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Optical spectra from a degenerate optical parametric oscillator coupling
with N two-level atoms
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We study transmitted optical spectra from a realistic system which consists of a degenerate optical
parametric oscillator (DOPO) and N two-level atoms. Optical bistability appears when parameters are
suitable. Below the modified threshold of the DOPO (lower turning point of the bistable curve), the
coherent intensity is always zero at the lower branch, which allows us to describe this system with a set
of linear differential equations. By transforming the field and atomic variables into corresponding quad-
ratures, we find that, for the resonance case, one atomic quadrature will only couple to one field quadra-
ture. By separating these two quadratures, we are able to study the effects due to squeezed and
unsqueezed quadratures on the atoms. The optical and atomic spectra of this system are obtained,
analytically, for arbitrary coupling strength and cavity linewidth.

PACS number(s): 42.65.Ky, 42.65.Pc, 42.50.Lc

I. INTRODUCTION

Subnatural atomic linewidth has been predicted in
several systems [I—4]. For different systems, the atomic
linewidth narrowing comes from different mechanisms.
When a single two-level atom is placed in a squeezed vac-
uum, the atomic polarization decay rate will be split into
two distinguishable rates, with one going to zero and oth-
er to infinity as the degree of squeezing increases [l].
This original prediction by Gardiner has created a great
deal of interest in this subject and numerous theoretical
papers were published since then [2]. Rice and Carmi-
chael have shown that a subnatural linewidth also occurs
in ordinary resonance Auorescence, in the absence of the
squeezed vacuum [4]. In this case, squeezed light does
not irradiate the atom. Squeezed light is produced in the
interaction between the driven atom and the modes of the
usual vacuum. When one or many two-level atoms are
placed in an optical cavity and driven by an external field
(atomic optical bistability or AOB), the atomic linewidth
narrowing can come from two different sources, as dis-
cussed by. Carmichael et al. [3]. When the cavity field
and the atoms are strongly coupled, the composite system
will decay with an averaged decay rate of the cavity and
the atoms. If the cavity field decays much more slowly
than the atoms, the transmitted or fluorescence spectra
will be dominated by the atomic decay, which will ap-
proach one-half of the natural atomic decay rate. Other
than this dynamic averaging effect, squeezing produced
in this interaction will also contribute to a maximum of
36% linewidth narrowing to the optical spectra. The
atomic linewidth narrowing in this system was experi-
mentally observed in the transmitted optical spectrum
[5].

In this paper, we consider a different system, which
consists of a degenerate optical parametric oscillator
(DOPO) and X two-level atoms [6]. Since DOPO is a
"perfect squeezer " [7], we study how this squeezed cavi-
ty mode affects the atomic spectra and how the atoms
affect the squeezed spectra for different coupling

strengths and arbitrary cavity linewidths. At a weak in-
teraction limit, atoms will not change the squeezed cavity
field much when the external pumping power is just
below the modified DOPO threshold value. The situation
is similar to atoms inside a partially squeezed vacuum or
atoms driven by a squeezed field. In the strong-coupling
limit, the field and the atoms will affect each other and we
have to consider this system as a composite one. In such
a case, the dynamic averaging effect will play an impor-
tant role. The essential difference between this system
and the one studied by Carmichael et al. (atoms inside an
optical cavity driven by an external field) [3] is the
phase-sensitive gain feature near and above the DOPO
threshold. It is this phase-sensitive gain that produces
the optimal squeezing near the DOPO threshold. In
some respects, this system resembles the model of a laser
with a saturable absorber, but with a phase-sensitive gain.

Agarwal and Gupta studied a similar system. They
considered the cavity field as a reservoir and atoms as an
effective harmonic oscillator [8]. Using a Wigner func-
tion, they calculated the optical spectra from such a sys-
tem. Several assumptions and shortcomings were present
in that paper. First, due to the initial assumption of the
atoms being a harmonic oscillator, their method cannot
be used to analyze the steady-state dynamic behavior of
the field modes; for example, they cannot predict the bi-
stability of the output intensity versus the pumping inten-
sity. Second, they did not consider the modification of
the DOPO threshold due to the atomic absorption.
Third, they only considered the resonance case with no
atomic detuning. Fourth, in their calculation, they al-
ways took the adiabatic limit in which the atomic
linewidth is zero. Finally, in that calculation, the effects
of squeezed and unsqueezed quadratures on the atoms
were not clear.

We start with a general Hamiltonian to derive a set of
nonlinear differential equations [6]. Steady-state solu-
tions of this system exhibit bistability in the output inten-
sity versus pumping intensity. We calculate the new
threshold of the DOPO modified by the atomic absorp-
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tion. The intracavity steady-state intensity below the
lower turning point of the bistability curve (same as the
modified DOPO threshold) is always zero, although the
intensity fluctuations can be quite large, which is different
from the AOB. We discuss the most interesting region,
which stays between the unmodified DOPO threshold
and the modified DOPO threshold (lower turning point
of the bistable curve).

By using Schwinger representation [9] at the lower
branch of the bistable curve where the steady-state inten-
sity is always zero, we are able to write down a set of cou-
pled linear operator equations for the field operators and
atomic polarization operators. By transforming both
field and atomic operators into selected quadratures, we
find that, at resonance, these operator equations separate
into two independent pairs of equations. The squeezed
field quadrature of the DOPO couples only to one atomic
quadrature, and the unsqueezed quadrature of the DOPO
couples to the other atomic quadrature. This separation
gives a clear picture of how the squeezed and unsqueezed
field quadratures of the DOPO affect the atomic dynam-
ics. We have obtained simple analytic expressions of op-
tical spectra for arbitrary cavity linewidth and coupling
strength between the atoms and the field.

The arrangement of this paper is as follows. In Sec. II,
we introduce the Hamiltonian and give the steady-state
solutions. In Sec. III, we derive a set of dynamic opera-
tor equations using Schwinger representation in the lower
branch of the bistable curve. In Sec. IV, we calculate
both atomic and field transmission spectra and the field
intensity from each of the field quadratures. Section V
serves as a conclusion.

II. MODEL AND STEADY-STATE SOLUTIONS

We consider a DOPO system consisting of a pair of
nonlinear crystals placed inside an optical cavity. Two
crystals (KNb03, for example) are needed to compensate
the walk-off effect for different frequencies. An atomic
beam goes through the middle of these two crystals. The
cavity is pumped by a strong external coherent field at
near twice the atomic transition frequency.

The Hamiltonian of this composite system, under the
electric-dipole and rotating-wave approximations, can be
written as [6]

7
H= gH;,

i =1

H, =A'co, & &+—,'Rco, g & '„+A'co2d 2&2,

H2=ifigg(a & „e '~ —& o „+e'~),

H3 =i'—(a di —a & 2),

J'—:g & ' and J +——:g e*'"'& +—

8 P
P p

(2)

From that Fokker-Planck equation, we can get a set of
equations of motion for the variables in the following
forms [6]:

dc' = —
( y, +id, , ) a+g J +~a a2+I (t),

dt

= —(y, id, , )a +gJ +~—aa2+r t(t),

A2 . IC= —(y2+ id')ai — a+e2, —

dC 2 ~ t- + f2= —(y2 —i b,2)a2 ——a +e2,

dJ 'V

y~ + +i b, J +gaJ'+1 (t),
dt ~ 2

dJ+
y~+ i 6, J++g—a J'+ I +(t),

dJ' = —
y ~~~(

J'+N) —2g (J at+ J+a)+I,(t),
where

where Ai is the free energy of the fields and atoms, Hi is
the interaction between the atoms and the subharmonic
field, H3 describes the DOPO process, H4 is the atomic
decay, H& is the decay of the field at the pumping fre-
quency, H6 is the decay of the subharmonic field, and H7
is the pumping term. 8 2 and &2 denote the creation and
annihilation operators, respectively, of the fundamental
field mode. 8' and & denote the creation and annihila-
tion operators, respectively, of the subharmonic frequen-
cy. o' +—

, &' are the atomic operators, co, is the atomic
transition frequency and co, the frequency of the cavity
subharmonic field. g is the coupling constant between
atoms and the intracavity field. v is the coupliny
coefficient of the nonlinear process of the crystals. f',—
and f'~ are the noise operators of the atoms. B 2 and B2
are the noise operators of the fundamental field mode,
and B, and B, are the noise operators of the subharmon-
ic field mode. e2 is the complex classical amplitude of the
external driving field.

To derive a Fokker-Planck equation from this Hamil-
tonian is a standard technique [10]. In that procedure,
we translate all the operators into the corresponding c
numbers defined by

(a,&,ai, & 2,J,J +,J')~(a, a, a2, an't, J,J+,J') —=u,
where

(f'.-e „++f'. e „-+f', e „'),

H5 —&2B 2+8 2B2,

H6 =Q B ~i+
tB

(r.(t)r (t')) =Ka 5(t —t'),

(r &(t)r t(t')) =~a2tfi(t —t'),

(I.(t)r t(t')) =(r &(t)r.(t ))=0,

(4)

H7=ik(eza 2e " e2a2e '—),
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(r (t)r (t'))=2gaJ |'(t t'—),
( I (t)l (t') ) =2ga J+5(t —t'),
& r, (t)r, (t') &

= [2Y~~(J'+N)

—4g (J+a+J at) ]5(t —t'),

(5)

80

60

40

and

X=0, (6)

where several normalized parameters are introduced and
defined as follows:

where b,, =co /2 —co„b,2=co —cpz, and b,, =co~/2 —co, .
For simplicity, we consider a double resonant cavity such
that 6, =0, 62=0, and 6, =co, —co, . We will also
neglect the collisional decay rate y and write
Y~+Y~~/2= Y1. Y~ is the atomic polarization decay rate.
y, is the cavity decay rate of the subharmonic field and

y2 the cavity decay rate of the fundamental field mode.
N is the total number of atoms in the cavity mode.

The steady-state solutions of Eqs. (3) can be found to
be

2
2C 2CA

1+6 +X 1+6'+X

20

-20
0 100 200 300

FIG. 1. Typical bistable curve of intracavity intensity X vs

pumping intensity Y, with 6=1.4, C=10, and r=0.2. On the
lower branch, the intracavity intensity is always zero (X=O).

pC) 2
(1 la)

There are multivalues of X for a given pumping intensity
Y in the region just below the modified DOPO threshold
value. The stability analysis for these steady-state solu-
tions shows that this system is a standard bistable device
in the so-called good-cavity limit (Y, ((Yj) [6]. When
this system satisfies

no—=

a Xg 2

y'l 2rly1

2Y1Y2 Y1Y2
, lep—=

K IC

4g. 2
where p=y&/y~ is the parameter describing cavity quali-
ty relative to the atomic polarization decay rate, the
steady-state intracavity field will not be stable all the way
up to the modified threshold value 1+2C. The system
will become unstable at

The normalized field variables are

a 62 6'P

X=—xx, y—:—,Y—=yy*=
~o 6o

2
2CA 2C
1+6 1+6

' 2 1/2

Due to atomic absorption, the DOPO threshold is in-
creased. In the resonance interaction case (6=0), we
will obtain the maximum threshold value of

l~'..I

= l~ol(1+2c) . (10)

The additional term of 2C for the resonance case is due to
energy loss through the atomic fluorescence.

A particular bistable curve related to the steady-state
Eqs. (6) with b, = 1.4, C= 10, and r=0.2 is given in Fig. l.

r =N, /no is a measure of the relative strength of the
atomic system over the DOPO. It is obvious that, as
h~ ao or b, ))X and C, Eq. (6) goes back to the normal
DOPO form. One of the most obvious differences be-
tween the steady-state Eqs. (6) and the steady-state equa-
tion of the atomic optical bistability (AOB) system is that
X=O is one steady-state solution for any pumping power
due to the DOPO process [11].

The threshold value of the pumping amplitude for
subharmonic generation in this coupling system will be
modified by the atoms as

~ &1+2C .
p

(1 lb)

III. DYNAMIC EQUATIONS AT THE LOWER BRANCH

When atoms are absent, the DOPO produces 50% in-
tracavity squeezing near its threshold, which gives per-
fect squeezing at the output for a single-sided cavity.
When atoms get into the cavity, the intracavity subhar-
monic field and the atoms will interact and form a com-
posite system. In the weak-interaction limit, the atoms
will not modify the intr acavity field. This situation

Under conditions (1 la) and (lib), the system will experi-
ence Hopf bifurcation, which will not be discussed here.
The reason for this instability can be understood in the
following way. When the atomic decay rate is large, the
subharmonic field photons produced in the parametric
down-conversion process will be brought out by atomic
fluorescence. In such a case, the intracavity subharmonic
field will not build up until the atoms are saturated at the
turning point, where the intracavity field starts to oscil-
late. If the atomic decay rate is not much larger than the
cavity decay rate, then the atoms cannot dump all the
photons produced by the down-conversion process fast
enough, which causes the cavity field to oscillate before
the lower turning point. In such a case, the intracavity
intensity will jump from the lower branch to the upper
branch before the atoms are saturated. The dynamics of
this instability will be left to a future paper.
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resembles atoms inside a partially squeezed reservoir.
However, under the strong-interaction limit, the cavity
field and the atoms will couple to each other and we can
no longer consider them separately. The transmitted
atomic and field spectra will be greatly altered. We will
discuss these limits and the resulting spectra for different
parameter regions.

In the following, we will concentrate mainly on the
most interesting region, e.g., on the lower branch near
the lower turning point of the bistable curve. It is obvi-
ous that when atoms do not exist or the frequency detun-
ing is very large, the lower turning point is the normal
DOPO threshold, where squeezing has its maximum
(50% for the intracavity field). It should be noted that a
very important feature of this system is that, as far as the
pumping field is below the modified threshold of this
composite system as defined by Eq. (9), the steady-state
intensity remains zero at the lower branch. This is very
different from the AOB system [10],where the field inten-
sity increases, as the driving field increases, to the value
of &2CX at the lower turning point. Of course, at exact-
ly the threshold point or the instability point as discussed
at the end of Sec. II, the pumping depletion will be very
important and has to be taken into account.

At the lower branch of the bistable curve (but not ex-
actly on the lower turning point), we can neglect pump-
ing depletion and use the Schwinger representation for
the atomic variables. In the weak-field limit, the atoms
are mainly in their ground state, so we can approximate
the collective atomic operators as [9]

( f'. (t)f'. (t') ) = e,5(t —t'),
r2

( f'. (t)f'. (t') ) = ~,*&(t —t'),
y2

( f'. (t)f', (t') ) = ( f'. (t)f', (t') ) =0,

(f +(t)f'+(t') ) = —5(t t—'),2ga ~b ~

vN

(15)

—Q+Q
l

(16)

(f' (t)f' (t'))= —5(t t'),—
N

(f+(t)f (t')) =(f (t)f +(t')) =0 .

To simplify calculations and to study the dominant
effects in this system, we will neglect the atomic fluctua-
tions based on the following reasons. One reason is that,
at the lower branch, the steady-state solutions are
( & )ss = ( b )ss =0. By taking the noise correlations at
steady state, the atomic fluctuations will have no contri-
butions. The second argument is that the number of
atoms is very large as in the usual experimental situa-
tions, so that .the correlations of atomic fluctuations ap-
proach zero as N goes to infinity.

We can calculate spectra by using Eqs. (14) and (15).
But to see more physical meanings of this composite sys-
tem, we can rewrite Eqs. (14) and (15) by defining two sets
of quadratures

J+ =v'Nb, J =v'N b

(12)
Z+ =b+b, Z b —b

(17)

J, =(b b ,'N), ——

with the commutation relation

[b,b ]=1 .

N is the number of atoms in the cavity mode.
Substituting these operators into the Hamiltonian (1),

we can derive a set of operator equations that, after adia-
batic elimination of it 2 and &2 (no depletion of the pump-
ing field), take the forms

= —y,8+v'Ngb+ 8 e2+f', (t),
'V2

dX = —A, +X +v NgZ +f'»

dZ+ = —yiZ+ — NgX+ +b,,P.
dt

From these standard definitions, one realizes that X+ and
X are just the unsqueezed and squeezed quadratures
with relative phase angle 0=0 for the DOPO system.
Z+ and Z are the corresponding atomic variables in
and out of phase with the unsqueezed field quadrature.
To simplify our calculations, we assume that the pump-
ing field e2 is real.

With the new operators, Eqs. (14) and (15) read

dX+
X+ + N gZ+ + f'»

dt +

d&

dt
= —yi& t+VNgb + aez+f' t(t),

(14) with

dt
= —yit vN gX' —b,,Z+, —

with

db
(y i+i b,, )b — v gN& f+' —(t),

dt

db
(yi ib, )b v'Ngi—t +f—'+(t), —

(f'» (t)f'» (t')) = e,6(t t'), —
+ + y

(f'» (t)f'» (t')) =— (19)
2K

e,5(t t'), —
y2

'

(f'» (t)f'» (t')) =(f'» (t)f'» (t')) =0 .
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The modified efFective field "decay" rates (as can be seen
later, A, can be negative as the pumping field increases)
will take the forms

~i 2= —
—,'r. [p(1—y)+1

+([p(1—y) —1]'—SpC)' '], (26)

K
1 E2~

y2

K
A, + =y)+ e2 .

y2

(20)

which corresponds to (21),

A3 4= —
—,'yi[p(1+y)+1

+([p(1+y)—1] —SpC)'i ], (27)

+ 0 0 (21)

and

&Ng X

By examining Eqs. (18), we see that the four equations
will decouple into two independent sets of equations
when the atomic frequency detuning 6, =0. Since the
atoms and the field have maximum coupling strength in
this on-resonance situation, here we will only consider
this most significan ease.

Setting 6, =0 in Eqs. (18), we have

X+ —
A, &Ng X+

dt Z+ —~ Ng —yi
1/22K

y2
'

which corresponds to (22).
It can be proved that when

pC (28)

1+p
&y & 1+2C .

p
(29)

Here, we are going to concentrate only on the stable re-
gions. Even in the stable regions, special features in the
atomic and field transmission spectra will appear in
different physical allowable regions of parameters p, C,
andy. When

the lower branch is always stable up to the lower turning
point of the bistable curve y =1+2C. Otherwise, the
lower branch is stable only below y;„=(1+p)/p. Many
interesting dynamic properties might appear in the unsta-
ble region:

dt Z vNg—
2K

e2 0
y2

1/2 or

[p(1—y) —1] —SpC (0

[p(1+y)—1] —SpC (0,

(30)

(22)0 0

dt
u=Au+D' ~Q(t),

with

+
A

+

2K

y2
'

&Ng

(23)

(24)

g~(t)

where (ri;(t)) =0 and (g,.(t)ri~(t')) =5; 5(t t'). We-
can write Eqs. (21) and (22) in the standard form

for given parameters, the eigenvalues of (26) or (27) be-
come complex values, which give two symmetric spectral
peaks shifted from the center frequency with the same
linewidth for each quadrature field ("double peaks"). In
this case we consider the system to be in the strong-
coupling limit. When conditions (30) and (31) are not
satisfied, the spectra will become two peaks both centered
at the center frequency but with a different linewidth for
each quadrature field ("single peak"). For a given C
value, the spectra can appear as "single peak" for both
small p ("good-cavity" limit) and large p ("bad-cavity"
limit).

IV. OPTICAL AND ATOMIC SPECTRA
0 0

A
&Ng

S+(to)=(icoI+ A +) 'D+( icoI+ A +)—(32)

We can calculate spectra for those two sets of Eqs.
(23)—(25) separately by

(25) where
2K

e2 0r2'
0 0

Notice that the nonzero diffusion element in D is nega-
tive due to the squeezing of the DGPO.

Before starting to study the Quctuation properties of
this system, we should take a close look at the determinis-
tic behaviors of this system, particularly the eigenvalues
of Eqs. (21) and (22). The deterministic eigenvalues are

(sii )+ (sip)+
-+' '= (s„) (s„)

(X+X+ )(ci)) (X+Z+ )(co)

(Z+X+ )(co) (2+Z+ )(co)
(33)

and I is the unit matrix. Obviously, for these steady-state
spectra, the nature of the eigenvalues has a strong effect
on the structures of the spectra. Real or complex eigen-
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and

s„)'"'=2y, (X' X n

p2y I 4
—14 2

p2I4—I 0 +I
s„)+'=2y, (X'+X'+ Q

where

values divide the decom osit'
ui orm F qs. (30) and

or the two field
ing orms:

e quadratures hes ave the r', —
&

n'+r'
3

(38)

2p p
00 + —,

' I

Q
(1—Qo ——' I )

0—

(Q+Qo ) +—'I
4

0
(1—n ——' I )

0—

(Q —Qo ) +—'I
4

and

(S, )'"'=2y (X,
"x )(n)

(34)

2p
o++-'I

0
(1—Qo+ —

—,
' I )

(Q+Q ) +—'I,+ —,r
Q

2n,.(1— z

(Q —Qo+) + —,'I i+

where

(35)

Qo —= I 2pC ——'

r =—:—p(1 —y)+1,
Qo+ =—I 2pC ——'—

—.I:p(1+y) —1]']'"
r —=+

—=p(1+y)+ 1,

(36)

with 0=m/ as=co yi as the normalized
uctuation

q y.

d'"ure 'f 'h

or Q r
comp onen

Q t' 1 N

'n e spectral sha
orentzian. These
d h

ld d o-1een cavit fi
o t e stron

CC

e etween this
h

an the c a

plitting freq ncy
e riving

ad t fi ld tll
s, ut both a

s i has two s
re centered

spectral com-

erent linewidth,s, as
at zero freequency and

r, =-' &+, ——,[1+p(1—y)+ I[p 1—y) 1]2 8 C] i/2

2 —,
' [ & +V( 1 —y) —

I [V 1—

r =-'
y) 1] —SpC]'

3= —,
' [1+8(1+y)+ [ [p 1+

—1

p 1+y)—1] —SpC]'

~= —,
' [1+p(1+y) —

[ [
— —8p(1+y) —1 —8

ypical s

—SVC]'"] .

(39)

& 8-
h

v

T pectral shaapes for both u
— . At different

quadratures are
n parameter re

'

different st
or oth

Auctuatioregions, the

structures as
components m

For the i
s iscussed abov

may have

e given parameters of = " a c
E ill ch fro

igure 2 plots
rom real to corn

p s the quadrature (X'
O' g

is determined b
pn ine sha

yE 3q. 7) with two

inewidths I
at zero fre u

d I
e dash

'
en in (39) a

Lorentzi
shed and dott

, as shown in

zian corn one
o e curves

h f

are the two

h
spectral corn

components. Th
id curve is

omponent cr
e ne ati

ince the
e in the os' '

ive narrow
positive broad

t of,„=1.01 '
1 in this case ( C

um is relat' 1ive y sma .
increased and cr

lib d
s ~~nt~r d

orentzian line sh
g spectral sha

e s apes, some r

component
P

lines are fo
din Fig. 3(b). Th

ch spectral

unsymmetr 1

b h e sum of these two will

s„);"'=2y (X' X'+ + &(Q)

4P2y I'2 —1

p2 2
2
—I ] 0 +I 2

r21 1

0+I 1

(37)

uctuation s eFIG. 2. F1
F i

1+1/ 1
P

0 ~

point in this casse is at



48 OPTICAL SPECTRA FROM A DEGENERATE OPTICAL. . . 1479

2.50

1.25

+ 0.00
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/
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Q
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(b)

give a spectral shape similar to Fig. 3(a) with all values
above zero. With further increase of pumping strength to
y=1.0, the gap between the two peaks on the spectrum
will become larger and larger, and the spectrum will then
simply look like two peaks centered at +Go with the
same linewidth. The spectrum is determined by Eq. (34)
and plotted in Fig. 3(c). Since condition (11) is satisfied

for the given parameters, this system becomes unstable at
y;„=(I+p)/p=1.01, which is below the lower turning
point of the bistable curve of y;„=1+2C=3.0. From
Fig. 2 one can see that, as the pumping amplitude ap-
proaches the instability point, the amount of fIuctuations
increases dramatically until the point where the weak-
field assumption breaks down. Although Fig. 2 shows a
smooth spectrum as y increases, the spectrum actually
has difFerent intrinsic structures. It is clear that when the
pumping amplitude increases from zero, the amount of
squeezing increases. Since the eigenvalues A, 3 ~ in (27) are
always real for the given parameters, the spectrum is
governed by Eq. (38). The spectrum is basically given by
a broad negative spectrum due to DOPO and by a nar-
row positive peak due to atomic resonance absorption
(since p ))1, the atomic linewidth is much narrower than
the cavity linewidth), as shown in Fig. 4(b), which is a
slide plot of Fig. 4(a) with y=1.0. As demonstrated in
Fig. 4(a), when y approaches the unstable point of
y;„=(I+p)/p=1.01, the best output squeezing can ap-
proach the perfect value of —1 at a frequency outside the
atomic resonance peak.

The fieM spectra will be di6'erent in the good-cavity
limit. Since condition (28) is satisfied for the given pa-
rameters, the system is stable up to y;„=1+2C=3.0.

C'

h 0

V

-50
-300 -1 50 0

Q
150 300

25000

1.2
(b)

h

V

h 00

V

0
-30 -15 0 15 30

FIG. 3. Di8'erent structures of spectra for X+ quadrature in
the bad-cavity limit, with p = 100 and C= 1.0. The critical point
for the eigenvalue is y, =0.71. (a) y=0.25 (y (y, ). Dotted and
dashed curves are two spectral components in Eq. (37). The
solid curve is the total spectrum (X+X+ )(0). (b) y=0.72
(y=y, ). Dotted and dashed curves are two spectral com-
ponents in Eq. (34). The solid curve is the total spectrum
(X+X+ )(0). (c) y= 1.0 (y &y, ). Spectrum (X'+X+ )(0) is
given by Eq. (34) with two separate spectral peaks.

-1.2
-300 -1 50 0

Q
150 300

FIG. 4. (a) Fluctuation (squeezing) spectrum (X X )(0) vs

0 and pumping intensity Y in the bad-cavity limit. All the pa-
rameters are the same as in Fig. 2. The instability point in this
case is y;„=1.01. (b) A cross-section cut of Fig. 4(a) for y=1.0.
The dotted and dashed curves are the two spectral components
of Eq. (38) and the solid curve is the total spectrum.
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quadrature (X'+X'+ )(0) will be much larger than that of
the negative quadrature (X' X' )(0), so the total in-
coherent spectrum is dominated by the positive quadra-
ture. Since there is no coherent field at this subharrnonic
frequency inside the cavity, these incoherent transmission
spectra will be much easier to detect experimentally. If
both conditions (30) and (31) are satisfied, there will be
four peaks in the transmission spectra. These peaks are
due to both the DOPO (X+ and A, ) and the strong cou-
pling between the intracavity field and atoms (%g ~yt).
Although the squeezed quadrature is relatively small in
amplitude, we can still detect it by a heterodyne detection
technique.

Similarly, the conditions of (30) and (31) also divide the
atomic transmission spectra into two different forms.
The positive quadrature (Z+2+ )(Q) of the collective
atomic fluctuation spectrum is always associated with the
noisy field quadrature (X+X+ )(II) and the negative
quadrature (Z Z )(Q) with the squeezed field quadra-
ture (X X' )(Q). These are collective atomic spectra.
The atomic fluorescence spectra have to be calculated
with a different method.

Actually, simple relations exist between output field
spectra and output atomic spectra since they are two di-
agonal components in the matrix (33). By solving the
matrix Eq. (32), we have

FIG. 5. Fluctuation spectra vs 0 and pumping intensity Y in
the good-cavity limit, with p =0.01 and C= 1.0 for (a)
(X+X+ )(0), and (b) (X X )(0). and

(40)

(41)

For these given parameters, the eigenvalues are always
real. The spectra are governed by Eq. (37), which has
two Lorentzian peaks at center frequency. The linewidth
of this spectrum is determined by the linewidths of the
two Lorentzian components I t and I z in Eq. (39). Fig-
ure 5(a) plots the quadrature (X+X+ )(0) as a function
of Q with increasing pumping strength y for the "good-
cavity" limit of p=0.01 and the same C=1.0. Since the
two spectral components in (37) are all positive for this
case, there will be no hole in the center of the spectra. As
the pumping amplitude y increases to the threshold value,
the fluctuation spectrum increases until the weak-field as-
sumption breaks down. Figure 5(b) plots (X X )(0)
as a function of 0 with increasing pumping strength y for
the same parameters as in Fig. 5(a). These spectra are
given by Eq. (38) and exhibit simple spectral shape with
no absorption peak at the center frequency. The amount
of squeezing is much smaller than the ideal DOPO out-
put. To achieve perfect squeezing at the output, the
single-sided output has to dominate the total losses (in-
cluding cavity loss, scattering from crystals, and atomic
fluorescence) of the system [7]. In this good-cavity limit,
the atomic decay rate y~ is much larger than the cavity
output rate y& (p—:y&/y~((1). The quantum correla-
tion has been interrupted by the random atomic Auores-
cence.

When the driving field y is close to the modified thresh-
old value 1+2C or the instability point (1+@)/p, de-
pending on the parameters, the power of the positive

[2y, [(X+X+)(0)+(X X )(0)]}1+0

1+0 [(S )out+(S )out] (42)

where (S» )+' and (S» )'"' are given in Eqs. (34) and (35)
or (37) and (38) depending on the conditions (30) and (31).

The interesting feature is that the negative atomic
quadrature, which couples to the "squeezed field quadra-
ture, " has a linewidth larger than the atomic natural
linewidth. On the contrary, the positive quadrature,
which couples to the "unsqueezed field quadrature, " can
have a subnatural atomic linewidth. The total atomic
spectrum is the sum of the spectra from the two quadra-
tures. As the pumping field increases towards the
modified threshold or the unstable point, the linewidth of
the atomic spectrum becomes narrower and narrower, as
for a laser near its threshold. The half-width at half max-
imum of the atomic spectrum can be estimated by only
considering the dominated positive quadrature, which
gives

I
an=-,'r — +

2 o

2

+1
2&0

1/2 '

(43)

The total output atomic spectrum is defined as the sum of
both quadratures

S~"'(Q)=2yt[(Z+Z+ )(Q)+(Z Z )(0)]
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where I and Qo are given in (36). When I =0, i.e.,
y =(1+@)/p, the linewidth 60 will be zero (at this point
the weak-field approximation will break down). At the
same time, the negative quadrature always has linewidths
larger than the natural linewidth.

This phenomenon can be understood, in a language
used by Carmichael et al. in another system [11],as the
following: the total decay rate of this composite system is
split into —,'(A++pi), where the modified cavity decay
rates A, + replace the cavity decay rate in Ref. [11]. In
their system (AOB), Carmichael et al. argued that if the
cavity decay rate were very small compared to the atomic
decay rate, then the decay rate of the system would be
—,'y~. In our system,

A
N
N
V
+

c'

N
V

-20

(a)

0
Q

20

K&2
(44)

can be negative for

1+@ Xi+Xi
1&y &

P
(45)

c'

N
V
+

c'
-20 20

which allows —,'(A, +yi) to be arbitrarily small. This
subnatural linewidth has nothing to do with quantum
Auctuations and is determined by the dynamics of the
system.

When conditions (30) and (31) are not satisfied, the
atomic spectra take the forms of Eqs. (37) and (38). Each
of the quadratures consists of two Lorentzian corn-
ponents centered at zero frequency with different
line widths.

Figure 6 plots total transmitted atomic spectra in a
special case of the bad-cavity limit (p=100, C= 1). Since
the condition (30) is satisfied, the spectrum splits into two
distinguishable peaks centered at +Qo, as in the inset of
Fig. 6(b). The double peaks are due to the strong interac-
tion between the cavity field and atoms. The single peak
in this figure is an enlarged version of the right peak in
the inset. Since y=1.009 is very close to the unstable
point of y;„=1.01 for given parameters p and C, the
linewidth narrowing is mainly caused by the dynamic in-
stability of this system. It is obvious that the peak is
much narrower than the atomic natural linewidth, which
has a full width at half maximum of unity normalized by
yi. The contribution from (2' Z )(0) is very sinall
compared to (2+2+ )(0) in this case. This is in the
bad-cavity limit of p)&1. For comparison, a spectrum
with lower driving intensity (y=0.5) is given in Fig. 6(a).
In this case, the spectrum has a hole at the zero frequen-
cy.

Total transmitted atomic spectrum in the good-cavity
limit (p=0.01 and C= 1.0, and y=2.7) is given in Fig. 7.
Since the condition (30) is not satisfied, the eigenvalues
A, , 2 are real, which gives single-peaked spectra. The
lower turning point is y,h =3.0; the Auctuation spectrum
increases dramatically, as the pumping intensity in-
creases, until the weak-field assumption breaks down. Of
course, the positive quadrature (Z+2+ )(Q) dominates
the total transmitted atomic spectrum near the lower
turning point. One can see that the linewidth of this

12 14

C*

c'
A

-0.05 0.00
Q

0.05

FIG. 7. Total atomic fluctuation spectrum

(Z+Z+ )(Q)+(Z Z )(Q) vs Q in the good-cavity limit for
@=0.01, C= 1.0, and y=2.7. The system is stable up to

y, h
= 1+2C=3.0. The vertical axis is in arbitrary units.

FIG. 6. Total atomic fluctuation spectrum
(Z+Z+ )(Q)+(Z Z )(Q) vs Q in the bad-cavity limit for
p= 100, C= 1.0, and (a) y=0.5, (b) y= 1.009. The instability
point in this case is y,„=1.01 ~ The vertical axis is in arbitrary
units.

spectrum is much narrower than the atomic natural
linewidth. This linewidth narrowing in the transmitted
atomic spectrum is due to the dynamic behavior of the
system near its threshold value.

Although small, the negative si n in the quadrature
( Z Z ) (0) [proportional to ( 2 )(0) given in

(41)] defines the "atomic squeezing, " which will not be
discussed here.
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V. DISCUSSION

We have studied a composite system of a degenerate
optical parametric oscillator coupling with X two-level
atoms. This system exhibits bistability in its steady-state
intracavity intensity versus pumping intensity. On the
lower branch of the steady-state bistable curve, the aver-
aged coherent intensity is always zero. Using this fact,
we introduced approximated Schwinger representation in
the weak-field limit for the atomic variables and wrote
down a set of coupling linear equations for the intracavi-
ty field and atomic polarization variables. By transform-
ing atomic and field variables, simultaneously, into ap-
propriate quadratures, we were able to separate these
coupled equations, under a resonance condition, into two
independent groups. One set of equations involves only
the "squeezed field quadrature" and its corresponding
atomic quadrature. Another set of equations involves the
"unsqueezed field quadrature" and a different atomic
quadrature. Atomic detuning couples these two sets of
equations.

This transformation allows us to see how the
"squeezed" and "unsqueezed" quadratures interact with
atoms separately and how they contribute to the atomic
spectra or how the atoms change the squeezed spectra
from a DOPO. Of course, this study is not complete
without the calculation of the atomic Auorescence spec-
tra. Since a very different method will be involved in cal-
culating atomic Auorescence spectra, we will present that
study in a separate publication. The collective atomic
spectra have different spectral shapes from the intracavi-
ty field fiuctuation spectra, as given in (40) and (41).
When the pumping field approaches the turning point
(modified DOPO threshold) or the instability point under
Eq. (11), the unsqueezed field spectrum becomes much
narrower and its amplitude becomes very large, as for the
case of a laser. As the photon number gets too large due
to the fluctuations, our weak-field assumption will break
down. The negative spectral components (due to squeez-
ing) do contribute to the line narrowing of the atomic
spectra, but not as a dominant effect. The main effect of
the narrow atomic spectral shape near the unstable points

is the dynamic coupling between atoms and the intracavi-
ty fundamental field. Equations (26) and (27) define "vac-
uum Rabi splitting" when they become complex as the
"double-peak" cases since the mean intracavity field is
zero. As y increases, the eigenvalue changes from real to
complex, giving rise to Rabi frequencies 00+ and 00
Although the steady-state intracavity intensity is still
zero for y below the threshold value, the fluctuation field
energy due to parametric amplification of frequency
down-conversion will be significant. Since each field
quadrature has two spectral components, different spec-
tral shapes, under different parameters, can combine to
give similar total spectral shapes, as in Figs. 3(a), 3(b),
and 3(c). The transmitted squeezing field quadrature can
be detected using the heterodyne technique. The para-
metric gain is very important in obtaining the narrow
linewidth because it causes the instability and balances
the cavity decay.

As for the total transmitted atomic spectra, we took
the pumping parameter near the unstable points in Figs.
6 and 7, therefore the spectra are dominated by the posi-
tive atomic quadrature, which couples with the
unsqueezed field quadrature. Since there is no coherent
spectral component, this system is different compared to
the normal atomic optical bistability system studied pre-
viously.

When we performed transformation to the quadratures
in Eqs. (16) and (17), we took the zero phase 8=0, as in
the DOPO case. From Eqs. (34) and (37) or Figs. 3(a) and
3(b), we see that the "unsqueezed quadrature" actually
can have negative components. This is because of the
fact that a system of two-level atoms inside an optical
cavity without DOPO will produce squeezing at nonzero
phase angles [13]. When this system combines with the
DOPO, the best squeezing might occur at a new phase
angle other than zero.
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