squeezed
states which we found in Sec. IV are useful here. The
answer, with some modifications to the states and the in-
terferometer, is yes. First, note that if we do not apply
the final rotation in Eq. (4.7), the resulting state is ap-
proximately a minimum-uncertainty state Ji and J3,
which is what we require for

~
4) in our modified inter-

ferometer. On the other hand, it is J3 rather than J,
which is squeezed, which is the opposite of what is
desired. This can be corrected by applying a rotation of
~/2 about axis 2, which corresponds to adding another
beam splitter to the device. We want the operator S,2 in
Eq. (4.7) to correspond to the action of the four-wave
mixer in the interferometer. This means the new beam
splitter which accomplishes the rotation about axis 2
must be inserted between the four-wave mixer and the
original beam splitter. Therefore, our final device, shown
in Fig. 5, consists of three elements, a four-wave mixer
described by S,2 followed by two beam splitters, each of
which is described by exp( i ~J~/2) —The inpu. t state to
the entire device is taken to be ~in) =s =S,$2 ~u, iu ), and
the resulting phase-measurement accuracy is (assuming
that u »e ")

respectively. If we now use Eq. (5.22) to eliminate jo in
Eq. (5.23), we find

5$=—[&2/(in~Nein) ][(Qxoe" /8)+ I/(Qxoe" )] .

(5.24)

The expression in brackets is a function of Qxoe" only
and reaches a minimum when Qxoe" =2&2. Therefore,
for the minimum value of 6$, we have

5$ —= (1/j 0 ) I IO(2/xo )/[2xoI, (2/xo) ]] '~ (5.20) 5g=e "/((in~Nein) )'~ (5.26)

We now wish to express this in terms of the number of
input photons. As we saw in Sec. III, Eq. (5.20) will be
valid for 1/xo « j. Let us assume that xo is chosen so
that j ))1/xo ))1 so that we can use the large-argument
expressions for Io and I, . In particular, for y » 1 [14],

For moderate values of r, this represents a considerable
improvement over the standard I /v'N accuracy.

Io(y) —=e [1+(I/8y)]/v'2~y

I, (y) —=e~[ 1 —(3/8y) ] /&2~y

In this limit Eqs. (5.18) and (5.20) become

(in~N~in) =2jo[(xoe" /8)+e " ],
5(h —= 1/( jo+2x o ),

(5.21)

(5.22)

(5.23)
FIG. 5. An interferometer consisting of a faur-wave mixer

and two beam splitters.
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VI. CONCLUSION

We have shown that su(2) minimum-uncertainty states
allow one to achieve phase-measurement accuracies of or-
der 1/X in both standard and nonstandard interferome-
ters. We have also presented a scheme for generating ap-
proximate versions of these states.

The results of this paper and those of Refs. [3] and [4]
strongly suggests that interferometers are most usefully
analyzed in terms of variables which are quadratic in the
mode creation and annihilation operators. Squeezed
states —and minimum-uncertainty squeezed states, in
particular —should be of considerable use in analyzing
the behavior of these devices and in obtaining highly ac-
curate phase measurements.

The utility of these states is not limited to inter-
ferometry. As shown by the recent work of Wineland
et al. , su(2) squeezed atomic states can also be used to
improve the accuracy of spectroscopic measurements
[15]. The su(2) squeezed minimum-uncertainty states
should prove useful here as well.

There are two issues on which further work would be
useful. The first is the ultimate accuracy of the inter-
ferometric measurements. Yurke, McCall, and Klauder
showed that it is at least 1/N, but can one do better?
This question arises especially in the case in which the in-
terferometer includes elements with gain, such as four-
wave mixers or degenerate parametric amplifiers. In the
case of interferometers containing laser amplifiers, Gea-
Banacloche has concluded that active and passive devices
have the same accuracies [16]. Whether this is true in
general is not known.

The second issue, closely related to the first, is the ac-
curacy which can be obtained in a series of measure-
ments. Measurements on quantum systems generally
must be repeated because of the fluctuations inherent in
the system, i.e., a series of measurements must be made.
As has been shown recently by Braunstein, Lane, and
Caves, the analysis of such measurements is far from sirn-
ple [17].

Despite the fact that interferometers are rather old de-
vices, there are still open questions remaining about their
performance. We believe that quadratic squeezed states
can play a role in answering some of these questions.
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APPENDIX A

derive some of the properties of the su(2)
minimum-uncertainty states. As was stated in Sec. III,

I

these states are solutions of the eigenvalue equation

(A 1)

where A, is real. From this equation a number of proper-
ties follow immediately. Taking expectation values gives

&@IJil@&=Re(P), &ylJ, ly&=(1/&)lm(P) . (A2)

Operating on both sides of Eq. (Al) with J, —iMz, tak-
ing expectation values, and making use of Eq. (A2) gives

(bJ, ) +A, (b J2) =A, & J3) . (A3)

If we apply J, +iAJ2 to both sides of Eq. (Al), take ex-
pectation values, and then take the real part, we find

(bJ ) =A, (AJ ) (A4)

Equations (A3) and (A4) yield Eqs. (3.4).
In order to solve Eq. (Al) we first define a state ~g')

which is related to
~ g ) by a rotation about axis 1,

(A5)

where 8 is to be determined later. Inserting Eq. (A5)
into Eq. (Al), we find

[J,+ii(Jzcos8 —J i3s8n)]~/') =P~f') . (A6)

Let us now choose cosO= —1/A, and 0 to be in the range
vr )8) n. /2. Note that this implies that

~

A,
~

) 1. In order
to find solutions for ~A,

~
( 1, a different definition of

~

g')
is necessary. Here we shall consider only the case ~A, j

) 1.
With the choice of 8 given above, Eq. (A6) becomes

(J— i+~ 1J3)ly'& =ply'& .

If we now expand
~

g' ) as

(A7)

J
c jm), (A8)

Eq. (A7) reduces to the recurrence relation

c +,= [(P+im+A, 1)/[(j+m—+1)
X(j —m)]'~ jc

mAj,
c (P+ij+A. 1)=0,, —m=j .

(A9)

The second equation tells us that either c =0 or
p= —ij+A, 2 —1. If c =0, this implies that one of the
coefficients multiplying c in the above equation must
vanish, i.e., P= —imo+A, —1 for some mo. Therefore,
the coefficients c corresponding to the solution
P= —imo+A. —1 are given by

c = + [[i(k —m )+A, —1]/[(j+k+1)(j—k)]' ] c
k= —j

=( i )/AI) 1—+[(m ,
—0j+)!/(mo —m)!][(j—m)!/(j+m)!(2j)!]' c (A10)
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for m ~ mo and c =0 for m )mo. Finally, grouping the m-independent constants

(me+ j)!c J /[(2j)!]'

into the normalization constant ci (A, ), we obtain Eq. (3.7).
jmO

We shall assume the (N ) )) 1 and r ))1 so the we can
neglect e ' compared to e". In this regime we have, from
Eqs. (4.8) and (4.9),

5$=[(u /32s)+s]' /iu —2s~,

(N ) =2u +4s,
(B2)

APPENDIX 8

We show that the state
~

4' ) = Uz ~
N ), where

~
N ) is

defined in Eq. (4.7), leads to an accuracy of 1/(N ) ~ in
a Mach-Zehnder interferometer. This means we must
evaluate

I

above equations for u and substitute the result into the
first. For 5P, this gives

5$=[((N)/64s) —
—,', +s]' /~((N)/2) —4s~ . (B3)

Squaring this, differentiating with respect to s, and setting
the result equal to zero gives

4s +((N)s /2)+(3(N)s/16) —((N) /128)=0 .

(B4)

We are only interested in solutions of this equation which
are greater than zero because of the definition of s. The
solution satisfying this condition is approximately (to
highest order in (N ))

(B5)
where s =(e "/2) . What we now want to do is to mini-
mize 5P with respect to u and s, while keeping (N ) fixed.

In order to accomplish this, we solve the second of the

Substitution of this result into Eq. (B3) yields

(B6)
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