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Rate equations between electronic-state manifolds
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Rate equations are derived to describe the interaction with an ensemble of atoms of a number of opti-
cal fields having arbitrary polarizations. The fields drive transitions between two manifolds of levels,
each manifold consisting of magnetically degenerate fine and hyperfine levels. The rate equations are
written in an irreducible tensor notation using a coupled tensor basis for the fields' polarizations, which
significantly simplifies the equations. Validity conditions for the rate equations are discussed, an expres-
sion for the friction force of laser cooling is given, and specific values for elements of the coupled-basis
polarization tensor are tabulated.

PACS number(s): 42.65.—k, 32.80.—t, 42.50.Vk

In considering the interaction of radiation with matter,
it is sometimes possible to obtain rate equations for
atomic-state populations [1]. For example, the optical
Bloch equations for a "two-level" atom interacting with a
radiation field can be reduced to rate equations if the
atomic-state coherence between the two levels decays or
oscillates at a rate which is much larger than that at
which the atomic-state populations evolve. The two-level
approximation is inadequate if one wishes to include
e6'ects relating to magnetic-state degeneracy or radiative-
ly induced coupling between fine and hyperfine levels
within the electronic-state manifolds. In this paper, we
derive rate equations that describe a situation in which
optical fields of arbitrary polarization drive transitions
between two manifolds of levels, each manifold consisting
of a number of fine and hyperfine levels. In deriving
these equations, we introduce a coupled polarization-

tensor basis which facilitates the calculation.

DENSITY-MATRIX EQUATIONS

The density-matrix equations describing the system of
interest have been given previously [2,3], but we present
them here to make this paper self-contained and to intro-
duce the notation [4]. We consider the interaction of
several radiation fields with an ensemble of "active"
atoms. The incident laser fields drive transitions between
a ground-state manifold characterized by quantum num-
bers LG (total orbital angular momentum), SG (total spin
angular momentum), JG (coupling of LG and SG ), I (total
nuclear-spin angular momentum), G (coupling of JG and
I), and an excited-state manifold characterized by quan-
turn numbers L&, S~, J~, I, and H. In the resonance or
rotating-wave approximation,

p&(G, G')=y' '(H, H';G, G')e p&(H, H')
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The symbols appearing in Eq. (1) are defined as follows:
The p &(F,F') (F,F'=G or H) are atomic density matrix
elements written in an irreducible tensor basis. They are
written in an interaction representation and are related to
density-matrix elements p&(F, F') in the "normal" repre-
sentation by

p &(F,F') =p&(F, F')exp(icoF~ t),
where

(2)

+FF' (+F F') ~~

and EF is the energy of state F. The density-matrix ele-
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ments in the irreducible tensor basis are related to those
in the m basis by

pg(F, F')= g ( —1) (F,m;F', —m'~(E, Q)
m, m'

and Ag ~g( A, B,C) is defined as

Ag qg( A, B,C) = (
—1)"+ [(2k + 1)(2K'+ 1)]'~2

Xp(F, m;F', m'), (4)

y (H, H', 6,6') =( —1) +x+G +)

X [(2H + 1)(2H'+ 1)]'i2

H H' E
X ' 6, 6 1

y(H, H'', 6,6'),

where [ ] is a 6-J symbol,

y(H, H', G, G')=[4/(3%)](coHGcoH G Ic )

X [(2H + 1)(2H'+ 1)]

(Sa)

XPGH(po'H') (Sb)

and pG~ is the reduced density-matrix element of the di-
pole moment operator between states 6 and H. [Note
that pGH =( —1) (P~G )'. ] The Rabi frequency ygG
associated with field j is defined in terms of the (complex)
amplitude of field j. The incident field E written as

N

E(R, t)= g —,'( ' 'e' 'e ' ' +c.c. ,
j=1

(6)

where N is the number of incident fields and 6(J) is the
(complex) amplitude, e(j) is the (complex) polarization, ic

is the propagation vector, and Q. is the frequency of field

j. The Rabi frequency yg)G is defined as

where (F„m„'F2',m2~F, m ) is a Clebsch-Gordan
coefficient [5]. The quantity y' '(H, H', 6,6'), which
characterizes the rate of spontaneous emission of the Kth
"multipole moment" from levels H and H' to G and G',
is defined as

(10)

The spontaneous decay rate of each of the excited states
is equal to I". The time derivatives in Eqs. (1) are total
time derivatives in the sense that

+v.V',d=a
dt at

where v is the atomic velocity. [The modification of the
density-matrix equations resulting from any light-induced
atomic acceleration is not included in Eq. (1).] Finally,
there is a summation convention implicit in Eq. (1) that
will be used in all subsequent equations. Repeated in-
dices appearing on the right-hand side (rhs) of an equa-
tion are to be summed over, except if these indices also
appear on the left-hand side (lhs) of the equation.

For specific experimental conditions, it might be neces-
sary to add additional terms to Eqs. (1) such as those aris-
ing from external magnetic fields, collisions, "source"
terms which bring atoms into the interaction volume, or
loss terms resulting from atoms leaving the interaction
volume. In obtaining Eqs. (1), it has been assumed impli-
citly that all the magnetic sublevels within a state of
given F are degenerate. Generalization of the results to
allow for a splitting of the magnetic-state sublevels will be
discussed following a derivation of the rate equations.

RATE EQUATIONS

To obtain rate equations it is necessary to express the
electronic state coherences in terms of the atomic state
populations. It is not possible to do this directly in Eq.
(lc) owing to the exponential factors in those equations.
To remove these factors, a trial solution of the form

G =PHG @' '/( 2/3A ), —'(k -.R—b.

P g(G, H) =p g(G, H;j, G', H')e (12)

while the spherical components of e' ' of the polarization
e'j' are defined by

(j) —+ ( (j )+&(j ) )/i/2 (j ) —&(j)
1 x —

y 0 z

The detunings b, g)G are defined as

~KG —&, ~aG

is substituted into Eq. (lc). The p g(G, H;j, G', H') satis-

fy an equation similar to Eq. (lc), except that the ex-
ponential factors are missing and (I /2) is replaced by
[(I /2)+i [b,JIG —k v]]. If the atomic state "popula-
tions" p g(6, 6') and p g(H, H') are slowly varying (both
spatially and temporally) with respect to

p g(G, H;j, G', H'), an approximate solution of Eq. (lc) is

—I. (k .R—S'J' t)
pg (G,H)=i ( —1) + (ygG) )*e '' "

(e~~ ')*Ag. ~g. (H, G, G")[(I /2)+ihgG) (v)] 'p g. , (6,6")
—I'(k R—6 j t)

(
(g') )e( 1)2G+g"+K"—K'+) ' j' H"G(

(
(j'))s

l g~ "G e ' e

XAg„'~&,(G, H, H")[(I

/2)+i'm/'

(u)] '[p g (H, H")]*,

where

b.g) (u)=b, (jj) —k v . (14)
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The validity conditions for this approximation are dis-
cussed below. When the expression for p &,(G, H) is sub-
stituted into Eqs. (la) and (lb), one arrives at rate equa-
tions for p &(G, G') and p &(H, H'). These equations can
be simplified considerably if one introduces a coupled
tensor basis defined by

and

( —1) E J (E. J )*=(—1) E—(j J')—q' q Q

X (1,—q;1, —q'~K, Q & . (16b)

E (j—,j')=( —1) E' )(E) ).)*(l, q; l, q'~K, Q &,

from which it follows that

(15)

(
—1)~ 'EJ' (E'J')'=( —1)~E-(jj')(1,—q;1, q—'IK, Q &

(16a)

If one substitutes Eq. (13) into Eqs. (la) and (lb) and
uses Eqs. (10) and (16), it is possible to carry out the sum-
mations over q and q' in the products of the three
Clebsch-Gordon coefficients which appear [5]; the resul-
tant expression can then be summed over K' using prop-
erties of the 6-J symbols [5]. In this manner one obtains

pg(G, G') = its—GGpt2(G, G')+y' '(H, H', G, G')p(2(H, H')+SKp (G, G', G",G'";R, t)pg (G",G"')

+SKp (G, G';H, H', R, t)pg (H, H'), (17a)

pt2(H, H')= (I +i—to .)pic(H, H')+S p (H, H';H", H"', R, t)pic(H", H"')+S p (H, H';G, G';R, t)pg (G, G'),

(17b)

where

SKg~(G, G', 6",G"';R, t)= —3[(2K+1)(2K'+1)]' E—(
' ')( —1 )~+ e

1

X(K'', Q', K, —QIK, Q& (
—1) + +

&IONG. [&QG ]' g„,g, g g„,g
L

X [(ry2)+ tag,'„,(u) ]-'S,„,
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' ')( —l)~+ + + e
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S~P (H, H'; G, G', R, t)

=3[(2K + 1)(2K'+ 1)]' e—(j,j ')( —1)~+'++++e

K X' K
X (K', Q', K, —Q~K, Q )yg' [yg' ]* H G 1 [ [(I /2) —id'' (v)] '+ [(I /2)+i'm/. '.(v)]

H' G' 1

(18d)

P '(R, t)=(k —k') R —(Q. A—, )t., (19)

and the term in large curly brackets is a 9-j symbol.
Equation (17) is written in the "normal" rather than the
interaction representation. Consistent with the summa-
tion convention adopted in this work, Eqs. (18) contain a
sum over j,j ', K, and Q. As a check on the equations,
one can verify that Eqs. (17a), (18a), and (18b) go over
into Eqs. (17b), (18c), and (18d) on the interchange of G
and H, provided one replaces 6'gH' by —

KING and E&(j ',j )

by( —1) e~y(j, j') [6].
The general solution of these rate equations is very

complicated, involving spatial and temporal harmonics of
the differences of field propagation vectors and atom-field
detunings, respectively. On the other hand, these equa-

I

pg( 6)=y' '(H; 6)pg(H)+ S~P (6;6;R, t)pg ( 6)

+Sag (6;H;R, t)pg, (H),

p g(H)= —I pg(H)+S P (H;H;R, t)pg (H)

+Sag (H; 6;R, t)pg. ( 6),

(20a)

(20b)

where

tions are exact to second order in the applied fields and
can be solved to give a perturbative result correct to this
order.

In the case of transitions between a single G and a sin-
gle H state, Eqs. (17) and (18) reduce to

Sxg (a,P;R, t)= A (K,K', K;Q, Q';G, H;R, t)T p(G, H;K, K,K) (a=G, H;P=G, H), (21)

—&AG[XA'G l*~ (J,J')e""' -'

X j [(r/2)+&&g'(v)] '+( —1) + + [(I /2) —ikey' (v)] 'j

E K' K 1 1
TGG(G, H;K, K', K)= —3( —1) + + [(2K + 1)(2K'+ 1)(2K+ 1)]'

E
H

(22)

(23a)

K K' K
TGH(G, H;K, K', K ) =3( —1) + +'[(2K + 1)(2K'+ 1)(2K+ 1)]' G H 1

G H 1

(23b)

THH(G, H;K, K', K)=( —1) +
TGG(H, G;K,K',K),

THG(G, H;K, K', K)=(—1) TGH(H, G;K,K', K),
(23c)

(23d)

pg(G) —=pg(G, G), pg(H) =pg(H, H), y~ ~(H;G)
=y '(H, H;G, G), and the Clebsch-Cxordan coefficients
appearing in Eq. (18) have been converted to 3-J symbols
in Eq. (22). Several values of TGG and TGH are tabulated
in Appendix B. The fact that the 9-J symbol in Eq. (23b)
vanishes unless (K+K'+K) is even has been used in
writing Eqs. (22) and (23).

Under certain conditions (see below), it is also possible
to adiabatically eliminate the excited state density-matrix
elements. If these conditions are satisfied and if, more-
over, the incident fields are sufficiently weak, the approxi-
mate solution of Eq. (17b) correct to order
~ygG ~

/((I /2) + [A,gG(v)] ], obtained by rewriting Eq.
(17b) in the interaction representation and neglecting the
temporal and spatial variation of p &(6,G'), is

p+&(H, H') =SzP (H, H', G, G',j,j '; R, t)p&, (G, G')

X [r—i [aj'„'(v)—aj,, (v)]]-', (24)

where S~p (H, H', G, G',j,j ', R, t) is equal to the expres-
sion on the rhs of Eq. (18d) for SzP (H, H';G, G';R, t)
without the summation over j and j'. Such an adiabatic
elimination of excited-state density-matrix elements is
used routinely in theories of sub-Doppler laser cooling
[7]. If Eq. (24) is substituted into Eq. (17a), one obtains
an equation of motion involving ground-state density-
matrix elements only. When the fields drive transitions
between a single-G and a single-H state, the evolution of
the ground-state density-matrix elements, obtained from
Eqs. (17)—(24) and (5) is given by
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p&(6) = 3 (K,K', K;Q, Q', G,Hj,j ', R, t)

X [Tgg(G, H;K, K', K)+(y(H; G)/[I i —[kgb(u) —bgg(u)]] )R (G,H;K, K', K)]pg (G),
where

H H K
R (G,H;K, K', K)=( —1) + + +'(2H+1) ' THg'(G, H;K, K',K),

(25)

(26)

y(H;6)=y(H, H;G, G), and A (K,K', K;Q, Q', G, H;j,j ';R, t) is equal to the expression on the rhs of Eq. (22) for
3 (K,K', K;Q, Q';G, H;R, t) without the summation over j and j '.Several values of R (G,H;K, K', K) are tabulated in
Appendix B. For equal frequencies of the incident fields and for y(H, G) =I, Eq. (25) becomes

pg(6) = 2 (K,K', K; Q, Q'; G,H;R, t)P (G,H;K, K', K )pg. (G),
where

P(G, H;K, K', K ) = Tgg(G, H;K, K', K)+R (G,H;K, K', K)

3( 1 )K+K'+H —g[(2K + 1 )(2K + 1 )(2K+ 1 ) ]1/2

(27a)

K K' K 1 1 K
G G G G G H

HHE EE'K
' —

(
—1) (2H+1) '

6 6 1
'H 6 1

H 6 1

(27b)

From conservation of population, it follows that
P(6 H 0 K' K)=0.

+v 7 p &(F,F') «
~ [I +i [Agz(u)]]Bt

XP~~(F, F') f, (28)

where (F,F') = (G, G'), (H, H'). In all cases, it is assumed
that any transient effects resulting from temporal varia-
tions of the field amplitudes can be ignored. The quanti-
ties p &(G, G') and p &(H, H') contain spatial harmonics
of the form nk ' R=n(k —k').R and temporal har-
monics of the form nb. ~g.H g (j,j ')—:n (&g'g —b,g g ),
where n is an integer determined by the specifics of the
problem. For example, in strong fields where ~gag ~

))I,
one may have n of order ~gag~ /Jl +[bgg(u)] ] for
atom-field detunings ~bgg'(u)

~

& I [8]. In that case, it fol-
lows from Eq. (28) that a sufficient condition for the va-
lidity of the adiabatic elimination of p &( G, H) is

IX&g/[I +i [~Ag(u)]] I l~„'v ~Hg;H'g'(J, J ) I

« ~(I /2)+id, g'&(u)( . (29)

Condition (29) is sufficient but may not be necessary for
the validity of the adiabatic elimination of p&(G, H). For
example, when an atom having v=O is subjected to a
standing-wave field proportional to cos(kZ), the atomic
populations are proportional to [1+r cos(2kZ) ]
where r =I/(1+I) and I is a saturation parameter pro-
portional to ~gpss/[I +id, gg]~ [8]. Although the popu-

VALIDITY CONDITIONS

In obtaining Eq. (13) for P &(G,H) in terms of
P&(6,6') and P&(H, H'), we used Eqs. (lc) and (12),
along with the assumption that

lations contain harmonics up to n=I, it is possible to
show by direct substitution into Eq. (28) that the validity
condition (29) can be replaced by the less severe condition

lying/[I +i[~kg(u)]]I k, v ~Hg;H'g'(J, J )I

« ~(I /2)+ib~g~g(u)~ . (30)

For weak fields, where ~yg~g &&I, the number of spa-
tial and temporal harmonics of the fields that enter is
roughly equal to the number X of excitation-emission cy-
cles needed to establish equilibrium via optical pumping,
multiplied by a factor o.. The number & is typically of or-
der G,„,the largest value of ground-state angular
momentum, while the quantity cx depends on the specific
field configuration. For orthogonally polarized fields j
and j', a is of order unity; on the other hand, for linearly
polarized fields j and j' whose polarization directions
differ by a finite angle 8«1, a is of order 8 ))1 [9].
The validity condition for the adiabatic elimination of
p &(G,H) becomes

aG,„~k' v —EHg. H g (J,J')~ && ~(l /2)+t&gg(u)~ .

(31)

As in the strong-field case, condition (31) is sufficient, but
may not be necessary. For example, in the case alluded
to above, the ground-state density-matrix elements of
atoms having v =0 vary as —[sin8 sin(2kZ)!
[1+cos8cos(2kZ) ] ] [9]. For 8 « 1, they contain spatial
harmonics of order n =a=0, but the validity condi-
tion for the adiabatic elimination of p &(G,H), obtained
directly from Eq. (28), is given by the less-restrictive con-
dition [9]

i/aG ..I ~„v ~ag Hg (j,j ')
I
« l(.1 /2)+ i a'jg'(u)

I
.

(32)
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Inequalities (29)—(32) can be satisfied for large atom-
field detunings. They can also be satisfied in the Doppler
limit of laser cooling where ~k ' v~ &&I . Inequalities
(29)—(32), with the right-hand side replaced by
ll +i~~, .H,, (j,j ), also provide the validity criteria for
the adiabatically elimination of the excited-state density-
matrix elements pt2(H, H').

Consistent with the adiabatic elimination of p &(G,H)
[and p&(H, H'), where appropriate], it is reasonable to re-
place A~Q~G(v) by b.g~G in Eqs. (13), (18), (22), (24), and (25)
whenever ~kJ' v~ = ~k~~' v~, since inequalities (29)—(32) re-
quire that ~kj~' v)~ && ~(I /2)+ihg~G(v)~. The v depen-
dence in these equations has been retained, however, to
ensure that these equations are exact to second order in
the applied fields, regardless of the validity of the adiabat-
ic elimination procedure.

If the magnetic sublevels within a state of given G or H
have different energies owing to the presence of an exter-
nal magnetic field, the adiabatic elimination of p &(G,H)
and p &(H, H') remains valid provided that the
magnetic-field-induced frequency splitting of the levels is
small compared with ~(I /2)+id'ttG)(v)~ and I, respec-
tively. One can add terms to the right-hand sides of Eqs.
(17), (20), and (25) to account for this splitting [3].

Finally, we note that inequalities (29)—(32) may not be
valid for certain rapidly varying density-matrix elements.

I

For example if j =j ', H =H', and GAG', then
b, HG. HG(j,j )=EGG, which may be much larger than
~(I /2)+ibgG~. It may still be possible to obtain rate
equations of the form (20) in this limit, however, provided
that the rapid temporal variation of p &(G, G') results in
negligible values for these density-matrix elements.

FRICTION FORCE OF LASER COOLING

The force on the atoms resulting from the incident
fields is given by [10]

f=Tr[pV(p E)], (33)

Terms varying as exp(2iQJ t) have been omitted from Eq.
(34). When Eq. (13) is substituted into Eq. (34), one can
use the coupled tensor basis (15) and carry out the sum
over q to obtain

where p is the dipole moment operator. Using Eq. (6) for
the field, expressing the dipole moment and density-
matrix operators in terms of their spherical tensor com-
ponents, and using Eq. (7) for the Rabi frequency, one ar-
rives at

i (k .R—
AHG t)f =ifik. ( —1) yg'ze'J'p '(G, H)e ' +c.c.

(34)

f=( —1) + 3fik expIi [p '(R, t)]}gj'~&a&(jj')

K 1 1
X (gg ~. ) ( —1) 'H G G, '[(I /2)+id'' (v)] 'p&(G, G')

E 1 1—(gg' )*(—1) + + 'G H H, '[(I /2)+id'' (v)] 'p&(H', H) +c.c. (35)

In the weak-field limit, the term proportional to
p&(H', H) can be dropped from this equation. Let us
consider the weak-field limit for transitions between a
single-6 and single-H state; moreover, let us assume that
~kl v~ &&I . The evolution of p&(G) is then given by Eqs.
(27) and (22) with b,g~G(v) replaced by b,gz. If there are
two incident fields having k, = —kz, Q&=0,2, and the
same polarization, it follows from Eqs. (27) and (35) that
the steady-state solution for p&(G) is not spatially modu-
lated and the spatially averaged friction force vanishes.
This result is consistent with the fact that there is no
sub-Doppler laser cooling when there is no polarization
gradient for the incident fields [7]. On the other hand, if
the atoms spend a finite time in the interaction region ow-
ing to transit-time effects or other loss mechanisms (such
as being optically pumped out of the interacting levels),
the atomic ground-state polarization is spatially modulat-
ed. Owing to finite-lifetime effects, the p&(G) of atoms in
strong-field regions will differ from those in weak-field re-
gions. The spatial modulation is directly responsible for
narrow structures seen in four-wave-mixing experiments
on Na[11].

CONCLUSION

We have derived rate equations that determine the evo-
lution of ground- and excited-state density-matrix ele-
rnents when a number of radiation fields drive transitions
between two electronic state manifolds. The equations
are valid whenever one is justified in adiabatically elim-
inating the electronic state coherence. Moreover, the
equations are exact to second order in the applied fields
so that they may be used in perturbative solutions such as
those needed in theories of four-wave mixing. The intro-
duction of a coupled polarization tensor has significantly
simplified the equations from those obtained previously
[3]. In the future, we plan to extend this approach to
transient problems and to problems requiring the quanti-
zation of the center-of-mass motion of the atoms.
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APPENDIX A: VALUES FOR e&(j,j')
Several values for elements of the coupled-basis polarization tensor are given below for reference. Additional values

may be obtained directly from the relationship

~&(j',j)=(—1)~[~ &(j,j')]*
The following individual field polarizations are considered: Linearly polarized along the x, y, or z directions:

~(~)—g
q qO&

e'~'= i (5— ,+5,)/&2 .

Linearly polarized at an angle 0 relative to the x axis:

Circularly polarized, o.+ or o.

+ +
&q =q, —i~ ~q =&q, &

~

(A1)

(A28)

(A2b)

(A2c)

TABLE I. Values for TGG(G, H;K, K', K), TGH(G, H;K, K', K), and R (G,H;K, K', K).

TGG 2~ 2

v'3/2
—v'3/2
—v'3/2
—3/2
—v'3
0

TG~( 2, 2;K,K', K)
—v'3/2
—&3/2
v'3/2

1

2

0
v's

R ( —', —';K,K', K)
—v'3/2
&3/2

1/6
0
—v'5/3

TGG 2~ 2

&3/2
&3/8
v'3/8
—3/2
&3/2
0

GH

—v 3/8
—&15/4
—v'3/4
v 5/8
0
—1/v 8

R ( —', —;K,K', K)
—&3/2
—v'3/8
—5/v'24
5/6
0
—v'5/6

K' TGG(1, 2;K,K', K )

1/v'3
1

2

1/(2v'15 )
1

2—1

v 3/4
1/(4v'5)
—v'S/4
&3/(4&5)
0
1/(2v'15 )
—v'S/4
&3/(«5)
0
v'5/3
—v'15/4
v'7/(4v'15)
0
0

TGH(1, 2;K,K', K )

—1/~5
—3/(2&5)
—&7/(2&s)
—&3/(2&5)
3/(2v'S)
0
—3

10

v 21/(2v 5)
0
0

1

10
3
10

0
0
—v'7/(2v'5)
0
1/(2v 5)
0
0

R (1,2;K,K', K)
—1/v 3

1

2—1/( 2v'15 )
—3

4
3
4

0
—3/(4v'5)
3/(4v'5)
0
0
—7/(4v'15)
7/(4v'S)
0
0
—7/(4v'1S)
0
v'7/(4v 15)
0
0
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It then follows from Eq. (15) that the eg(j,j ') are given by

Pg(z z) = [ (1/&3)5» 0+&2/35» ~]5Q c

eg(x x): (1/V3)5» o5Q o+5» 2[ (1/V6)5Q o+ (5g 2+5Q 2)]

eg(y y) = (1/&3)5» o5Q o 5» 2[(1/&6)5Q o+ —,'(5g z+5g z)]

e»g(g, g„)=—(I/t/3)5»O5go+5»2[ —(I/+6)5go+ —,'(e 5Q2+e "5Q 2)],

eQ(x y) ( /+2 [5», 15Q,O+ 5».2 5Q, 2 5g, —2

eg (x,z) = (1/2) [5» t(5Q )+5Q ) )
—5»2(5Q, )

—5g, —i }1

EQ(y, z)= —(t /2)[5» ~(5Q ~

—5g ) )+5»,z(5g, i+5Q, i }]
,E ( —() /2, 9 /2) ——5Q o[(1/ 3)cos(|) )5» o

—( /+2)sin(|) )5» ~+(1/+6)cos(|) )5» ~l+ —5» z(5Q z+5Q

e»g(+, + ) = —[(I/v'3)5» o
—( I /+2)5», +( I /+6)5» z]5Q o,

e»g( — ) = [(1/v 3)5» o+(1/V2)5», +(1/&6)5» 2]5g o

eg(+ —}= 5», 25—g, 2-
eg(+, x) =( I /&2)5Q o[(1/P3)5» o

—( I/V2)5», +( I/V6)5» z] —( I/+2)(5» 25g 2),

eg(+ y) = (i/'t/2)5g o[(1/V3)5» o (1/+2)5» ~+(1/+6)5» 2] (i /&2)(5» 25g 2)

APPENDIX 8: VALUES FOR T«(G, H;K, K', K), T&&(G,H;K, K', K), and R (G,H;K, K', K)

(A3a}

(A3b)

(A3c)

(A3d}

(A3e)

(A3f)

(A3g)

(A3h)

(A3i)

(A33)

(A3k)

(A31)

(A3m}

Values for TGG(G, H;K, K', K), TGH(G, H;K, K', K), and R (G, H;K, K', K) are given in Table I for (G =
—,', H =

—,
' ),

(G= —,', H= —', ), and (G=l, H=2). Note that the quantity I'(G, H;K, K', K) needed in Eq. (27) is equal to
TGG(G, H;K, K', K)+R (G,H;K, K', K).
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