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Longitudinal coherence in two-beam interferometers means that the two partial wave packets arrive
in the plane of interference simultaneously. In charged-particle interferometers, this simultaneity can
be lost due to a difference in the geometrical path lengths, a difference in the optical path length,
or a difference in the group velocities for the two wave packets on parts of or all of the beam
paths. Several of those influences can combine to yield a net relative spatial delay between the
wave packets in the interference plane, thus causing a reduction of the interference fringe contrast.
A Wien filter can be used in charged-matter-wave interferometry to compensate for this relative
delay and thus to reestablish longitudinal coherence. A Wien filter consists of an electric and a
magnetic field perpendicular both to each other and the beam path. In its matched state, i.e., when
the electrostatic and the magnetic forces on the electrons exactly cancel each other, the Wien filter
neither deflects the beams nor exerts any phase shift on the wave packets. However, wave packets
traveling through the Wien filter on laterally separated paths propagate in regions of different electric
potentials and in turn with different group velocities, which leads to a longitudinal shift of the wave
packets relative to each other. Maximum longitudinal coherence (and thereby fringe contrast) can
be restored by choosing the compensating delay caused by the Wien filter exactly opposite to the net
relative delay caused by the influences mentioned. An experiment is presented that demonstrates
this property of a Wien filter. The coherence-reviving action of a Wien filter is discussed in the
context of the incoherent superposition in the registration plane of the plane waves corresponding
to different wavelengths in the electron spectrum. It demonstrates that the quantum-mechanical
coherence of the self-interfering plane-wave components of the wave packets describing the particle
ensemble is more robust than the experimental loss of interference-fringe contrast often suggests.
The availability of such a contrast-restoring device is especially important for very-low-energy (a
few keV or less) electron interferometry. It is also likely to become important for future ion-beam

interferometers.
PACS number(s): 03.65.Bz, 07.80.+x, 41.90.+e

I. INTRODUCTION

The Wien filter, a device used in charged-particle op-
tics, consists of an electric and a magnetic field perpen-
dicular both to each other and to the beam path. It has
been put to use in various different ways. The application
of a Wien filter as an electron spectrometer [1] or as a
device for the conversion of the longitudinal component
of the spin direction into a transverse one in electron-
polarization experiments is well known [2].

Mollenstedt and Wohland (3] showed that the wave
packets in two coherent electron beams are longitudi-
nally shifted relative to each other when they traverse
a Wien filter [4] in which the electric and magnetic fields
are matched to yield no resultant deflecting force on the
electrons. This “matched” mode of operation is defined
by the so-called “Wien condition”

eE+e(vxB)=0. (1)

The authors of Ref. [3] used this effect to measure the
coherence lengths of electron beams. Their method has
been substantially improved in the meantime [5]. It
has been refined to the point that it can now be used
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as a completely new method for measuring electron en-
ergy spectra, effectively enabling one to do Fourier spec-
troscopy of electron waves [6]. In a conceptually similar
experiment, Kaiser, Werner, and George [7] measured the
longitudinal coherence length of a thermal neutron beam.
The effect of chromatic aberration and partial coherence
on the interference pattern in electron biprism interfer-
ometers was studied theoretically by Lenz and Wohland
8]

In the present paper we want to focus attention on an
application of the Wien filter in charged-particle interfer-
ometry. We describe its capability of reestablishing full
longitudinal coherence of the two partial beams. This
feature became apparent in the course of a Sagnac ex-
periment [9, 10] performed with a new type of low-energy
electron biprism interferometer [11], and it proved to be
essential for the successful completion of the experiment
[12].

This effect of a Wien filter is closely related to what
Clothier et al. [13] have recently called “phase echo” in
a neutron interferometrical experiment. These authors
used a sample (a slab placed in one arm of the neutron
interferometer) of a material with a negative scattering
length to counteract the destructive effect on the lon-
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gitudinal coherence of a similar sample made out of a
material with a positive scattering length.

The theoretical basis of all those contrast-reestab-
lishing procedures in particle interferometry is the super-
position principle, one of the fundamental assumptions
in quantum mechanics. It allows one to build a localized
wave packet—which follows from the unavoidable energy
spread (or equivalently the de Broglie wavelength spread)
of particle beams—by a Fourier sum of plane waves, with
a (complex) spectrum a(k),

U(r,t) = / a(k) el T—wrt) gk (2)

From this it follows that the individual plane waves are
linearly independent and can therefore experimentally be
acted upon independently and reversibly. This has very
recently been demonstrated in neutron interferometrical
experiments where filtering out a narrow energy band
in the recombined beam after the actual interferometer
restored visibility of the interferogram [14], or where nar-
rowing the neutron wavelength spectrum by introducing
time slices in the registration process in time-of-flight
interferometry conserved fringe visibility even when the
contrast disappeared in the overall pulse [15]. Rauch [16]
has very recently discussed this “coupling” of coherent
wave packets through their constituting narrow plane-
wave bands in the context of Einstein-Podolsky-Rosen
(EPR) situations and nonlocality in quantum physics.

Klein, Opat, and Hamilton [17] showed that although
the spatial extent o, of a wave packet increases according
to

2
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along the beam path due to the inherent dispersion of
massive particle beams even in vacuum, the coherence
length as it manifests itself in the fringe visibility func-
tion in an interferometer remains constant, and is propor-
tional to 0,(0). Throughout this paper, when referring
to wave packets anywhere on the beam path, we mean
this coherence-length part (or extent) of the wave packets
(unless specifically stated otherwise), which could there-
fore also be called “coherence-length packets.”

The basic principles mentioned so far in the context
of (massive) particle interferometry are of course equally
at work in optical (photon) interferometry, and light op-
tical experiments similar to the ones mentioned above
have been performed recently. The dispersion cancella-
tion effect in infrared photon interferometry investigated
by Steinberg, Kwiat, and Chiao [18] appears to be the
counterpart of the coherence length conservation in par-
ticle interferometry. The same authors’ observation of
a “quantum eraser” [19] demonstrates the possibility of
revival of coherence in a two-photon interference experi-
ment.

II. EXPERIMENTAL SETUP

The basic setup of this interferometer is shown in Fig.
1. A diode field emission electron gun illuminates the
electron optical biprism [20] coherently. The biprism
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FIG. 1. Basic setup of the interferometer. A diode field-

emission source illuminates the biprism filament coherently.
The primary interference pattern is magnified by two electro-
static quadrupole lenses and intensified by a dual-stage image
intensifier.

splits the electron beam into two partial beams, thus cre-
ating two virtual coherent electron sources. The biprism
consists of a metallized quartz filament of a diameter in
the range between typically 0.5 and 2 pum centered be-
tween two grounded electrodes. The two beams over-
lap behind the biprism filament and form the primary
two-beam interference pattern. The spacing s of the in-
terference fringes depends on the angle of superposition
~ of the two quasimonochromatic fields of plane waves
according to [21]

§= -, 4
5 (4)
with the de Broglie wavelength A = h/p. The angle of
superposition and in turn the spacing s can be varied
by simply changing the positive potential of the biprism
filament.
Field emission extraction voltages between 150 V and
3 kV are used. Even at those low electron energies (no
additional acceleration is provided), s is in the submi-
crometer range due to the short de Broglie wavelength
(<1 A) of the electrons. Therefore the primary image
must be magnified. This is accomplished by a two-stage
astigmatic electron microscope consisting of two electro-
static quadrupole lenses. The magnified interference im-
age is intensified by two cascaded multichannel plates. It
is converted into a visible fringe pattern by a P20 phos-
phor on a fiber optic plate through which the image is
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transferred from the ultrahigh vacuum environment to
the laboratory, where it is subject to registration and fur-
ther evaluation [10]. This setup allows single electrons to
be registered with a high quantum detection efficiency of
approximately 0.8 [22, 23] for the electron energy range
used.

The construction principle of the interferometer, a high
precision optical bench to which the electron optical com-
ponents are rigidly affixed, guarantees an excellent align-
ment of these components with the optical axis. The
details of this design have been described elsewhere [10,
11]. This construction principle guarantees that the field
emission tip, the biprism filament, and the optical axis
of the magnifying quadrupoles are prealigned automati-
cally within an error of 10 um. Therefore, no mechani-
cal alignment of the electron optical components during
operation is needed. However, fine alignment of the elec-
tron beam is still necessary in order to allow control over
the positioning of the interference field in the (magnified)
field of view. This is achieved with compact electrostatic
deflection elements. The entire electron optical setup of
the interferometer used in the experiment is depicted in
Fig. 1 of the companion paper [10]. For further elabora-
tion of the choices made in the construction of the inter-
ferometer as well as for descriptions of the components
not explained here, we refer to [11]. It is primarily the
electrostatic deflection elements that can cause relative
longitudinal shifts of coherent wave packets in low-energy
electron interferometry, which is detailed in the following
section.

AN
D
ﬂ l—_deflection
T element T =
L o |
i+Ud —Ud

1(x)

J— — sources
f

III. LONGITUDINAL SHIFT OF COHERENT
ELECTRON WAVE PACKETS

The influence of an electrostatic deflection element on
two laterally separated coherent electron wave packets is
shown in Fig. 2(a). The wave packets enter the deflection
field on paths separated by the distance Az [24]. In order
to achieve the beam alignment, nonzero voltages +Uy
have to be applied to the deflection plates, Uy typically
ranging from a few to a few hundred V. The electric
potential at the optical axis of the deflection element is
(ideally) zero. Because of their spatial separation Az,
the coherent beams travel through the deflection field in
regions differing in their electric potential by

Az
AU = 2Us—", ()
where D is the distance between the two plates. There-

fore the two beams travel through the deflection element
with different group velocities

vi,2 = vo % AUy, /5}’57 = vp £ Av, (6)

where U, is the acceleration voltage. This results in a
relative delay of the two wave packets after they have
left the deflection element. The respective deceleration
and acceleration of the beams take place in the fringing
fields of the deflection elements. Making the approxima-
tion that, in (6), vo > Aw, we thus conclude that an
electrostatic deflection element, apart from its primary

S, s, (virtual)

Wien
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FIG. 2.
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(a) Influence of an electrostatic deflection element on two electron wave packets laterally separated by Az. Inside
the electrostatic deflection element, the wave packets travel in regions differing in their electric potential.

This results in

different group velocities and in turn in a relative delay of the two wave packets after they have left the deflection element.
(b) Influence of a Wien filter (in its matched state) on two coherent wave packets. The wave packets are shifted longitudinally
relative to each other. This reduces overlap of the wave packets in the interference plane, and thereby causes a loss of fringe
contrast. The horizontal lines between the wave packets symbolize the fact that the phases remain fixed while the wave packets
are shifted in space (see text). (c) Restoration of maximal overlap of coherent wave packets that have experienced a previous
longitudinal shift relative to each other. Maximum fringe contrast is reestablished.
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purpose of deflecting the beams, has the additional effect
on two spatially separated electron beams of introducing
a longitudinal shift

L Az

M=5T,

Uy (7

of the two wave packets relative to each other. L is the
length of the deflection element. As a result, the wave
packets will no longer overlap completely in the obser-
vation plane and the fringe contrast is reduced from the
maximum value it had at full overlap.
The coherence length is defined as
1 A2

lc:=aﬂ=a§. (8)
The numerical factor a in (8) is on the order of 1. Its
value depends on the exact form of the spectral distri-
bution of the electrons and on the coherence length def-
inition used [25]. Its exact value is of no interest for the
problem discussed here. We want to express [, in exper-
imental parameters, i.e., the acceleration voltage U, and
the voltage uncertainty AU corresponding to the energy
spread [spectral full width at half maximum (FWHM))
of the electron beam. Since from A = h/p follows

h 1
M) = Tome VT ©

for nonrelativistic electrons, we obtain for small values of
A

A
=———AU. 10
A YA AU. (10)
For the sake of convenience, we drop the negative sign
and henceforth assume all values to be positive. Com-
bining (8) and (10), we obtain

2U,
lc = 20)\'&6, (11)
and using (9) we finally obtain
1/2
I = 2ah U, . (12)
V2me AU

The only significant contribution in our experiment to
AU was the natural energy spread of the field emission
process of 0.3-0.4 eV. In general, less stable acceleration
voltages may contribute an additional or even the ma-
jor part of the energy spread of the electron beam. If
a thermionic electron source is used, the energy spread
given by the emission process is 1 eV or more. For the
energy range used in our interferometer [in the follow-
ing, (electron) energies and the corresponding (e.g., ac-
celeration) voltages are used interchangeably], U, = 150-
3000 V, and for AU = 0.3-0.4 V, the coherence lengths
fall in the range between 10 nm and 1000 nm. As the
longitudinal shift Ay reaches the order of the coherence
length, the contrast of the interference fringes falls off to
Z€ro.

The sensitivity of the interferometer to this type of
fringe contrast loss increases with decreasing electron en-

ergy eU,. To show this, we derive the voltage U} (applied
to a deflection element) that is necessary to introduce a
longitudinal shift Ay equal to the coherence length [..
This condition,

Ay =g, (13)
is evaluated by combining (7) and (12) to yield
’r 2h a D 3/2
U, = T LATAD AUU“ . (14)
The decisive point here is the dependency
U, o U3/, (15)

In contrast hereto, the deflection voltage U} necessary to
produce a given deflection obeys the electrostatic princi-
ple, and from this follows

U xU,. (16)

The sensitivity of the interferometer to the effect of the
longitudinal wave-packet shift can be defined as

vy

and 7; therefore depends on U, as
m oo UFY2, (18)

This result is readily understood as the combined effects
of the decreasing coherence length and the increasing
time spent by the wave packets in the deflection field
as U, decreases.

If more than one deflection element is used in the beam
path, the longitudinal shifts produced by the individual
elements add up linearly. The fringe contrast in the ob-
servation plane is then given by the net longitudinal shift
resulting from the combined influence of all elements. It
should be noted that any electrostatic electron optical
element exerts this type of influence on coherent wave
packets if these traverse the element’s electrostatic field
in regions of differing potential.

At very low electron energies (a few hundred eV), the
longitudinal shift of the wave packets produced by the
electrostatic fields along the beam path in our interfer-
ometer in general [26] exceeds by far the short coherence
length available. This means that, without introducing
an additional element compensating for this effect, no
fringes at all are usually visible in the region of overlap.

IV. LONGITUDINAL COHERENCE RESTORING
ACTION OF THE WIEN FILTER

A Wien filter is ideally suited as such a compensating
element. In order to fulfill this purpose, its electric field
has to be chosen of such a magnitude and direction that
its action cancels the net longitudinal shift produced by
all other electrostatic elements combined. The magnetic
field per se has no influence on the longitudinal coher-
ence, and its strength can therefore, in principle, be set
to any arbitrary value. However, the Wien filter is usu-
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ally (possible exceptions are mentioned below) operated
in its matched mode; i.e., the magnetic field is chosen
such that the magnetic force exactly cancels the electric
force on the electrons [see Eq. (1)], thus yielding no net
deflection of the beam. The salient point of this action
by a Wien filter is then that both coherent partial beams
traverse it (in a first-order approximation) on a rectilin-
ear, transversally undeflected path, whereas they are lon-
gitudinally shifted relative to each other [see Figs. 2(b)
and 2(c)]. This occurs because the partial beam that had
been delayed in the deflection element(s) is given a higher
group velocity in the Wien filter and vice versa. Figure 3
shows the combined effect of two electrostatic deflection
elements used to compensate for a misalignment of the
electron source, and the overlap-restoring effect of the
Wien filter.

A series of micrographs of interference fringes (Fig. 4)
illustrates the capability of a Wien filter to restore lon-
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FIG. 3. Combined wave-packet-shifting effect of two de-
flection elements and a Wien filter. As an example, the elec-
tron source is slightly misaligned (the angular deviation is ex-
aggerated in the drawing). The first deflection element bends
the beams back toward the optical axis, and the second one
makes them parallel again with the optical axis. Because the
first deflection is approximately twice as large as the second
one, the longitudinal shifts of the wave packets do not cancel
out completely. The remaining spatial delay is eliminated by
the Wien filter.

gitudinal coherence. The kinetic energy of the electrons
was 358 eV, which corresponds to a de Broglie wave-
length of 0.647 A. With the Wien filter switched off,
the fringe contrast was virtually zero (upper part of Fig.
4). In order to optimize the longitudinal coherence and
thereby the fringe visibility in the observation plane, one
has to increase the excitation of the Wien filter (while
keeping it in matched mode) until the initial longitudi-
nal shift—produced by all other electrostatic electron op-
tical components—is exactly compensated by the Wien

Iwien = 0.0 mA, Uwien = 0.00 V

5.0 7.07
10.0 14.49
12.0 17.70
14.0 20.87
16.0 24.09
17.0 25.64
17.5 27.47
18.0 28.19
18.5 28.75
19.0 29.53
19.5 30.19
20.0 30.86
20.5 31.58
21.0 32.36
22.0 34.13
23.0 35.85
25.0 39.29
27.0 43.18
30.0 48.12
35.0 = 58
40.0 ~ 68

FIG. 4. Restoration of longitudinal coherence by a Wien
filter. The excitation of the Wien filter increases from top
to bottom. No fringes are visible at the top although the
paths of the wave packets are accurately aligned to the opti-
cal axis of the interferometer. With increasing excitation, in-
terference fringes appear, their contrast reaches its maximum
(center), and disappears again when the compensating longi-
tudinal shift produced by the Wien filter exceeds that caused
by the electrostatic alignment elements (bottom). This set of
micrographs was taken at an electron energy of 358 eV. On the
right-hand side of each micrograph are given the values of the
Wien filter excitation, i.e., the values of the current flowing
through the coil generating the magnetic field, and the volt-
age applied to the Wien filter’s deflection plates. (The last
two voltage values are given only approximately because the
end of the voltage range available for the Wien filter in this
experiment had been reached, and an additional deflection el-
ement had to be used whose voltage could not be monitored
exactly.)
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filter. When full overlap of the wave packets in the inter-
ference plane is reestablished, maximum contrast of the
interference fringes is attained (central part of Fig. 4). If
the Wien filter is excited beyond that point, the longitu-
dinal shift of the wave packets is overcompensated and
the fringe contrast decreases and finally vanishes again
(lower part of Fig. 4).

If we make the simplifying assumption that the spec-
tral distribution of the field electrons has a Gaussian
shape, we can derive an estimate of the coherence length
from the contrast course in Fig. 4. If we equate the full
width at half maximum (which is approximately 10 V)
with U}, i.e., the deflection voltage for which Ay = I, is
fulfilled, we can derive [, by entering the geometrical val-
ues of the Wien filter used in this experiment, L = 5 mm
and D = 8 mm (see Fig. 2) in Eq. (7). With Az ~ 1 um,
we obtain I, = 17 nm. This is to be understood only as
a rough estimate, since we neglected all complicating ef-
fects such as fringe fields, the detailed shape of the Wien
filter’s electrodes [12], the actual (not strictly Gaussian)
shape of the field electron spectrum, and especially the
uncertainty in the beam separation Az stemming from
the uncertainty in the determination of the biprism fila-
ment diameter [12]. This value of I, clearly demonstrates
the conservation of the coherence length along the beam
path, since the geometrical spreading of the wave packets
due to the dispersive propagation of electrons in vacuum
yields much larger values for the “spread-out length” Al
of the wave packets. This can be easily estimated from
the velocity spread corresponding to the energy spread of
the field electrons of AU = 0.4 V. With Al = [AU/(2U,)
we obtain values of approximately 100 000 nm at the loca-
tion of the Wien filter (I = 177 mm), and approximately
250000 nm in the registration plane (I = 440 mm).

One might ask, at this point, about the possibility of
spin-precession effects, caused by interaction of the mag-
netic moment of the electrons with the magnetic field of
the Wien filter, to influence the results observed. Phase
shifts due to spin precession are well known in neutron
interferometry [27, 28] and, in principle, magnetic-field
inhomogeneity or velocity differences over the two-beam
paths could lead to phase gradients and washing out of
the fringe visibility. If we ignore all other contributions
to the Hamiltonian at the moment, it can be easily shown
that from the Hamiltonian for an electron of momentum

p and magnetic moment p traveling through a magnetic
field B,

2

p
H=2_ _.
om M B, (19)
the phase shift to first order in B follows as
B = £2npe BLmA/h? (20)

[27] if we assume a homogeneous magnetic field of length
L. The =+ signs stem from the two possible spin direc-
tions of the electrons relative to the magnetic field, and
Le is the magnetic moment of the electron. The magnetic
field (magnetic induction B) had been measured with a
microprobe to be 3.4 mT at a current of I = 100 mA
in a Wien filter of identical design. Assuming that the

same B/I ratio was valid for the Wien filter used in the
experiment described above, we estimate the maximum
phase shift that occurred due to spin precession. At the
Wien filter’s maximum excitation, the Wien current was
40 mA, and for this value of I and for the values men-
tioned, L = 5 mm, A = 0.647 A, we obtain a total phase
shift 8 = £0.85% of one fringe period. This has to be
compared to the total longitudinal shift that the wave
packets have experienced relative to each other at the
Wien filter’s maximum excitation, which was approxi-
mately 116 nm, or approximately 1800 periods when ex-
pressed in phase units (although, as is shown below, no
actual phase shift occurs to first order). The total phase
shift caused by spin precession in the above experiment
is therefore a 10~5 effect, and since 8 is a phase shift
that both partial beams experience equally to first order
(since they both travel through the same magnetic field),
the relative phase shift between the two partial waves
caused by field inhomogeneities and velocity differences
[29] is much smaller still.

The following points pertaining to the action of the
Wien filter are noteworthy.

(1) In its matched mode, the Wien filter does not exert
a phase shift on the electron wave packets irrespective
of its excitation, because the phase shifts caused by the
two fields cancel exactly (in first-order approximation),
as has been shown (see below) by Wohland [30]. Ofr,
expressed in electron optical terms, a Wien filter operated
in matched mode has an electron optical refractive index
of 1. Two electron beams experience a phase shift relative
to each other if they travel on paths with different optical
path lengths [nds. Inversely, if n is constant and equal
on both paths, no phase shift results. In analogy to light
optics, the electron optical refractive index caused by the
spatially varying electrostatic and magnetic potentials in
an electron optical component is defined by [31]

Since the Wien filter is located after the acceleration of
the electrons has taken place, the potential at the loca-
tion of the Wien filter is &y = —U,. Since the electric
field inside the Wien filter is assumed to be that of a
parallel plate capacitor, we obtain ®(r) = Fz — U, (in
first-order approximation). We apply those relationships
and expand the first term in (21) in z, which yields

O(r) _Ez | Ex 2
Vo —VI~T, =1 o, O

The magnetic vector potential inside the Wien filter from
which the applied magnetic field, B = (0,0, B), fol-
lows is A = (0, Bz,0). This gauge [in contrast to, e.g.,
A = (—By/2, Bz/2,0)] ensures that at both the entrance
and the exit planes of the Wien filter the component A,
remains zero (otherwise the tangential component of A
would become discontinuous at these planes and hence
B would become infinite). Since we are analyzing the
case of the Wien filter being in its matched mode, the

(22)
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approximation that v = (0,v,0) = const., i.e., that the
electrons travel on an undeflected path through the en-
tire Wien filter, holds to a very good degree. With this
and with (21) and (22), we obtain

Ex [ e 2
n—1—2—Ua - mBZB-}-O((E ) (23)

Applying the Wien condition [Eq. (1)], E = —Bwv, and
employing v = 1/2U,e/m, we find that the first-order
terms in z cancel out, which leaves

n=1+0(z?). (24)

We have thus shown that, to first order in z, the two
paths of the partial beams have the same electron opti-
cal path lengths, and that therefore no phase shift oc-
curs in a Wien filter as long as the Wien condition is
fulfilled. That this finding is in fact correct is shown by
the observation that upon increasing the excitation of
the Wien filter while keeping it in matched mode, only
the contrast but not the position of the fringes in the
interference pattern changes. This may be visualized in
the somewhat unfamiliar picture of partial wave packets
being shifted like [spindle-shaped; see Fig. 2(b)] windows
in opposite directions along the beam path across a fixed
(or “frozen”) “phase wave sea.”

(2) Due to the linear superposition that holds for the
action exerted on electron wave packets by electric as well
as by magnetic fields, the Wien filter does not necessar-
ily have to be positioned behind all other electrostatic
components in the beam path in order to exert its effect
of restoring the longitudinal coherence. It may be posi-
tioned anywhere in the beam path, and may in fact even
be the first component. One should, however, be aware of
the fact that the effectiveness of the Wien filter depends
on the separation Az of the partial beams [see Eq. (7)]

as they travel through its electric field. This separation.

usually changes along the beam path in an interferome-
ter, thus often determining the optimum position of the
Wien filter along the beam path for practical reasons.

(3) It follows immediately from the points made con-
cerning its operating principle that the Wien filter does
not even have to be constructed as one single-electron
optical component. Its effect can be equally well pro-
duced by spatially separated electric and magnetic fields.
In this case, however, the deflections caused by the two
fields do not cancel locally, and have to be taken into
account in the overall beam path.

(4) Although it is usually most practical experimen-
tally to use the Wien filter in its matched mode, this
is not a precondition for its coherence-restoring action
(since, as we showed, the magnetic field itself does not
exert a longitudinal shifting effect). It may in fact in
special cases be desirable to obtain at the same time a
deflection of the electron beams by the Wien filter.

(5) A Wien filter that is to be used for restoration of
the longitudinal coherence in the way described in this
paper necessarily poses very high demands on its volt-
age and current supplies in terms of stability. This can
be easily shown by the following consideration. The to-
tal number of fringes in the interference field as given

by the available coherence length [which is in most cases
much larger than the number of simultaneously observ-
able fringes, since this number is usually limited by the
spatial (angular) coherence of the electron beam)] is

le

N.= X» (25)
and applying (11) to this immediately yields
2U,
N, = aA—(;. (26)

If we assume as typical values U, = 2000 V, AU = 0.4
V, and @ = 1 (as a conservative choice, i.e., correspond-
ing to only a partial loss of contrast), we obtain a total
number of fringes of 10000. If we believe that we need
a Wien filter because a wave-packet shift of this mag-
nitude, i.e., 10000 fringe periods, or more, may occur in
the interferometer, then we have to design the Wien filter
and its voltage and current supplies in such a way that
it will be able to exert a “counter-shift” of at least this
magnitude—otherwise it would be useless. On the other
hand, if the position of the interference fringes is to be
measured with a precision of, e.g., 1% of a fringe period
(for example, to determine a phase shift with this accu-
racy), then the relative stability of the Wien filter has to
be at least 10~% during the entire registration time, and
this stability requirement has to be fulfilled by both the
voltage and the current supply.

V. DISCUSSION

The effect of restoring coherence (and, for that mat-
ter, the operation of our interferometer in general) en-
tails one striking characteristic that is not usually present
in photon or neutron interferometry. In all electrostatic

. electron optical components, including the Wien filter,

the electrons undergo continous energy exchanges with
the environment (the electric fields). The energies ex-
changed vary from (approximately) equal values for both
partial wave packets in potentials symmetrical to the op-
tical axis, as, e.g., in the quadrupole lenses, to (approxi-
mately) opposite amounts +AFE and —AF in potentials
that are monotonous in the direction perpendicular to
the beam paths, as, e.g., in the deflection elements. The
energies that are exchanged in practice do easily, and
often, reach nontrivial fractions of the kinetic energy in
our interferometer. Take the example of two wave pack-
ets of 2-keV electrons separated by Az = 60 pm (a value
achieved in the Sagnac experiment [10]), propagating be-
tween two plates separated by D = 5 mm held at a po-
tential Uy of +200 V and —200 V, respectively (values
as high as these were often used in the experiments).
The voltage difference AU, experienced by the two wave
packets being given by Eq. (5), we obtain AUy = 4.8 V
(+2.4 V imparted to the one wave packet, —2.4 V to the
other one). This corresponds to a relative energy differ-
ence between the two wave packets of 2.4 x 10~2 inside
the deflection element. No observation in our interferom-
eter, however, has ever indicated that this value would
be a limit of any kind to the coherence conservation (or
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the possibility of coherence restoration).

Evidently, this massive entanglement of the spatial (or
center-of-mass) wave function with the environment does
not destroy the coherence; however, it easily renders the
coherence “invisible,” and it then takes a component such
as a Wien filter to restore the visibility of the interference
fringes.

This experimentally evident—but perhaps sur-
prising— “robustness” of the quantum-mechanical coher-
ence can easily be understood by considering the different
conditions necessary for the actual observation of inter-
ferences. While the (potential) occurrence of interfer-
ences depends on the availability of two separate paths
to the particles (so that an interference term occurs in
the total, i.e., recombined, wave function that can be
“scanned” for different values of the argument of this
cosine term [32]), the wvisibility of the interference fringes
additionally depends on the correct “arrangement” of the
individual plane-wave components of the total wave func-
tion in the observation plane. These plane-wave com-
ponents, as has been noted previously (6, 15], superpose
incoherently for different wavelengths to form the observ-
able interference pattern in the registration plane. This
incoherent superposition is to be understood in the sense
that the actual quantum-mechanical interference taking
place is always the self-interference of a single-electron
(but two-path) wave function. The single-particle regi-
men is practically always given in matter wave interfer-
ometry. In our interferometer, a typical electron energy
of 2000 eV and a total path length of 44 cm from the elec-
tron source to the registration plane yield a flight time
of 1.7 x 1078 s. From a typical electron count in the
observed interference region of 10° s~! [33], we derive
a typical average “duty cycle” of 1:600 for the electrons
in the interferogram. The wave function describing this
self-interference is that of the plane wave corresponding
to the exact energy of this one electron [exact within
the limits imposed by the uncertainty principle from the
“life-time” of the electrons in the experiment (the above
flight time), which yields an energy uncertainty on the
order of 1078 eV]. This plane-wave function is “infinite”
compared to the coherence length of the wave packet,
and even to its “spread-out length”; but of course it is
in fact of the dimension of the interferometer since it is
described by the Schrodinger equation (in the nonrela-
tivistic case) with the boundary conditions given by the
electron optical components and their fields.

The wave packet, then, is made out of such plane waves
which have to have a well-defined spatial and energetic
correlation so that their interference patterns (intensi-
ties) do not average out to zero fringe contrast when they
add up in the observation plane. This correlation, which
seems more akin to the classical coherence in light optics,

is what is very easily destroyed in particle wave inter-
ferometry. In contrast hereto, the quantum-mechanical
coherence of the self-interference of the particles’
(plane-) wave functions seems very robust, and is in no
way generally affected by, e.g., energy exchange with the
environment.

In this picture, the various methods and experiments
of reviving coherence (restoring contrast) in quantum-
mechanical interferometry mentioned in the Introduction
are then easily understood. When the plane-wave com-
ponents have become “scrambled,” and thereby fringe
visibility lost, one can either “take out the bad ones,”
i.e., filter out part of the spectrum [14], or “bring them
back in line,” i.e., rearrange them so as to restore the cor-
relation necessary for them to add up to visible fringes.
This latter approach is the one we have taken by using
the Wien filter. Of course a Wien filter is not capable of
restoring just any loss of contrast, such as can be caused
by other types of “inappropriate” overlap of the plane
waves’ interference patterns. These can, e.g., be caused
by time-dependent (stray) fields, or by too large a source
size (insufficient angular coherence). Of course, other
kinds of filtering can be conceived (and have been used)
to restore contrast in these cases.

VI. CONCLUSION

We have discussed the phenomenon of loss of fringe vis-
ibility caused by electric potential differences in charged-
particle interferometry, and have described a way of
restoring fringe contrast by using a Wien filter. If this
is done by a Wien filter which is operated in matched
mode, the unusual situation arises that no relative phase
shift between the partial waves occurs, but only a longi-
tudinal shift of the wave packets relative to each other.
The possibility of restoring “lost” coherence shows that
in particle interferometry, the quantum-mechanical co-
herence is not as easily truly destroyed as the experi-
mental loss of fringe visibility sometimes suggests, but is
often only “hidden” by effects such as the longitudinal
shift described in this paper.

In conventional (high-energy) electron interferometers
the wave-packet-shifting effect of electrostatic (align-
ment, etc.) fields has apparently not attracted atten-
tion so far because it leads only to a small decrease of
the fringe contrast, due to the much larger coherence
lengths there. However, for low-energy electron interfer-
ometers, the availability of a compensating element is of
fundamental importance. It is also likely to be valuable
in future ion-beam interferometers because of the even
shorter coherence lengths encountered there.
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FIG. 4. Restoration of longitudinal coherence by a Wien
filter. The excitation of the Wien filter increases from top
to bottom. No fringes are visible at the top although the
paths of the wave packets are accurately aligned to the opti-
cal axis of the interferometer. With increasing excitation, in-
terference fringes appear, their contrast reaches its maximum
(center), and disappears again when the compensating longi-
tudinal shift produced by the Wien filter exceeds that caused
by the electrostatic alignment elements (bottom). This set of
micrographs was taken at an electron energy of 358 eV. On the
right-hand side of each micrograph are given the values of the
Wien filter excitation, i.e., the values of the current flowing
through the coil generating the magnetic field, and the volt-
age applied to the Wien filter’s deflection plates. (The last
two voltage values are given only approximately because the
end of the voltage range available for the Wien filter in this
experiment had been reached, and an additional deflection el-
ement had to be used whose voltage could not be monitored
exactly.)



