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The billiard-ball model (BBM) is redeveloped to allow quantitative diagrammatic evaluation of signal
parameters associated with optical coherent transient experiments. It is expanded to include the action
of external forces and fields as well as to include atomic-beam-type experiments. Matter-wave inter-
ferometric experiments are examined in the context of the BBM and their relationship to photon-echo

experiments is explored.

PACS number(s): 42.50.Md, 07.60.Ly, 42.50.Vk

L. INTRODUCTION

The billiard-ball model [1] (BBM) of the interaction of
freely moving atoms (or molecules) with pulsed radiation
has been introduced as a method of visualization alterna-
tive to the better known vector model [2] which is more
appropriate for self-induced transparency [3] and photon
echoes in a solid [4]. It leads to a quick prescription for
locating delayed coherences (echoes) by observing cross-
ings of lines (trajectories) in a recoil diagram [1].

The present paper has a fourfold purpose: to present a
detailed prescription analogous to Feynman rules for cal-
culating the strength of echo signals; to demonstrate that
this prescription is founded on an analysis as thorough as
any commonly used in the literature for these experi-
ments; to show how the whole scheme can be carried
over to atomic-beam experiments in the Ramsey-fringe
category; and to extend the prescription by one addition-
al rule which makes it applicable to matter-wave inter-
ferometry.

Recently, matter-wave interferometry has been used in
a gas for the potentially precise measurement of the ac-
celeration of gravity [5] and in an atomic beam as a sensi-
tive detector of rotational motion [6]. Prior work has
concentrated on splitting or reflecting matter waves
coherently. The methods used have incorporated a
transmission grating [7], a double slit [8], a superfluid
coated mirror [9], and a standing light wave [10]. The
common thread weaving through these experiments is the
controlled modification of atomic trajectories in order to
achieve a desired interference.

The related area of physics that deals with optical
coherent transients in gases is conventionally analyzed in
a manner which masks the intimate connection with the
aforementioned experiments since the Doppler effect is
treated formally as a frequency shift and the actual atom-
ic recoil trajectories do not appear in the analysis. This
connection is more nearly suggested by the billiard-ball
model [1] which represents echoes in gases as a conse-
quence of an interference between two atomic trajec-
tories.

1050-2947/93/48(2)/1446(27)/806.00 48

We propose therefore to illuminate the connection be-
tween the recent matter-wave experiments and the opti-
cal coherent transient experiments that have preceded
them by expanding the BBM to include the effects of
external forces and fields. In the process of this expan-
sion we will develop a more thorough theoretical founda-
tion for the billiard-ball model and facilitate its use by
deriving “Feynman rules” which allow the diagrams to
yield quantitative expressions for signal amplitudes. We
will also extend its application to the analysis of Ramsey
fringe and related experiments [11] as well as to
coherent-scattering experiments [12]. We shall find that
the BBM is especially well suited for their analysis and
that experiments performed in the past have a more
direct bearing on present day work than is commonly ap-
preciated.

The billiard-ball model, like many models in physics,
consists of three components: (1) a way to picture a phys-
ical process; (2) a way to predict observations on the basis
of the entities pictured; (3) an argument or derivation
that justifies these predictions.

The picture in this model is of atoms or molecules as
objects of a definite extent (not the physical diameter of a
real atom but that of an artificially constructed wave
packet) which respond classically to the impulse of opti-
cal absorption and emission and to external forces. In
the spirit of the Feynman path integral, one habitually
compares two classical trajectories corresponding to
different absorption and emission histories. Thus one im-
agines a pair of “billiard balls,” initially superimposed,
separating and perhaps reencountering one another in the
course of time.

The predictions have to do with interference effects be-
tween two of these trajectories. There are two kinds of
predictions.

(a) The first kind is qualitative predictions which tell
when such an effect exists. The model asserts that two
trajectories interfere when the two billiard balls overlap
in space. If the respective trajectories correspond to opti-
cal histories, one of which leaves the atom excited and
the other not, the interference may produce coherent
emission (an echo). If both histories leave the atom in the
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same state, the interference contributes a term to popula-
tion inversion which is usually made manifest by contriv-
ing to make the relative phase of the two trajectories de-
pend on a variable parameter under external control (thus
producing “fringes”).

The spatial crossing of trajectories is easily visualized
with the aid of “recoil diagrams,” which are essentially
graphs of displacement versus time, except that only that
part of the displacement is shown which results from
photonic impulses, since the rest is common to the two
trajectories. Thus the segments between short optical
pulses are always straight lines in the diagram.

(b) The second kind is quantitative predictions which
tell how strong the signal is. In this paper we explain in
general how to calculate signal strength by multiplying
together various factors derived from the parts of the
recoil diagram. There are factors of magnitude derived
from the atomic dipole moment and pulse strength at
each “vertex” of the diagram (see Rule 1, Sec. II D), and
from the degree of overlap of the two billiard balls at the
observation time (see Rule 6; this factor is temperature
dependent in a gas and represents the effect of Doppler
dephasing). There are also phase factors associated with
each vertex (Rule 2) and with each line segment (Rule 3)
of the diagram. In addition, there may be a phase factor
(Rule 4) associated with the whole diagram and deter-
mined by the graphical ‘“area” (dimension
=distance X time) between the two trajectories as shown
on the diagram. This factor gives the effect of external
forces due to gravity or rotation and has not been previ-
ously discussed in terms of the BBM.

The argument justifying a model may be based on a
literal assertion of the physical picture’s approximate
truth, as in deriving the equation of state from the molec-
ular picture of an ideal gas. Or it may be based on an ap-
peal to a truer (i.e., better established) if less conceptually
accessible theory, which is proved under certain condi-
tions or approximations to yield the same answers as the
model, as in justifying the classical action formula for
quantum tunneling by developing the WKB approxima-
tion of the Schrodinger equation. The billiard-ball model
follows rather the second pattern.

In particular, the model has two features which are not
necessarily asserted to be literally true but are justified by
an argument that they lead to the same conclusions as the
truth. First, we neglect the diffractive spreading of the
wave packet in time. The fact that this does not affect
the answer is more clearly seen in momentum space [see
(3.45)—(3.51)] but can be usefully applied in position space
as a justification for the “substitute wave function” which
gives the billiard ball an unchanging diameter.

Second, we choose the initial wave packet to be as nar-
row in space as possible (this determines the billiard-ball
size) without being inconsistent with the Doppler-
broadened width of the resonance line. That is, we let the
atomic wave function be a quantum superposition of all
the momenta that enter into the Maxwell-Boltzmann dis-
tribution. We show that this is equivalent, with respect
to the outcome of the experiments we consider, to the
reasonable assertion that the momentum distribution of
each wave packet is uncorrelated with the location of its

center of mass.

Both of these issues are better understood by consider-
ing the density matrix p of an atom in the momentum
basis. If the resonance line really has a sharp homogene-
ous width then p,,, must essentially vanish unless the mo-
menta 7q, 7iq’ are very close. On the other hand, py, re-
ceives support from the whole Maxwell-Boltzmann distri-
bution. In attributing to the atom a compact wave pack-
et with the same momentum support as Pqq» WeE are sim-
ply giving the off-diagonal elements nonzero values in-
stead of the correct vanishing ones; in neglecting
diffractive spreading we are fixing these artificial values in
time instead of allowing them to oscillate in accordance
with the Schrodinger equation. The justification in both
cases comes down to the claim that the off-diagonal ele-
ments will cancel out anyway in calculating the signal,
because of the sum over many atoms homogeneously dis-
tributed in position.

The foregoing discussion applies most directly to a gas;
to apply it to an atomic beam one should keep in mind
mainly transverse momenta. The longitudinal extent of
the wave packet is more appropriately dealt with by an
additional argument given in Appendix B.

Throughout this paper we shall assume that the sample
is optically thin and that the excitation pulses are short
compared to the inverse linewidth. The pulses are reso-
nant within a margin of error inverse to the pulse length,
but not necessarily so within a measure of length inverse
to the pulse separation. Although it is usually a simple
matter to include relaxation in the BB calculation we
have omitted relaxation factors entirely in the present
paper because their inclusion requires a more sophisticat-
ed justification.

We begin in Sec. II with a reconciliation, on a very
qualitative level, of an apparent intuitive contradiction
between the billiard-ball (BB) picture of Doppler dephas-
ing and the picture based on thermal velocities. We then
treat some simple cases illustrating the use of recoil dia-
grams to locate coherences, extending their use to Ram-
sey fringe experiments as well as to interferometry. We
then provide the Feynman-like rules which make them
applicable to quantitative calculations yielding the
strength of the coherent signal. All of Sec. II is merely
prescriptive: it shows how to use recoil diagrams to get
answers.

In Sec. III we give a general derivation (for arbitrary
pulse schemes) of the rules asserted in Sec. II. In Sec. IV
we consider specific matter-wave interferometric experi-
ments including one performed earlier in this laboratory
but not so classified at the time.

II. BILLIARD-BALL FUNDAMENTALS

A. Wave packets and trajectories

The purpose of the BBM is to provide a heuristic yet
theoretically correct framework in which to describe
coherent optical transient phenomena in gases. It accom-
plishes this by expressing the action of coherent laser ex-
citation pulses, single or multiphoton resonant with the
gaseous elements, in a manner which leads to an exact
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and obvious interpretation. Each excitation pulse in-
duces optical transitions promoting the gaseous elements
(atoms or molecules) into superposition states. This re-
sults in the representation of each such state as a collec-
tion of wave packets associated with various internal his-
tories. Expectation values of induced radiative moments
or state populations involve the overlap integral between
two such wave packets.

Although the individual wave packets undergo a com-
plicated diffractive spreading in the course of time, it is
found [see (3.51) below, also [1]] that this spreading has
no effect on the overlap integral. It thus suffices to follow
the unspread wave packet (billiard ball) as it divides and
recoils in response to the action of laser fields. The over-
lapping of the various billiard balls signals the presence of
coherences which manifest themselves as free radiation
decays, photon echoes, generalized echoes, Ramsey
fringes, etc., as the case may be. We follow the billiard-
ball trajectories by constructing recoil diagrams. As we
shall see, these recoil diagrams are simply constructed
and unaffected by the presence of other external forces
and fields. The effect of the latter is simply to introduce
an overall phase factor.

The idea behind the BBM is thus to represent an atom
or molecule by a wave packet which is initially located at
r=R,,

¥,(r,t =0)=F(r—R,,0) 2.1)

and then follow its development in time as it is subjected
to external forces and fields. In general the effect of each
excitation pulse is to generate additional wave packets
representing the new states coupled to by the pulse. (The
full wave function is a sum of such packets each multi-
plied by the corresponding intrinsic state ket.) Following
one of these wave packets, which we label p, we write its
development as

i(Kp~r~<l> )

Y, (1, t)=e PF(r—r'—r1,—R,1), (2.2)

where r”’ is the displacement due to recoil from laser
fields and r’ is the displacement due to the action of grav-
ity, rotations, external fields, etc. Here K, is the net
momentum received by the billiard ball from photons up
to time 7 and @, is a phase which depends on the action,
up to time ¢, of the external forces and fields present. The
time appears explicitly as a separate argument to indicate
wave-packet spreading. It is implicitly included in both
r'andr”.

When the time comes to evaluate optical coherences it
is found that it suffices to replace the true wave packet
(2.2) with a substitute wave packet

A~ I‘(Kp'l‘fq)p)

v, (r,t)=e F(r—-r;,’—Rs,O) . (2.3)

This means that diffractive spreading can be ignored and
along with it the dependence of the wave-packet motion
on the displacement r’. The effect of r’ is felt only in the
modified phase factor ®,. [In both (2.2) and (2.3) we
have omitted a constant prefactor: see (3.46) and (3.51).]
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B. Free-radiation decay: dephasing time

The simplest application of the BBM is in the calcula-
tion of the free-radiation decay (the analog of free-
induction decay in magnetic resonance) following reso-
nant excitation of an optical transition by a short laser
pulse. Immediately after excitation by a pulse with wave
vector k a macroscopic polarization density is generated
which is also characterized by k. This ordered array ra-
diates into k until random atomic motion degrades the
order and the radiated field associated with it.

1. Standard argument

The standard analysis would correctly argue that the
time constant associated with this decay is the Doppler
dephasing time Tpopyer- It is just the time that an atom
moving at a typical thermal velocity,
Vinermat =V 3kp T/m , where T is the temperature and kj
is the Boltzmann factor, takes to move an optical wave-
length A,

optical

Vthermal TDoppler = }"optical . (2.4)

2. Billiard-ball argument

The BB analysis would argue that one should use the
time T, it takes for the excited-state wave packet,
recoiling (with velocity v,...;;) after being generated by a
photon with momentum #k, to displace itself from the
stationary ground-state wave packet. Since the size of
each atomic wave packet is the thermal deBroglie wave-
length Ag.progiie> We have

(2.5)

vrecoilTrecoil = }"deBroglie .

3. Reconciliation

The terms in (2.4) and (2.5) are related by the momen-
tum conservation condition

m vrecoilh /A (2.6)

optical

and the momentum spread which determines the wave-
packet size

M Vihermal =h /)\’deBroglie . 2.7
Combining all of the above we have
Trecoil = TDoppler 4 (2.8)

showing that the conventional and BB analyses yield
identical results.

4. Comment

The equivalence of these two approaches is sometimes
surprising since for a gas at room temperature
Vihermal > Viecoil- 1he surprise is allayed, however, when
it is realized that this inequality is compensated by
AgeBroglic <<Aoptical- In estimating the angular diffraction
of light through an aperture one can either (1) consider
light as a wave and use Huygens’s principle or (2) use the
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uncertainty principle while treating light as composed of
particles (photons). For this problem, as for the free-
radiation decay problem, neither method has a clearcut
advantage. For more complicated problems, such as
those involving photon-echo generation, the billiard-ball
method has several clearly superior features.

We note that the equivalence of these two calculations
does not require that Agep,ogtie <<Aopticaly and nowhere in
the paper do we make this assumption. The fact that
AdeBrogiie and Aqpiic, have the same dimension is an ac-
cident: their quotient has no importance, and nothing
special happens when Ageprogie = Aopricalr  Hence  the
billiard-ball model is just as applicable to a cold gas in
which  Ageprogiic = Aoptical @8 to @ strongly Doppler-
broadened one.

C. Recoil diagrams

BB analysis is facilitated by the construction of recoil
diagrams [1] which show the wave-packet trajectories
responding to the action of the laser-pulse fields alone.
Note that only r'’’, not r’, appears in (2.3). In the interval
between laser excitation pulses the recoil momentum
mi '’ of each wave packet is constant in time. Thus these
trajectories are always simple segmented straight lines
even when external fields (gravitational, rotational, etc.)
are applied. Each such line is a graph showing the tem-
poral evolution of r’’ in (2.3); its slope is proportional to
K, in (2.3). The whole “substitute wave function” con-
tains a term for each trajectory. The central rule is that
whenever trajectories cross or superimpose coherences
occur [1]. As we shall see, the effect of any external field
is to introduce an overall phase factor onto the wave
packet and for a uniform field this phase is simply pro-
portional to the graphical area under the recoil trajecto-

ry.
1. Momentum conservation

The phase-matching condition in a gas is supplemented
by the constraint that the recoil diagram must close (two
trajectories must intersect) with a  tolerance
AgeBroglic = billiard-ball diameter. [Otherwise the func-
tions F in (2.3) would not overlap.] This imposes a rela-
tionship among the wave vectors and it follows that not
all excitation schemes that respect phase matching will
produce a coherent signal.

2. Free-radiation decay

The simplest recoil diagram is that associated with the
action of a single optical pulse, cf. Fig. 1. The trajectory
crossing is at ¢;. As the excited-state trajectory recedes
from that of the ground state, the wave-packet overlap
diminishes as does the coherently radiated field. In the
figure we show the overlap at two successive times, first
at a time when there is small overlap and then later when
the overlap is gone.

The wave packets (billiard balls) have been shown per-
force as extending (meaninglessly) along the ¢ axis, but
the component of the width shown as horizontal really
has nothing to do with any time interval and represents
the extent of the balls in the spatial direction transverse
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FIG. 1. Recoil (r'"" vs t) diagram for free-radiation decay.
The recoil displacement r’’/(z) is drawn vs ¢. Ground-state tra-
jectory 1is solid, excited-state shaded. Billiard balls are
represented by circles. Laser pulse is applied at ¢;. As long as
the circles overlap we may regard this diagram as “closed” in an
extended sense.

to the pulse propagation direction. We have depicted the
balls as spherical

O,

implying that the optical pulse has a wide bandwidth.
When the optical pulse has a narrow bandwidth only
those atoms whose velocity along k (taken here to be in
the vertical, T, direction) is in a sufficiently restricted
range will be excited and the excited wave packets there-
fore becomes elongated, i.e., ellipsoidal

as shown here [13,14]. Replacing the spherical wave
packets in Fig. 1 with the elliptical ones increases the in-
terval over which the overlap persists and thereby
reduces the Doppler dephasing.

3. Ramsey fringes

The next recoil diagram of simple character is that
describing the excited-state trajectories of atoms subject-
ed to two successive copropagating optical pulses, cf. Fig.
2. Here the wave-packet overlap in the excited state does
not diminish in time. This overlap yields an interference
term in the excited-state population which oscillates as a
function of excitation laser frequency. (See “Discussion
of Rule 27, Sec. IID 3) Because the excited-state trajec-
tories are parallel the interference term is independent of
when it is detected. If the second excitation pulse is de-
layed further, the second excited-state trajectory will be
displaced to the right and the wave-packet overlap will be
diminished. Thus the Ramsey signal is diminished in the
same manner as the free-radiation decay, i.e., it is subject
to Doppler dephasing.

In an atomic beam the difference in ¢, and ¢, is just
t,—t =V[ID, where v, is the atomic velocity along the
beam and D is the distance between the laser excitation
beams. The vertical direction in Fig. 2 is then transverse
to the atomic beam since in all cases we take the former
to be parallel to the laser beams.
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FIG. 2. Recoil (r" vs t) diagram for Ramsey fringes. Laser
pulses applied at ¢, and ¢,. Billiard-ball overlap, shown at 3, is
independent of ¢. Overlap decreases as t, —t, increases, signify-
ing Doppler dephasing.

4. Photon echoes

The application of a second excitation pulse not only
produces a second excited-state trajectory such as shown
in Fig. 2 but a second ground-state trajectory, cf. Fig. 3.
This is the complete recoil diagram for two-pulse excita-
tion. The subsequent crossing of the ground- and
excited-state trajectories gives rise to the photon echo.
This crossing, in the BBM, corresponds to the elimina-
tion of Doppler dephasing.

5. Recoil displacement as a vector

In viewing these diagrams, the reader is asked for some
tolerance for the fact that the recoil diagrams should
really be drawn on four-dimensional paper in order to
display the three components of r'’ as well as one of ¢.
On two-dimensional paper we have to be content with the
component of r’’ in a direction approximately parallel to
all the k; of course it can be chosen exactly parallel to all

P3
. ‘DQT p
D2
D4
RPN NN
n 9] 13

FIG. 3. Recoil (r"" vs t) and excitation (® vs ¢) diagrams for
photon echo. Copropagating laser pulses applied at ¢; and
t,=t;+7. The excitation diagram is explained in Sec. IIE.
Thus the crossing at ¢;=t#,+7 allows echo formation in both
solids and gases. The separate trajectories are labeled p,, p,, p3,
and py.

k; if the pulses are strictly colinear. Then r” has no
transverse component. It is customary, however, in
many echo experiments to angle the two pulses slightly so
that the echo will not be masked by pulse afterimage. In
that case the two trajectories p; and p, of Fig. 3, drawn
properly on four-dimensional paper, would fail to cross
by a distance (%/m)|k, —k,|7 in the transverse direction.
When this distance becomes comparable to the transverse
diameter of the billiard ball the echo intensity falls off.
Measurement of this effect has been used to determine
the billiard-ball shape [14].

6. Doppler-free Ramsey fringes

Doppler dephasing can also be eliminated from the
Ramsey-fringe experiment (Fig. 2) by using two pulses to
produce a crossing of trajectories at which a third pulse
sets up a population interference. The original scheme
[15] involves three pulses equally spaced in time: the first
pulse propagates forward, the last backward, and the
middle pulse is a standing wave. The resulting recoil dia-
gram is given in Fig. 4(a). [The accompanying “excita-
tion diagram” Fig. 4(b) will be explained in Sec. II E.]
Only the essential trajectories are shown. The excited-
state trajectory shown following the second pulse is
directed downward because one photon has been stimu-
lated in the direction of the initial pulse and one photon
(coming from the opposite direction) has been absorbed.
After the third pulse the two excited-state trajectories are
not only parallel but coincident. This coincidence reflects
the absence of Doppler dephasing of the excited-state
population signal, regardless of the length of .

From the foregoing exposition, the reader familiar with
echo experiments might wonder why it would not serve
as well to send all three pulses in the forward direction,
obtaining the recoil diagram of Fig. 5. Again the popula-
tion interference is set up at a crossing so that the subse-
quent excited-state trajectories coincide.

The answer is that although the scheme of Fig. 5 will

(a) (b)
Recoil Excitation
Diagram Diagram

3 o2t

D1
N
f ty 3 P2 n 15} 3

t t

FIG. 4. (a) Recoil (r” vs ¢) and (b) excitation (®? vs ¢) dia-
grams for Ramsey fringes. First of two contributions (see Fig.
7). The first and third pulse propagate oppositely, the second
pulse is a standing wave. Here diagrams are distinct. (a) shows
the coherent excited-state superposition forming at ¢ in a gas or
atomic beam. Nonclosure of (b) means that this coherence will
display Ramsey fringes but that echoes will not form in a solid.
[See Sec. II E for an explanation of (b)].
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FIG. 5. Recoil (1" vs t) and excitation (®® vs ¢) diagrams for
the gravity experiment. Equally spaced (by 7) copropagating
laser pulses applied at ¢y, ¢,, and ¢3. Coherent excited-state su-
perposition forms at 7;. Ramsey fringes are forbidden if only
one laser is used but allowed when several are used (cf. Sec.
IIE). Gravity induces a phase shift proportional to the enclosed
area in the recoil diagram.

produce a Doppler-free population interference, it will
not produce fringes because detuning the laser will not
change the phase relation between the two trajectories,
whereas it will do so in Fig. 4. This distinction can be
graphically understood by shifting one’s attention from
the recoil diagram to the accompanying ‘“‘excitation dia-
gram” which will be explained in Sec. II E. It is possible,
however, to obtain fringes in Fig. 5 by detuning the three
pulses by different amounts, as was done in the “gravity
experiment” [5] which will be discussed in Sec. IV D.

On the other hand, the scheme of Fig. 4, without the
third pulse, can be used to create echoes in a gas but not
in a solid. This will be explained in Sec. IT E.

7. Interferometry

A feature of the recoil diagrams not heretofore dis-
cussed is that they directly display the phase interference
which results from the action of gravity, rotation, exter-
nal fields, etc. Associated with any coherence exposed by
the crossing of two trajectories is the graphical area
A={ (r, —r,)dt that these two trajectories enclose.
The beauty of the recoil diagrams is that this phase in-
terference is just ®'=(m /#)v- A when the acceleration v
of the atoms, due to the action of gravity, etc., is constant
in time. (The effect of the radiation pulses is not included
in v.) This coefficient Vv is not pictorially represented in
the recoil diagram, which shows only the atomic recoil
caused by the emission or absorption of photons from the
exciting laser beams. Thus the action of gravity, etc. does
not complicate the geometry of the recoil diagrams as it
is not (and should not be) incorporated into them. Only
the graphical area A, which multiplies v, is to be read
from the diagram.

The dimension of A is distance X time, and it is there-
fore not a true area [16]. Nevertheless, in atomic-beam
experiments it is closely related to the geometrical area
between trajectories which in simple cases is |v” Al in our
notation, v being the atomic velocity along the beam.
Note, though, that A carries the vector character of r'’,
not of r'" Xv,. For experiments in a thermal vapor A has
no corresponding geometrical area.

D. Diagrammatic rules

The recoil diagrams’ primary function is to show by
way of their geometry when and under what conditions
coherences occur and interferometric phase terms arise.
They also serve as “Feynman diagrams” which, accord-
ing to simple rules, allow for speedy evaluation of wave-
function amplitudes and expectation values.

1. Rules: traveling-wave excitation

Consider any recoil diagram resulting from the appli-
cation of a series of pulses and isolate one trajectory. La-
bel it p for path. If a pulse connects the present electron-
ic state to another we say it generates a vertex. We shall
call this vertex ‘“‘active” if the atom on path p actually
changes its state, “inactive” if it does not. (An inactive
vertex generates a factor reducing the amplitude.) Let
the jth vertex occur at ¢; and the electronic energy just
following the vertex be 7€} ,.

We treat first the case where the pulse is a traveling
wave, Ree' 51709 Ghere w;=k;c. Then we have
the following.

Rule 1. To each vertex we associate an amplitude B,
which depends on the amplitude, duration, and character
of the excitation pulse, and on whether the vertex is ac-
tive or inactive. For a traveling-wave pulse of area 0;

0.
i sin~21~ if the vertex is active
ij = Qj i
cos—— if the vertex is inactive .

" Rule 2. To each vertex we associate a phase

+k, - r—®% if the vertex is active .
PP = J p
» 0 if the vertex is inactive ,
where ®%, =+(w;t;+¢;). The ambiguous sign is + if a

photon is absorbed, —if emitted.

Rule 3. To the interval between the successive active
vertices j and j' we associate the phase

— H K?
q’fp - (Djp + q)jp

A
2m

— 2 —
= Q;,+ Kj, [(t;—1;),

unless the jth is the last active vertex in which case tp—t.
[The cumulative recoil momentum K, is defined after
(2.2).]

Rule 4. When the atoms are acted on by spatially uni-
form and time-independent external forces (gravity,
Coriolis, etc.) then in addition to the above there is an
overall phase

_— m . " ﬂ
<I>1‘,———ﬁ~vt-rp(t)+ P

where A, is the graphical area under the trajectory of

VA, (2.9)
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path p. We have assumed that Vv is constant, and ¢ is mea-
sured from an origin before the first pulse. This rule is
derived, see (3.55), from a more general formula (3.41)
which applies to variable forces as well.

Rule 5. The above amplitudes and phases combine to
yield the wave-packet amplitude

u,= [H B, ]exp i [2 o+ 3 oS, + @, } ]
J J J

P, =2 P =X P~
J j

and j runs over the vertices. The prefactor [];B;, was
omitted in (2.3). See below, (3.13), for an explicit
definition of K ,.

The remaining rules apply to expressing the signal ob-
servables (Pe, }*7)) and (N, )), where the inner brack-
et denotes a quantum matrix element and the outer an in-
tegral over the position of the atom. (The N atoms con-
tained in the sample are assumed to be distributed over a
region of linear dimension large compared to an optical
wavelength.) Thus ( Pen_lf};" ) is the dipole emission
source for the transition |n,)—|n,) [see (3.22)], and
N, ), the population in state |n ).

Suppose that the system is to be observed at a time ¢.
Any coherent signal will be indicated by a pair of trajec-
tories p,,p, that cross or nearly cross at time ¢.

Rule 6. If the two trajectories are separated at time ¢

by a spatial distance Ar"=Ar"(t)=r”p] ——r”p2 then the

signal will depend on the billiard-ball overlap factor
defined by

(1)= —(mky T/272)(Ar")?
fplpz t)=e ’

where T is the temperature and kp is Boltzmann’s con-
stant. This rule shows the sensitivity to trajectory cross-
ing.

Rule 7. Once the quantities u, for all p and f 1Py for

all p,,p, have been found then for any pair of final states
|n;),|n,) we define the coherence product

e n

— 3
Un,, =@mIN 3 3t 45 (1)
1 72

where 37 denotes the sum over all trajectories p that ter-
minate in |n ). We note that the combination

U,,l,,z=(2‘rr)3Nuplup*2fp1p2(t)

is obtained from the M, pz(k) of (3.32) after some manip-
ulation: see (3.52).

Rule 8. Measured signals are related to U, ,, as fol-
lows: the population in the state |n ) is given by

(N, N=U,,

and the source determining emission along k from
n,—n, is given by

(Pe, J" N =Py n,Unn, -

Here p, , ={n,|P|n,).

Purely for reference in reading the rest of the paper, we
give here a list of the various phases @, without the atten-
dant subscripts, defined above.

Rule 2,
P’=+(wt+¢),

D=tk r—P°=*(k-r—wt—¢) .

Rule 3,
D= —Q0At ,
o= —Tgon,
2m
P =02+ pK = — {iKz-i-Q]At .
2m

Rule 4,
<I>‘=L;—(—Vt-r"+\"-A) .
Rule 5,
D=7 (P°— D) — D",
Kr—®=3 (®9+0)+ 0" .

2. Rules: standing-wave excitation

It is sometimes necessary to apply standing-wave rath-
er than traveling-wave pulses. The effect is to produce a
fanlike array of trajectories as any number of photons 7k
can be absorbed and emitted (cf. Fig. 6). The total
momentum transferred to the atom will be m#k, where

A

n

FIG. 6. Recoil (r" vs t) diagram for free-radiation decay and
standing-wave excitation. The laser pulse is applied at ¢, which
produces a physical grating and a free-radiation decay along
+k;.
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m ranges over all integers from — o to + «. For the
sake of generality we describe the jth standing-wave pulse

. ik, r—wt—@")
as two traveling-wave J it

+Reei(—kj~r~a)jt—<pj_).

The rules in this case are like those for the traveling
wave except that the first two are changed to the follow-
ing.

Rule (I'). For a standing-wave pulse of area 6 ; at the
crest, the amplitude associated with a vertex is given by a
Bessel function B, =J,,(6;/2), where the vertex is active
for odd m and inactive for even m.

Rule (2'). To each vertex we associate a phase

pulses Ree

+ -
_ Pi P
E =m k-r—f
+ J—
¢ to;
T (@ T
where
n: =0 if m is even
Pl==x1 if m is odd ,

the ambiguous sign being the same as in rule 2.

With the above modified rules we are able to retain
Rules 3—6 with no further change. Any mix of traveling-
and standing-wave pulses is now covered.

3. Discussion of rules

Closed diagrams—simplification of Rule 4. Coher-
ences occur when recoil trajectories cross, i.e., diagrams
close. But when they do, then r,(z), evaluated at the
crossing, is the same for both paths and the term
(m /#)¥t -1, (¢) drops out so that the phase difference be-
comes

AD =, — D, =(m /H)v- A, (2.10)

where A= A,— A is the enclosed area. This phase is
the basis of interferometric experiments as it depends on
the atomic motion (mVv=F . . =const) responding to
the action of external forces or fields.

Discussion of Rule 1. The coefficients B;, are necessary
in obtaining the magnitude of the coherences. This is
especially important in cases when multiple coherences
must be added together. For the Doppler-free Ramsey
fringes of Fig. 4 there is another relevant diagram, cf.
Fig. 7. The interference between the diagrams of Figs. 4
and Fig. 7 is constructive and the coherence is reinforced.

Discussion of Rule 2. The phase associated with each
vertex includes the phase of the exciting laser fields and is
responsible for the amplitude modulations obtained on
varying the laser tuning, i.e., Ramsey fringes. For the di-
agrams of Fig. 4,

¢$1= +(k, r—ot;—@))— (ki T—0t, —@,)
+(k_-r—wt,—@;)
and

<Df,’2= +(k_-r—owt;—@;3)

@ )
Recoil  p, Excitation p4
Diagram Diagram

ot

Q
p3 d)T

. n/
RN
f t 3
t t

FIG. 7. (a) Recoil (r"" vs t) and (b) excitation (P vs ¢) dia-
grams for Doppler-free Ramsey fringes. The second of the two
contributions to Ramsey-fringe production. See Fig. 5 caption.
The steeply sloping segment of p; after the second pulse
represents the ground state, and so the vertex of p; at ¢, is inac-
tive.

b4_+_14

2 13

where the fields are counterpropagating, i.e., k, =—k_.
Thus
A(I:';’,’1 P <I>z’1 - <I>f,’2

=w(ty—t))H@;— @+~ @3)
=207t (@g;— @1t ¢3)

and as long as the laser is coherent (so that the phase
differences are constant) Ramsey fringes result from the
dependence on w. The coefficient 27 gives the inverse
spacing of the fringes. [The phases @y, @, (¢53), and @;
refer, respectively, to the first pulse, forward (backward)
component of the second pulse, and third pulse.]

If we had gone to the photon echo configuration and
applied a third pulse at ¢; we would generate an excited-
state coherence which would not exhibit Ramsey fringes,
cf. Fig. 5. The analysis follows the above; here copro-
pagating traveling waves are used and

®f =+(k, T—0t, —@) (kT 0t~ @;)

+(k+-r—a)t3—‘<p3)

and
@7 =+ (ki r—0t, @)
to obtain
A‘I)Z’lp2=a)(t3—'2t2+t1 )+(¢1_2¢2+¢3)

=(p;—2¢,t@3),

which is independent of w.
Discussion of Rule 3. The overall phase associated
with the electronic states is

o =— [

where Q,=Q,(¢) is the eigenfrequency associated
with the electronic state on trajectory (path) p at any

#

Qp‘i-—z‘"; (2.11)

2 ’
K ]dt ,
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time ¢ and (#2/2m )Kf; is the recoil energy. One might
expect additional kinetic terms such as
(#/2m)Q% (#/2m )2Q-K,, where 7#Q is the atomic
momentum without recoil; but these either cancel or are
represented in Rule 4 (see Sec. III C).

It is best to separate the contributions in Q, from those
in (#/2m )K2 We write

t. <t
K2 Ko _ Ao,
o= 3 of=—5 - [ Kjdi (2.12)
for the quadratic recoil phase and
t <t
t ’
0= 2 of =— [ Q,dr (2.13)

for the excitation phase.

When multiple interfering coherences occur, A':I’{,jJ
(where A®,,, =®,—®,) can vary independently of AP
according to the particular p, p’ combination. A simple
example is the interfering Ramsey-fringe coherences de-
picted in Figs. 4 and 7. Application of Rules 2 and 3 in
this case yields

A¢$p’+A¢§%=2wT+(¢3“q’1+(P2_<P'2)
ij—(Zkzr) ,
2m

where we use (—) for p =p,, p’=p, in Fig. 4, and (+)
for p =p,, p’=p; in Fig. 7. The quadratic recoil correc-
tion, which shifts the fringes arising from each diagram,
is small, but with increasing sensitivity possible it should
not be neglected. In this case it weakens the constructive
interference between the two diagrams.

The contribution from <I>Q is another matter. In a gas
or atomic beam the quantum -mechanical frequency Q,
has a single value as has <I>ﬂ(t) In a solid the Q,’s are
spread out and give rise to 1nhomogeneous broadenmg
The behavior of dZ'I?(t) thus determines the coherences in
a solid just as the behavior of r'’(¢) did for a gas. We
study the solid by constructing a new kind of diagram
which we call an excitation diagram. This new diagram
will also prove useful in a gas, giving insight on the con-
ditions for Ramsey fringes.

E. Excitation diagrams

The phase arising from Rule 3 can simply be added up,
but it is sometimes useful to display it graphically. If we
plot <I>ﬂ(t) for a single value of Q,, as a function of ¢ we
obtam “excitation diagrams” m the same way that
“recoil diagrams” were obtained plotting r'’(¢) vs . An
excitation diagram looks just like a recoil diagram but
has a different meaning. Thus the slope of each line is
determined by (;, instead of by (#/m )K;,. For the
two-pulse photon echo, cf. Fig. 3, the recoil and excita-
tion diagrams are identical, for the Ramsey-fringe
configurations of Figs. 4 and 7 they are not.

Excitation diagrams play the same role in solid echoes
that the recoil diagrams play in gas echoes. The solid
differs from the gas in two ways. First, in a solid the
atoms do not move and the photon momentum is ab-
sorbed by the crystal lattice or atomic neighborhood.
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Second, in a solid there is a distribution in the Q,’s that
gives rise to inhomogeneous broadening. Because the
atoms do not move, the recoil diagram (drawn as though
the atoms were free) need not close in a solid (i.e., trajec-
tories need not cross) in order for coherences to appear.
But the excitation diagram must close in order that the
phase difference @?—CI)I?, be the same for all atoms
despite inhomogeneous broadening. For coherences in a
gas the recoil diagram must close but the excitation dia-
gram need not, cf. Figs. 4 and 7.

The distinction between the two diagrams becomes un-
necessary for a two-level system exposed entirely to
copropagating light pulses. Then (1, is a linear function
of K ,; the two cannot be varied independently. Hence if
one diagram is required to close, the other also closes an-
yhow. In fact, in a conventional gas echo, one could re-
gard the recoil diagram as an excitation diagram by
thinking of the atoms as having sharp momenta and in-
terpreting the Doppler effect as an inhomogeneous
broadening; thus one writes ¢'®T as ¢’V and incorpo-
rates #IK-v into (. When any of the pulses, however, are
counterpropagating, the recoil and excitation diagrams
become distinct, and the behavior of a solid differs from
that of a gas.

There is an additional use for the excitation diagram in
studying the cumulative effect of the term w;¢; in Rule 2.
Ramsey fringes are normally obtained in a two-level sys-
tem with resonant frequency @ by adding a variable (but
J-independent) increment 8w to all the w;. The effect of
this is to change ®;=3; @}, (see Rule 2 or 2') by

3= —80)2 Mjpt; »
j

where 17, =0 or =1 according to the cases enumerated in
Rule 2 or 2. But a study of these cases shows that 7, is
related to whether energy is absorbed, emitted, or neither
at the jth pulse: specifically,

Qjp—Q;_1,=om, . (2.14)
Therefore we can write
5P, 1
5o —g g —Q;_y,) . (2.15)

The Ramsey fringes arise from a modulation factor

P —
e % ¥ dependmg through (2.15) on 8w. (See the dis-
cussion of Rule 2.) On the other hand, the closure of the
excitation diagram would mean that

— p0 Q__ o — ’
0=0p—dfi=— [ (Q,—q,)dt

-3 (Q,—Q,)t; 1 —1;) (2.16)
j=0

where ¢,=0 and ¢, ,=¢. A Ramsey-fringe experiment
normally involves a measurement of population at time ¢
so that to have interference we must have Q,,=Q,, and
Qg, =Qg,. Therefore we may drop the terms in ¢, and
t, 1, obtaining
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n
Py —0p=3 4[(Q), = Q) —(Q; 1, —Q; )]
i=1

n
j=

502 52

LA} ¥

’ (2.17)

which shows that there are no Ramsey fringes of the
standard kind (right-hand side equals zero) if the excita-
tion diagram closes (left-hand side equals zero).

It follows that the excitation diagram provides a nega-
tive criterion for the appearance of Ramsey fringes in a
gas or atomic beam. Provided there is a signal, due to a
crossing of trajectories in the recoil diagram, fringes will
be obtained if and only if the corresponding lines do not
cross in the excitation diagram.

This gives an easy way to see why long-term (7=T7)
Ramsey fringes are not normally obtainable from a solid.
To rephase the inhomogeneous spectrum, the excitation
diagram must close, and then there are no fringes. (But
one might get fringes by using two lasers tuned to the
same resonance and detuning only one of them.)

F. Application of rules: photon echo

Before closing this section we show how the rules ap-
ply to a standard experiment, the photon echo, Fig. 3,
produced by two traveling-wave pulses in a gas. To make
the application interesting, we suppose that the wave vec-
tors of the two pulses, k; and k,, are slightly angled from
one another. We assume there is no external force

Denoting the paths p; and p, as in Fig. 3, we have for
the first path Rule 1,

—
B,, =isin—,

B, =cos
2

s
Py I
Rule 2,
of, =0, O, =k, w1, ¢,
Rule 3,
§p1=—(Qg,+0)(t2—t1) ,

#
S, =~ [Qex%—mk% (t—t;),
and Rule 4,
<I>1‘,1=0 ,

and for the second path, Rule 1,

.. 6 .. 6,
B1p2=zsm—2—, B2p2:l smT ,
Rule 2,
q)‘fpzzkl'r_wltl_@l >

(Dfpzz _(kz'r_w2t2_¢2) ’

Rule 3,
_ #
= Qex+——2mk% (ty—1,),
@, =— |Q+ - (k,—ky) | (1 —1,)
2p, & m 1 2 27
and Rule 4,
t —
(I>p2-0 .
Thus Rule 5,
uuy =isin91(1—cos()2)
Xe2i(k2'r'm2t2*tpz)—i(kl-r—wltl—471)
Xe~i(nexfngr)(t—212+tl)
Xe+i(ﬁ/2m)[k%(z—t1)—2k1~k2u—:2>] .

If we assume that |k,| = |k,| =w/c =k, where 0;,=0,=o
and

—0,—0—k?,

Q &r 2m

ex
then

i . i(2k,—k)r —i2p,—¢,)

ulu;‘=—;sm01(1——cos92)e 2 e 2

: 2
— ot (A/m)k“(1—cosy)(t —t,)
Xe e ,

where Y is the angle between k; and k,.
To apply Rule 6, we calculate the recoil displacements

#

=04+ L _

T 0 mkz(t t2) ’

#

m(kl k))(t—¢,),

and obtain
#

A L — =2 k J— J—
r I'l r2 m( 2 kl)(tZ tl)

+%(2k2—k1)(t—2t2+t1) .

If xy is small then k,—k; is almost perpendicular to
2k,—k/, and we have Rule 6,

— 4k T/2m)(ky—k )Xty —1,)?
e

S0, =
—(kp T/2m)(2k,—k, )Xt —2t, +1, )%
xe B 2 1 2 1
—ax2ky T/2m)k 1, —1, )
=e
—(kp T/2m)k(t —2t,+1,)?
><e B 2 1 .

The first factor represents the failure of the diagram to
close exactly at the echo time ¢t =2¢, —t,, because of the
angle between the two pulses. Thus the two trajectories
miss each other slightly in 3-space. The second factor
gives the ordinary T'5 suppression of the echo before and
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after the echo time.

In u,u3 we see the usual factor sin6,(1—cos6,) relat-
ing the amplitude of the echo to the pulse areas. The fac-
tor

. _imtei(ﬁ/m)kz(l—cosx)(t—tz)

tells us that the echo emission will have frequency
o®=w—(#i/m)k*(1—cosy). The factor !PT pepyg
us that the echo will be directed along 2k, —k;,, but since
the frequency requires that |k|=w®/c=k, there is a
slight mismatch in (( Pe %)) :

2k,—k,—k=k(V'5—4cosy—1)
=2(1—cosy)k .

This will suppress the echo if the sample length exceeds
~1/kx? [We have neglected (0®—w)/c which is small-
er by #ik /mc.]

The reader accustomed to conventional calculations,
based for example on the density matrix, will recognize
all the factors above. We are not presenting a rival
theory, only a way of connecting conventional calcula-
tions to a pictorial model.

III. THEORY

A. Gas of a single atom

The theoretical development we present immediately
below is for a gas of many atoms. We do this for con-
venience only. If one uses homodyne detection in
measuring radiated signals or if one detects atomic popu-
lations the results obtained below will hold for repeated
experiments performed on a gas of a single atom, cf. Ap-
pendix A.

B. Atomic beams

Although our analysis will refer to a gas, the results
hold as well for an atomic beam, as will be discussed in
Appendix B.

C. Gas of many atoms

Our aim is to derive the “Feynman rules” given in Sec.
IID and to justify the “substitute wave packet” derived
in (2.3). We begin by considering an ensemble of atoms
in a gaseous state with a wave function

Y(ry,...ry, ) =[] Y(r,, 1), (3.1

where s runs over the N individual atoms.

We remind the reader that our sample is assumed to be
optically thin and therefore every atom can be assumed
to be affected by the same classically described, suitably
retarded pulse, independently of how the other atoms have
reacted. The pulses therefore introduce no correlations
between atoms and the gas remains in a product state
throughout the experiment [17].

For each atom we decompose the wave function ac-
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cording to

\I’S(r,t)=2¢snp(r,t)lnp e s (3.2)
P

where n is the number of optical pulses that have been
applied up to the time ¢, and p labels the path leading to
that state. It follows that

wir,n=3 y2,(r,0) (npl . (3.3)
p

The notion of path is as follows. Each time an optical
pulse is applied an optical transition may be induced and
the wave function may begin to evolve for the new inter-
nal state as well as for the old one from which it came.
After a series of pulses the wave function is expressed as a
linear combination of internal kets with r-dependent
coefficients. We follow them all keeping track of internal
history. Thus there may be more than one value of p for
any value of n. The energy of the np state is given by
#Q,,. In Fig. 8 we present a possible labeling scheme.
(This scheme is not used consistently throughout the pa-
per.)

1. Evolution of a wave packet

Our plan is to introduce external forces and fields but
we wish to start with the free-particle case and introduce
these complications later. We therefore start out with
the atoms in the ground state and express the external
wave function of the sth atom as a wave packet

Yy(r,t)= [d’q 4,(q)

i[q-(r—R)—Qut — (#i/2m)q*t]

Xe , (3.4)

where q is a dummy momentum variable and R; is the in-
itial position of the center of mass of the wave packet.
The probability distribution of momentum states from
which the wave packet is constructed is given by
| 4,(q)|*

To facilitate expressing the wave function after mul-
tipulse excitation we rewrite (3.4) as

byop(rnD)= [ d’q 4,(qle "

BOp(ryq’t) »

$)

(3.5)

(a)

0

p=0,1,23 l p=0,2! p

n 151 1
t t
FIG. 8. Label scheme. We assign an index p to each path

which leads to a distinct wave function ,(¢). Each laser pulse
has the potential for generating additional wave packets.



48 BILLIARD BALLS AND MATTER-WAVE INTERFEROMETRY 1457

where

—i[Qop+(h/2m)q2]t

E’op(r,q,t)=e (3.6)

We have included the superfluous argument r for con-
sistency: see (3.8).

Effect of single-pulse excitation. The application of a
resonant optical pulse with wave vector k; leads to, cf.
Appendix C,

iq-(r—R,)
Yap(r,t)=[dq 4,(qre™"
X B,(1,q,1)B,(r,q,1;) , (3.7)
where
Elp(r’q’t )=B1p€+i(E1p.r_alpt1_¢1p)
xe—i(01p+(ﬁ/2m)(q+ilp Pt —1,) (3.85
In the most usual case (see Rule 1 and Appendix C)
B,=1 % o isin L (3.9)
jp =1 or cos—- or isin—-, .

where 0; is the area [2] of the optical pulse. Equation

(3.9) depends on whether (1) the pulse does not connect
J

= +i(k, r—&, t.—p, ) #i
B, (r,q,t)=B, » L exp’— Q, +—

If we introduce the definitions

t<t

K,(0=3 K,

j=1
and
Q,=Q,6)=9;,,
where j is chosen so that
1;<t<tj,y,
the wave packet can be rewritten as

(r—R)+K, 1— &9
\Ils,,p(r,t)=Bpfd3q A (q)e late= o ]exp

where

L (<t)

B,=B,(t)= II B, (3.16)

and

J
D= .’21 (@pt;+@jp) - (3.17)
=

The combination K, -r—®} is just the cumulative sum of
the phases @7 defined in Sec. II D, Rule 2.

Introductton of generalized forces and fields. We allow
for the presence of generalized forces and fields by intro-
ducing the variable

with the energy level; (2) the pulse connects and leaves
the atomic state unchanged; (3) the pulse connects and
changes the atomic state. For completeness we set

op = 1-

We have also used
®;,=0o0r tw; or —wj,
lEjP=0 or +k; or —k; ,
$,=0o0r +¢; or —¢;,

where w;=k;c is the frequency of the jth pulse and the
pulse phase 1s k;:r—w;t;—¢;. Equation (3.10) depends
on whether (1) the pulse applied does not change the
atomic state; (2) the pulse changes the atomic state be-
cause of absorption; (3) the pulse changes the atomic state
because of stimulated emission. Note that this is not the
same classification of outcomes that determines (3.9).

Multipulse development. Following a series of n optical
excitation pulses the general wave-function component
becomes

Yop(r, )= [(dq A,(@)e B, (r,q,0)

(3.10)

XB,_1,(1,q,1,) - * B,(r,q,1) , (3.11)
where
2
q+ 2 k;, ](t—tj)’ . (3.12)
j'=1
(3.13)
(3.14a)
(3.14b)
Q,(t )+——[q+K (t"7? l t’ ] , (3.15)
T
Q=Q(t)=q+d'(t), (3.18)

where q'(¢) represents the classical motion induced by
such forces [that is, q'(0)=0 and #q’'=F crnal- We will
consider two distinct cases later. It is easily seen that the
effect of Feyierna ON (3.15) is, first, to replace q-(r—R;) by
Q-(r—R;), and second, to replace q+K,(z') by
Q(#")+K,(¢"). With these substitutions the generalized
wave-function component is simply expressed as

i[Q-(r— R)+K r— <I>“’]
W, (r,t)=B, [ d’q 4,(q)e’

. ﬁ ’
—i [’ [Qp-i-—z;(Q—l-Kp )2] }d: .
(3.19)

Xexp
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The subscript n has also been suppressed since it is to be
understood that all excitation pulses applied up to the
time ¢ have been included.

The discussion up to now has assumed only traveling-
wave pulses, but it is evident from the last part of Appen-
dix C that (3.19) with (3.16) and (3.17) holds if for each
standing-wave pulse we set

@ =nw, , (3.20)

+ - + -
- PP ¢ te;
P,=m J 5 J 49 J 5 J

(3.21)

in accordance with Rule (2') in Sec. II F and define B i in
accordance with Rule (1').

2. Expectation values and two-path coherence

The effect and object of applying a series of resonant
optical pulses on a gaseous ensemble of atoms is (1) to
produce a radiated signal

ik‘R
E(k) =k — [ d’r(Pe~"*")
_ ek —ikr
=k 3 {Pe », (3.22)

(Pe ™) =3 Tr(lgr),pe e RELAN

=p3 fd3re*"k"s(exl\lls(r,t)‘ll;r(r,t)|gr>s

=p 2 dere*ik-r

PPy

. ex gr
=p3 fd3re“zk~r22,/,mpl(r,t)x/;;"npz(r,t) ,

Py Py
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where R is the distance between the detector and the
sample k||R is the wave vector of the radiation signal,
and P=P(r) is the dipole moment operator

P(r)=p 3 lgr),8(r,—r) (ex| [ 1,

s’ (#s)

(3.23)

(here plk is the appropriate dipole moment matrix ele-
ment of a single atom, and r; is the position operator of
the s atom). (We shall henceforth omit the factor
I1s (Fs) ]]-s") Then

(Pe kT =Tr(Pyp) , (3.24)
where p is the density matrix and

P,=3 lgr),pe " (exl ; (3.25)

s

or (2) to develop an excited-state population

(NN =Tr(N,p) , (3.26)
where

(3.27)

Ny=3 lex); ,(ex| .
s

In the former case we write Tr( for the trace over the
states of atom s and obtain

2 s<ex‘np1 >s s<np2|gr)s¢snpl(r7t)¢;np2(r’t)

(3.28)

where 37* denotes the sum over paths p that terminate in the excited state, and likewise 3. Our derivation of (3.28) is

simplified by using short-hand notation [19].
In a similar manner we find

(NN =3, [dT S S Yoy (O (1) .

Py Py

(3.29)

Matrix element evaluation. To evaluate either (3.28) or (3.29) we write

(Pe~*N=pS M, (k),

PPy
Py Py

AN N=SSM

PPy (0) ’
Py Py

where
M, , (K)=3 [d’re "y, (5,00}, (r,0)
N
(K —K_ —k)r —i(®Y —@?)
:BP1BP*2 2 fd3re Py Py e Py TPy
X [ d’qid’q, 4,(a,) 47 (q)e’

Xexp

(Q

[ #i 2q __f 2| gy
—i [ [Qp1+—2;(Q,+Kpl) Q,,— 5 ~(Q+K,) ]dt ] :

(3.30)

(3.31)

1 —Qy)(r—Ry)

(3.32)
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We now assume that there is no correlation, in the ensemble of atoms, between the position R; and the momentum
amplitude A (q). (We shall refer to this as the homogeneity assumption.) Thus the sum

s As(ql)As*(qz)ei(Ql—Qz)-(rARs)
s

can be replaced by

(1/N) 3, As(ql)As*(qz)ei(Ql—Qz).(r—Rx,) ‘

The summation over Ry, for N atoms distributed quasiuniformly in a volume V¥, yields a 8 function

s ei(Ql_Q2)~R:,=(27T)3%8(Ql ~Q,) (3.33)
"

which can be reexpressed as

D> e"‘Ql‘QZ"Rs'=(27r>3iVI;a(q, —q) (3.34)
o

(K, —K_ —k)r

since q’ is independent of path. It follows that the only dependence on r is in the factor e ok and the integra-
tion over r yields
i(K, —K, —k)-r
Jdre ™ TP =vex g . (3.35)
3} P
We write therefore
_ , . Tiep —ep)
Mplpz(k)"“(Z’ﬂ') SKPIAKPZ“kBplB‘DZe
X3, [ d*ad’a, 4,(a,) 4(a,)8(a;—ay)
s
xexp | —i ['|0, +~(Q+K, P—0, —(Q,+K, ) |ar’ (3.36)
P o|7P T 2m ! Py P2 2m 2 P2 ’ ’
which on using
2_ 2—-90. _ 2 _g?
(Q+KP1) (Q+Kp2) =2Q (Kp1 sz)—HKp1 sz)
—_ ’ 2 _ w2
=2(q+q )-(KP1 —KI,2)+(KPl sz) (3.37)
can be rewritten as
. e
Mplpz(k)—(21r) NSKpl_sz_kBpprze
. t #i 2 __i_ 2 ’ — ;ﬁ_ ' . —_ !
Xexp | —i fo lﬂpl-kapl —‘QPz >m K, Jdt exp | —i o foq (K, —K,, )dt
. ﬁ t ’
X [ d3q A*(q) A(q)exp —l’—n-q-fo(Km——sz)dt , (3.38)
[
where we have defined 4 (q) by momentum space. For a gas in thermal equilibrium we
1 may take this to be the Maxwell-Boltzmann distribution.
|A(q)|2=F2}AS(q)|2, A(q)real >0 . (3.39)
s 3. Justification of billiard model
This calculation has shown that the consequence of the The exponential in q [last factor in (3.38)] involves only

homogeneity assumption made after (3.32) is the same as th il displ t
if we had replaced each A4, (q) in the first place by the s- ¢ recotl cisplacemen
independent function A4(q). It is clear from (3.39) that ’
| 4(q)|? is the actual distribution function of the atoms in ?

ot
n r, 4
foKpdt (3.40)
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The preceding two exponential factors may be treated
concisely by defining

P —Efotq -Kpdt =—f0tq -drp

L
p

(3.41)

and

dt’ (3.42)

HI

—f l +—K2

This latter term, dominated by Qp, we call the excitation
phase. With these definitions our result is more concisely
expressed as

plp (k)—(zﬂ') NSK *K — Bppr*
Xe,(—Acp;; » +Aq>;lp2+Aq>;1p2)
—iq(r! —r’')
X [diqA*(@A(@e " 7, (343
where we have used
J
i PO+ PE+ L)
IIJSPI‘I quA() q+q(t)]rR)(Kr + o€ +

where (I>;‘,’, <I>;, <I>1‘, are as previously defined.
We now introduce the function of space and time

F(r—R,,t)= [d’q A(q)

i(q-(r—R,)—(#/2m)q*t]

Xe , (3.47)

which represents a wave packet with initial momentum
distribution 4(q) and center of mass R after evolution
through a time ¢ in the absence of any external forces or
pulses.

Defining

ro= [ Eqar (3.48)
we see that (3.46) can be rewritten as
¥, (5,0)=B, (K, T— 00+ + 0! +0f)
XF(r—r'(¢t)—r""(t)—R, 1), (3.49)
where
¢§=q’~(r—R3)—% [ a7ar (3.50)

@ € L
(K)=B. Be i(—Ap , +AD] , FAD, )
Plp Py P2
5 K, —K, =k
’
Xy fd Te F(r—r,
N

In this form the requirement of closure of the recoil diagram (r},’1

balls”

Pxp

'l —RS,O)F"‘(r-—rI’J

defined by the extent of the function F(r—r"”"—R;,0).

AP, =o, —P

o, =Pp — P, - (3.44)

A glance at (3.43) shows that if | 4,(q)|? is spread over
a wide range Aq, the integral over q will be small unless
Ir;,'1 —r;,'zl <|Aq| ™!, which is what we call the “size” of

the billiard ball. This is equivalent to saying that the
recoil diagram must close. Note that r, is due only to
photon recoil; that is why the recoil diagrams are drawn
with straight lines even if an external force is present.
Substitute wave function. Another way of understand-
ing the simplification that results from comparing two
paths is to repeat the procedure of (3.36)—(3.43) for the
wave function itself. Starting with (3.19) but making the
replacement A4,(q)— A(q) in accordance with the homo-

geneity assumption [see (3.39)] and then expanding
(Q+K,)=(q+q'+K,)
=q¢*>+2q-q'+q"*+2q'K, +2q"K, +K} ,
(3.45)

one obtains

—z——f dr'( 2+2q-q'+q'2+2q-Kp)J ,  (3.46)

f

is an additional phase independent of p.
If we use this expression to evaluate M, 015> [first line of

(3.32)] we obtain (3.43). But in doing so we observe three
cancellations: the factor

iq’(r—Ry)
e

_foria,
2mf0th

. # —igqr(r), idE
=exp _l____th e xqr(t)et(b
2m

is the same for both paths, and therefore this factor could
have been dropped from v, without affecting the result.
Without this factor, ¥, becomes

K r— <I>“’+¢E +!)

¢sp r,t)=B,e P F(r (1)—R,,0) .

(3.51)

We call f/)sp the substitute wave packet. It describes recoil
due only to photon impact, and with no diffractive
spreading.

If we now write (3.32) in terms of 'Zsp we have

' —R,,0) . (3.52)

=r1',’2) is exhibited as a literal overlap of the “billiard
The central point of the billiard ball,

R, +r"(t)=R,+(#i/m f JK,dt', is defined by imagining a classical atom initially at rest and subject to photon impacts



48 BILLIARD BALLS AND MATTER-WAVE INTERFEROMETRY 1461

but not to external forces.

Note that the substitute wave packet @sp(r,t ), on which the billiard-ball model is based, differs from the true one in
three respects: the compression of the wave packet due to the replacement of 4,(q) by 4 (q), the omission of diffractive
spread achieved by setting ¢ —0 in the second argument of F, and the omission of the path-independent phases ®¢ and

‘' arising from external force. We do not necessarily assert that the substitute wave function
Y (r,n)=3, @sp(;,t)lnp ), correctly describes the sth atom, only that under very general assumptions the experimental
quantities ((Pe ~’*T)) and (( N,, )) can be calculated as though the atoms were all in their “substitute” states as depict-
ed by the BBM.

For later reference we write out the substitute wave function with the last two phase terms expressed in terms of their

definitions

t 4 2
K, T—0%— fo Q,+5 -K;

¥, (r,2)=B,exp |i

Rules 1-3. Equation (3.50) shows that in calculating
coherence effects the diffractive spreading of the wave
packets is of no consequence. It suffices to follow the un-
spread wave packet to discover when coherences occur.
Having determined when coherences exist it then is
necessary to evaluate the phase factors associated with
the wave packet.

The factors B, e
[ A oer |
if ‘QP+ > K ]d:

yield Rules 1-3, respectively.

Following the wave packets means following the path
r’’ defined by (3.40). A plot of r'’ as a function of ¢ is
what is meant by a recoil diagram.

Wave function in a solid. In a solid there is no recoil
and the wave function is just

(K r—®°)  i®?
P P =e ?,and

‘HE
ICDP

exp =e

\T/sp(r,t)=Bpexp

(3.54)

The atoms are localized at the lattice sites according to
G (r—R;) and the electronic frequencies 2, are distribut-
ed according to the inhomogeneous spread of lattice
strains at the various sites. Recoil diagrams do not apply
and are replaced by excitation diagrams (Sec. II E) which
plot the excitation phase f o, (2")dt’ as a function of z.

Force-field phase—Rule 4. The effect of external
forces or fields is to introduce a phase factor (3.41) which
can be interpreted in terms of the recoil trajectories. We
write this factor as

l — t ’ "
(Dp__foq dr,
’ " t " ’
=—q'r; |5+ forp -dq
t noe ’
=—q' (1 (+ [ r;-q'dt
’r t' ’
=—q’-rp+f0q dA,,

where r,dt=d A,. For constant acceleration such as
produced by a constant gravitational field or constant ro-
tary motion, the above result reduces in accordance with
Rule 4 to

DL=—q' 1, +q" A, ,

(3.55)

(3.56)

dt’'—

i [k, R~ ['0,ar | |Gir—R,).

fo’q'-dr;,' F(r—r1)—R,,0) . (3.53)
[
where
t t ’0 ,
A,=[dA,=['rjar. (3.57)

Thus if all the photon momenta are directed along one
line (not necessarily all in the same sense) the difference
q'-(A, —A,)=q4"-A, , is just the area enclosed be-

tween paths p; and p, in the recoil diagram. (3.56) is
equivalent to (2.9) since q'=mV /#fi. We further note that
at the trajectory crossings the term q'-r, drops out and
we obtain
AD:

P1p2=q’. A

pip - (3.58)

Rule 5. Using the phase factors defined above in estab-
lishing Rules 1-4 we rewrite (3.51) as

¢sp(r,t)=upF(r—r1',’—Rs,O) R (3.59)
where
u,= [Hij] i(K,t=®,) (3.60)
J
and
(3.61)

¢p:2¢7}7—2 5 — P} -
J J

We have reintroduced the sum over j to remind the
reader of the association of the phase factors with the
separate parts of the recoil diagrams.

Rule 6. Having found the effective wave packets we
proceed to the calculation of expectation values (3.30)
and (3.31), which entails evaluating M ) pz(k) in the form

of either (3.50) or (3.43).

For a Doppler-broadened gas we assume a Maxwell-
Boltzmann distribution to write

1 —q2/(2mk g T/#%)
A*(q)A(q)= e B (3.62)
VA amiy T /7)1
and reexpresses the last term in (3.43) as
—iq-(r!! —1! )
o= [dPa 4 @Alqe "
— 2 " 2
— " mkg T/HNAY (3.63)

Rules 7 and 8. We combine the above factors to ex-
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press MPll’z(k) in the form

ny

Un1n2:(2W)3N 2 2 uplup*zfpll’z(t)

Py Py

(3.64)

which leads directly, via (3.30) and (3.31), to the popula-
tion in state |n )

(N, N=U,,
and the source of emission along k from |n;)—|n,)

(3.66)

(3.65)

<< Pe_ik'rnlnz >> =Pn1n2 Unlnz >

where pn1n2=(n21P|n1 ).

IV. APPLICATIONS

In this section we wish to apply the billiard-ball theory
to the analysis of three experiments involving the manip-
ulation of matter-waves by laser light. The first involves
the determination of the acceleration of gravity by the
measurement of the excited-state population of a cooled
gaseous medium after optical excitation, by a pair of
standing-wave pulses, and a traveling-wave pulse [5]; the
second the measurement of rotation using Ramsey fringes
[6]; and the third the deflection of an atomic beam by a
standing-wave laser beam [10]. This is in the inverse or-
der according to which they appear in the literature. We
treat the earliest work last because it relates to another
work [12], earlier yet, performed in a gas and involving
the delayed generation of a grating by a pair of standing-
wave excitation pulses. The BB analysis of [5] and [6] is
handled rather simply and so we deal with them first.
The treatment of [10] and [12] is more involved. In par-
ticular, the BB analysis predicts an effect observed but
not understood in [12].

A. Gravity measurement

The acceleration of gravity was measured by taking a
gas of Na atoms, exciting them with a sequence of three
equally spaced laser pulses and then probing the final
excited-state population with a fourth pulse which reso-
nantly ionized them [5]. The excitation pulses were
directed in the vertical direction and the action of gravity
was detected by a modulation in the ionization signal as
the frequencies of the laser pulses were varied.

1. Experimental arrangement

Na atoms were loaded into an optomagnetic trap,
cooled, launched, and then optically pumped into the
F=1, mp=0 ground hyperfine state. Following the
launch a set of vertically directed, counterpropagating
Raman laser beams was pulsed on three times to drive a
7/2—am—mw/2 pulse sequence. The Raman frequency
was tuned to make transitions to the F =2, mp;=0
ground hyperfine state. The population of the F =2 state
was detected by resonant ionization.

The Raman hyperfine transition was chosen to avoid
spontaneous-emission limitations. The lasers were tuned
near the 3S,,,-3P;,, transition frequency yet detuned
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enough so that the three-level system could be treated as
an equivalent two-level system. For such a system the
effective frequency of the exciting pulses is the laser
modulation frequency, i.e., the Raman frequency. Since
each pulse was formed by two counterpropagating com-
ponents the effective wave vector was k;=2k, where
k=2w/A and A is the optical wave length. The three
pulses were, in addition, successively detuned; their
phases were

(I)?p=k1'r_a)0t_¢1 N
oY, =k; 1~ (gt o, )t —¢, ,
¢?p =k1’r_(a)0+2wm )t_(p3 .

This successive detuning of the Raman frequency gen-
erates the “Ramsey fringes” on varying its w,,. As we
shall see this depends on the phase difference
Ap=@,—2¢,+ @, being held constant, as indeed it was.
The pulses were equally spaced, i.e., t;—t,=t, —t,=T.

2. Recoil diagram

The recoil diagram for the process described above, cf.
Fig. 5, is similar to that for the two-pulse echo, cf. Fig. 3,
except that the coherence produced spontaneously at the
echo time is transferred to a ‘“population” coherence.
The existence of Ramsey fringes is then determined by
applying Rule 2,

@ =(k;"T—wot, @)~ [k 1= (gt @, )t — @)

+k; r—(wyt20,,)t; —@;3]

and

q)?;z: +[kl'r_(w0+wm )t2—¢2] s

which yields

A<I>1‘§’IP2 = (DI‘fl - CI)g’z

=20, 7A@ .

Thus the Ramsey fringes are obtained as long as Ag is
kept constant. (Although the excitation diagram here is
the same as Fig. 5 and hence closes, Ramsey fringes are
possible in violation of the usual rule because the several
laser frequencies depend differently on w,,.) The alterna-
tive diagram, cf. Fig. 4, does not generate fringes because
the corresponding fixed phase @;—¢, is not held con-
stant.

The sensitivity of this experiment to the action of grav-
ity is determined by applying Rule 4:
A<I>;1p2 =(m/A)V- APle' Writing the acceleration of
gravity as v=—G?Z and taking from the recoil diagram
A, ,,=(fi/m)k,T*, we obtain

A®, , =—k,2GT",

which is just the result of [5].
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3. Ramsey fringes

We summarize by adding the phases from Rules 2 and
4
A, , =—k 2G7T—20,,7—Ag@ ,
which show the essential features of the gravity experi-
ment.

B. Rotation measurement

The angular velocity of a platform was measured by
performing a Ramsey-fringe experiment using a Ca-
atomic-beam apparatus mounted thereon [6]. Rotation
was detected by measuring the shift in the Ramsey-fringe
pattern when the direction of rotation was reversed.

1. Experimental arrangement

A dye laser was coupled to the apparatus by an optical
fiber and divided into four parallel beams directed normal
to the atomic beam. The plane defined by the atomic
beam and the laser beams was horizontal and parallel to
the surface of the platform. The platform was rotated
about the vertical axis. The first two laser beams were
copropagating and separated by an amount D was were
the second two laser beams. The two pairs were counter-
propagating and the separation between the second and
third laser beams was d.

2. Recoil diagram

BB analysis leads to a recoil diagram, cf. Fig. 9, which
is equivalent to Fig. 3 of [6]. In fact their Fig. 3 is intend-
ed to describe two interfering recoil trajectories. At t;
and ¢, the laser beams are directed along k. =k while at
t; and t, they are directed along k_ = —k. We show the

p1

P2

"

P3
|4—1; ‘b’Q—T—bL—'t ~J\
151 t t3 Po

t

FIG. 9. Recoil (r” vs ) diagram for the rotation detector.
Four laser pulses are applied at ¢y, t,, ¢3, and ¢, separated by 7,
T, and T, respectively. Two coherent-state superpositions form
at z,. Rotation induces the phase shift proportional to the en-
closed area in each diagram. Contributions from both diagrams
are identical except for quadratic recoil phase.
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four paths which lead to the Doppler-free coherences in
the excited-state populations. We ignore additional tra-
jectories launched at ¢; and ¢, since they do not lead to
any such coherences. The time between the first and
second pulses is 7=D /v as is the time between the third
and fourth; v, is the longitudinal velocity of the atom un-
der consideration and D is the distance between the first
and second and the third and fourth laser beams. The
time between the second and third pulses is T =d / vy d
is the distance between the second and third atomic
beams. For good results the beam is prepared so that v
is concentrated near its average value. Otherwise the sig-
nal should be averaged over v,.

3. Ramsey fringes

Ramsey fringes are identified with the excited-state
population modulations resulting from sweeping the laser
frequency. They arise because the successive laser pulses
are phase coherent. Applying Rule 2 to paths p, and p,
we get

®f =+(k, ot )—(k; r—oty))+(k_-r—ot;3)

with

<I>[‘§’O= +(k_-r—ot,)
so that

ADP?  =—D2wT.

PoP3

We did not need to include the arbitrary phase factors ¢
since the laser beams come from a single source. The
excited-state population is thus modulated by a full cycle
each time the laser frequency is changed by 7 /7.

4. Quadratic recoil phase

Application of Rule 3 for ®X’p applied to paths p, and
5 yields

2 # 2
@5 =—?’;[k2+(t2—t1)+k2_(t4—t3)], ©F=0
and therefore

k2 _ _f 02
ARK, = (2k%r) .

This term also depends on w=kc but it is negligible com-
pared to A<I>f,’0p3.
5. Rotational phase

The effect of the rotation is to introduce an overall
phase which shifts the fringe pattern. This phase is given
by the @, of (3.56). Its magnitude is obtained directly
from Fig. 9. We find

#ik
Al,3=7(t2—t1 Wit —t)+(t3—1,)

+1(t,—13)]

Iﬁkr(f%- T7)
m
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and

A, =0.

Rotation, at angular velocity €., of the platform on
which the experiment is being carried out means that
Q = al"()[ x Q ’

where Q=q+q,+q’ and #q,=mv, is essentially the clas-
sical momentum of the atom; see Appendix B. Thus q; is
a ¢ number and q is a quantum-mechanical fluctuation.

For the slow rotations with which we are concerned it
is sufficient to write

q'g _Qrotxq”
in which case

A(I>1L’0P3 =q AP0P3

=—(Qoe XV ) kr(7+T) .

6. Summary
For Q,, v, and k mutually perpendicular we obtain

K2
ACD;’,’OI,3 + A<I>pop3 -!—A<I>;,0p3

UH(T+T)

5 0*+27mQ ——— |27 .

=|—wt+
2mc A

If we calculate ACIZ'F2 p, We obtain the above result except

that the sign of A®X" is reversed. We make connection
with the formula (6) in [6] by noting that v 7=D,
v, T'=d.

C. Diffraction of matter waves

The diffraction of atoms by light has been observed in
an atomic beam of sodium atoms [10]. In that experi-
ment the atomic beam passes through a near-resonant
standing-wave laser beam which is directed normal to the
atomic beam. The atoms are thus subject to a pulse of
standing-wave light from which they recoil according to
the number of photons they are induced to absorb and
the number they are stimulated to emit. The BB analysis
applied to this problem parallels the analysis of Gould,
Ruff, and Pritchard [10]. The action of the standing-
wave light pulse is to generate the fan like structure start-
ing at ¢, (the time the pulse is applied) as shown in the
recoil diagram of Fig. 10. The momentum of each trajec-
tory is indicated on the diagram. These trajectories are
real as was demonstrated in [10] by their spatial
differentiation downstream of the laser beam. They con-
tinue indefinitely beyond the area of the figure. (In con-
nection with [10] one should disregard the second fan at
t,.)

This analysis recalls a related experiment performed
earlier in which two successive standing-wave light beam
pulses were directed into a gas of sodium atoms followed
by a third traveling wave whose purpose was to probe the
formation of an atomic grating [12]. The immediate
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ar 3K 2k

N

-4k /f -2k -k
-3k

FIG. 10. Recoil (r" vs t) diagram for standing-wave excita-
tions I. The standard wave pulse at ¢; generates a local atomic
grating and discrete momentum distribution which in an atomic
beam results in a large spatial atomic separation downstream of
the laser beam. The fanlike structure shows the wave packets
splitting and separating. Application of a second standing-wave
pulse at t, produces additional fanlike structures (we only show
one).

effect of the first standing-wave pulse is to generate a real
atomic grating with spacing A /2, where A is the optical
wavelength. This grating washes out quickly because of
the spread in initial transverse velocities, but is reformed
in an echolike manner after a second standing-wave
pulse. The reformed grating is probed by a third
traveling-wave pulse.

The two experiments just described are like two com-
plementary ways of revealing an optical diffraction grat-
ing. Either light emerging from the grating can be al-
lowed to form a diffraction pattern dual to the grating
itself—this is what the atoms do in [10]—or this same
light can be refocused to form an image of the original
grating, as the atoms are refocused in [12]. The second
standing wave in [12] plays the part of the imaging lens.

In [12] the spread of initial momenta q of the atoms is
much larger than k, but in [10] it is much smaller, in the
direction transverse to the atomic beam. This corre-
sponds to the fact that light must emerge coherently from
a grating in order to form a diffraction pattern, but it can
be reformed into an image of the grating even if it is in-
coherent. Thus in [10] the billiard balls must be elongat-
ed transversely over many wavelengths. Nevertheless the
first part of the recoil diagram of Fig. 10 makes sense if
the trajectories are extended until they fall outside the
original atomic beam, for then even the elongated billiard
balls are well separated.

1. Effect of a second standing-wave pulse

In [12], however, the billiard balls can be regarded as
small. In Fig. 10 we see the recoil diagram which results
from the application of two successive standing-wave
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pulses at ¢, and at t,=¢,+7. On each trajectory there
appears, at the time of the second pulse, the same fanlike
pattern. We show here only one such fan and we label
the trajectories, which extend indefinitely. The complete
recoil diagram is very cluttered when standing-wave
fields are applied, cf. Fig. 11, where we have shown only
two fans at the time of the second pulse. The complica-
tions notwithstanding, there is considerable enlighten-
ment to be obtained by their perusal. For example we see
a multitude of trajectory crossings indicating the ex-
istence of multiple coherences. Whenever two trajec-
tories associated with the same electronic state cross it
means that a population grating has been formed. Seven
such gratings are identified by the circles in Fig. 11
occurring at ¢, +17. These are characterized by a wave
vector 2k, where k is the wave vector associated with
both the standing waves, i.e., they have the same periodi-
city as the standing-wave light pulse. There are eight
other gratings displayed in this figure but they are associ-
ated with a different wave vector and not pertinent to our
analysis.

The periodic array of circles in Fig. 11 must not be
mistaken for a picture of a grating, even though the verti-
cal coordinate does represent distance. The grating has
spacing +A=w/k, whereas the circles are spaced at
(#ik /m)(¢t,—t,)/2. Nor does the vertical displacement
of the circles represent relative displacement of different
gratings. The recoil diagram is not a complete picture of

atomic displacement but only displays the vectors r;,'l,rl','2

that enter into (3.43) and (3.52). To extract the grating
from those equations, one may note that the Fourier
transform at 2k of the ith state density is given by
21’;1 2;',2 Mp1p2(2k). Evidently, from (3.52), r;'l and 1'[','2

must coincide in order to make a strong grating, but they
do not enter into the phase A® which would govern dis-
placement of the grating. In fact, A<I>;‘§J1 P, is the same for

all the crossings marked by the circles in Fig. 11; A<I>1‘,l ’,

is zero (no external field) and A<I>;l ?, is very small. The
different circles, then, contribute incoherently, (i.e., by ad-
dition of M, not of ¢) to the same grating (same AP).

FIG. 11. Recaoil (r" vs t) diagram for standing-wave excita-
tions II. Same as Fig. 9 except that an additional fanlike struc-
ture at ¢, is shown. The crossings at ¢, +7/2 (corresponding to
population-grating formation) are marked by circles.
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2. Backscattering

The object of the experiment in [12] was to detect the
gratings circled in Fig. 11. This was accomplished by
probing the gas with a pulse and looking for the back-
scattered signal. The experiment was successful, but it
was noted that the backscattered signal was maximized
when the third pulse was applied =2 ns before t,+ 1.
The laser pulses were 3.5 ns in duration and the spacing
of the standing-wave pulses was of the order of 20 ns.
Thus the effect was subtle.

3. Subtle effect

This effect can be explained by means of recoil diagram
with one crossing isolated for reasons of clarity, cf. Fig.
12. Here we show the grating being reformed in the
ground state. The application of a pulse at t; before
t,+17 produces the excited-state trajectory with wave
vector K=k, —3k,+k;=—k when all beams are col-
inear. Thus its crossing with the trajectory K=0 pro-
duces a photon echo after t,+ 17 which radiates along
—k, i.e., in the backward direction. When t,=t,+17
the echo signal is prompt, showing that it arises from
backscattering from a grating. For 73>, + 17 there is
no crossing and no signal is expected. The analysis of
[12] was confined to the actual grating and so predicted a
backscattered signal only at t3=t¢,+L17. But Fig. 12
shows that a similar signal should appear for
t;=t, ++7—At. The question is why At was found to ex-
tend only to about 5 ns (maximum effect at 2 ns).

4. Relaxation

The answer to this question has to do with the spon-
taneous lifetime of the excited state which in Na'is 16 ns.
The standing-wave pulse separation times are already
greater than 20 ns which means that we can neglect the
contribution of backscattering from the excited-state
gratings. As seen from the recoil diagram, if
ty=t,+ 17— At, the atom stays in the excited state an ex-
tra time ~2At¢. For At=35 ns this cuts down the signal

A
T
-

3

t(time)

FIG. 12. Recoil (r" vs t) diagram for standing wave III. A
third pulse with wave vector k is applied at ¢; to study the
crossings (one suffices) circled in Fig. 10. When At is positive
there is a delayed crossing of the resulting excited-ground-state
superposition which has a wave vector —k. This means that
echolike radiation should appear in the backward direction. It
is prompt (signifying backscattering off a grating) when Az =0.
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by =~50%. But for t;=t,+ 17+ At the signal disappears
as soon as At exceeds the pulse duration 3.5 ns. This
asymmetry in At is the subtle effect referred to in [12].

V. TWO WAYS TO SKIN A CAT

In echolike experiments designed to detect external
force fields, the signal arises from the term (#*/m)K-Q
in the kinetic energy, where #(Q-+K) is the total atomic
momentum, K being that part due to interaction with the
laser light.

We previously chose to express the factor
(i/m)K=dr'" /dt as a recoil velocity. Thus we have
rewritten the phase <I>‘=f(ﬁ/m)K-th as —fQ-dr"
and through an integration by parts arrived at Rule 4
containing the term Q- A. The factor A is then read
graphically as the area in the recoil diagram, while the
factor Q is applied abstractly.

Alternatively we could read (%/m)Q=dR/dt as the
recoil-free atomic velocity, in which case ®'= — f K-dR,
where R is the position the atom would have classically
in the absence of the pulses. Then an integration by parts
(in the opposite sense from before) would lead to a term
fR-dK=2jf(j-Rj since K changes only at the pulse
times. In this term the factor R can be read graphically
from a drawing of the recoil-free trajectory, while the fac-
tor k is abstract. Note that the roles of K and Q are re-
versed.

This “recoil-free trajectory” (RFT) picture leads to a
curved path—cf. Fig. 13 where it is applied to the gravi-
ty experiment of Kasevich and Chu [5]—instead of the
segmented straight-line paths of the billiard-ball model,
cf. Fig. 5.

The RFT picture is separated from the BB picture by
two integrations by parts. The two pictures are comple-

froal o2

=<
<o
S
-
=S

FIG. 13. Parabolic path [ f (%/m)Qdt vs t] associated with
the RFT picture. The atomic path is graphed as a function of
time neglecting recoil due to photon absorption and emission.
The curvature is due to gravity. The relative phase factor aris-
ing from recoil is
ik (R, —2R,+Ry)

exp

3
iy, [k‘jpl_k"

j=1 Py

I

If ¢t,—t;=t;—t,=1 (echo condition) then since
R;=vt;+ 1¥(¢; —1,)? the phase factor is the same for all initial
velocities vo, namely e ~97* if k, is directed upward, in agree-
ment with Rule 4 applied to Fig. 5.
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mentary and should not be confused. In the RFT picture
one draws a single curved trajectory without recoil and
multiplies each R; by the nongraphical factor k j- In the
BB picture one compares a pair of straight-line trajec-
tories and multiplies the enclosed area by the nongraphi-
calq’.

The computation of Kasevich and Chu [5] corresponds
to the RFT picture, although the trajectories shown in
Fig. 1(a) give the appearance of a recoil diagram. Riehle
et al. display both calculations following their Eq. (1) [6].
Their rules (1), (2), (3) are the same as our Rules 3, 2, 4 in
the BB picture. Their second point of view, Eq. (5) ff, is
that of the RFT picture.

Note added in proof. The BBM analysis has been ap-
plied [21] to echo generation by optical standing-wave
pulses to obtain enhanced sensitivity to external and ac-
celeration fields. It has also been used [22] to analyze
echo modulation in a gas of molecules whose vibrational
modes are displaced by electronic excitation.
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APPENDIX A: SINGLE-ATOM ECHO

The standard echo experiment simply detects a radiat-
ed signal of coherent intensity (=~N?) at the echo time.
The amplitude of the signal depends on the expectation
value of a dipole moment operator which is coherently
reconstituted at that time.

In such an experiment there must be many atoms
present at the same time, since the factor N 2 can arise
only from constructive interference among atoms. This
interference requires that it not be possible to determine
which of many atoms emitted the echo. In a repeated ex-
periment on one atom, it would be manifest that an echo
photon was emitted on some occasions and not on others,
so that the interference would be absent.

There are, however, certain modifications by which a
single-atom echo can be displayed in a signal accumulat-
ed over repeated experiments. One is homodyne detec-
tion, in which one measures not the intensity of the echo
but its polarization amplitude, by interfering it with a
light beam coherently related to the pulses causing the
echo. Here the detector cannot tell whether a photon be-
longs to the echo or to the reference beam. Hence, in re-
peated experiments on one atom, it cannot tell which ex-
periments yielded an echo photon, and so interference be-
tween different experiments is possible.

Another such modification is the use of a probe pulse
at the echo time. One then measures the coherently
reconstituted dipole moment not by its radiated field but
by converting the associated off-diagonal density-matrix
element (transverse Bloch vector component) into a diag-
onal element (longitudinal component) which shows up as
an atomic population difference. This technique is used,
for example, in both [6] and [S5]. Here again, since the
signal appears as a statistical effect on populations, there
is no way to tell which atoms were converted to the excit-
ed state by the probe pulse and which were already in
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that state. Thus interference is possible between two his-
tories, and remains possible if the experiment is done re-
peatedly on a single atom, since the history on each oc-
casion is not detectable.

APPENDIX B: ATOMIC BEAMS

Our analysis has been tailored to a gas—that is, an as-
semblage of atoms homogeneous in space (x,y,z) and
evolving in time (¢). But it is easily adapted to an atomic
beam—that is, an assemblage homogeneous in (#) and in
(x,y) and evolving in the longitudinal direction z. In a
gas, laser pulses are applied at certain times ¢;; in the
atomic beam; laser cw beams are encountered at certain
positions z;. In a beam the momenta 7iq are augmented
by a fixed #q =mv Z.

Most simply, one may regard z =v, as a classical vari-
able, for an atom with longitudinal velocity v;. Then the
collimated cw laser beams are felt by the atom as short

pulses. The analysis goes through as before, except that
J

I L
Hlong_ﬁm_a;i- 4
_ #? 32 92
Hmms——z—n; oyt |
0 O
int ™" 10 g |’
0 S filz)e el
J
rad — ik .-r —io ’
ij(z)e I g et 0
j
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d’r should be replaced by d*r=dx dy. The atomic beam
must be many wavelengths wide in order to sustain the q
conservation represented in (3.34). This “width,” howev-
er, can just as well be the statistical dispersion of atoms
shot one at a time.

It may be objected that this treatment assumes that
each atom emerges from the source at a definite time,
whereas in atomic-beam experiments the time may be
known to less accuracy than the duration of flight, and
the atomic wave function may well be spread longitudi-
nally through the apparatus so that the laser beams do
not act as short pulses. Perhaps one should treat the
atoms as if in stationary states so that the temporal un-
certainty is infinite.

Accordingly, one may proceed as follows. Write the
Hamiltonian of the atom as

H=H, ~Hyyns+Hpopoe T Higy +H g (B1)
where

(B2)

(B3)

(B4)

(BS)

and Hy,.. commutes with Hy,,,. (If Hg, . is the Coriolis effect this is true to first order in the angular velocity Q. of
the collimated beam.) In H 4 we have dropped counterrotating terms; f ;(z) defines the collimation of the jth laser
beam, and the k; are all 12; all lasers have the same frequency .

J
We now write the wave function of an atom as

1 0 |_
PY(r,t)= 0 o—iot P(r,t) . (B6)
Schrédinger’s equation then becomes i#g= H, where
0 zfj(z)*e—ikj-r
— J
H_H]ong+Htrans+Hfotce+ 2f,j(z)eikj-r ﬁ(wo——w) B7)
j
Since H is time independent, we can assume that 1:/1\ is “stationary” with eigenvalues E, = 1m vﬁ. Then we write
P, y=e NG (r) (B8)
and {Z—( r) satisfies
0 * ‘ik}nr
5 2 fil2)%e
2 —ii _7 24 H 4 H.  + . ! =0 (B9)
2m q dz m q) trans force 2 fj(z)elkj T ﬁ(a)o—w) .
J
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or

. J =
_lﬁv”ad’: Hi one +Hforce

from which the term in 8?/3z2 can be dropped since the
laser collimation width is much greater than q, !, This
gives us a pseudo-Schrodinger equation with z /v playing
the role of time. In this framework the functions f;(z)
define short pulses. The previous analysis goes through.
It should be borne in mind that the time between
“pulses” depends on v, and if the atoms are not narrow-
ly velocity selected there is a possibility of smearing out
any signal whose phase depends on this time. But in the
absence of any force field this just leads to the well-
known decay of Ramsey fringes at large detuning. The
quadratic recoil phase f (#%/2m)kdt will, if not negligi-
ble, only shift the central maximum. As for the force
field, if it is due to rotation then Hy, . is also proportion-

al to v and its effect on d/3z% in (B10) is v, independent.
[This appears in (3.56) where A= f r'’dz /v, and
§'= =0, Xq=—Q,, XZmy /#i. More elegantly, one
may transfer the Coriolis factor v from q to A so that A
becomes a true area f r''dz, as done in [6].)

APPENDIX C: ACTION OF A PULSE

To follow the effect of an incident pulse (the nth in a
sequence) on the system, assume that the pulse consists of
a strong field

E=Re(Eyée'kr—o") (c1)

acting for a short time 7. We treat the field classically, as
is usual in discussing Rabi precession, and assume that
the additional field produced by the atoms themselves is
negligible; the system is optical thin. Then the fields acts
separately on each atom. We assume that E, is constant
in amplitude during 7.

Consider the sth atom. Its internal states are labeled as
|i ). Its Hamiltonian is

H=H, tHee+Hp, (C2)

where
__ 7

Hy, o Ve, (C3)

H =3 )70, , (C4)
and

H,=-3 Pine‘ Eoei(k'r_w) ] [i) Gl (C5)

ij

where

P;=(i|P-&|j) , (C6)

0 S fil2)e
J

+ ik.-r
> filz)e #lwy—w)
J

ik .-

# 9
2m 3z*

|

(B10)

P being the atomic dipole moment operator. The term
H,,, acts only during the time 7.

1. Neglecting H,;, during 7

We assume that 7 is so short that Hy;, has no effect
during the pulse. We also assume that each pair of states
is either clearly on resonance (||Q;,—Q;|—o| < 7 Yor
far-off resonance (||Q; —le —w|>>7"') and that the
matrix elements of H;,, between off-resonant pairs can be
disregarded because of fast oscillation [20]. For the same
reason we shall drop the counterotating part of E in the
resonant transitions.

For simplicity we also suppose that there are no multi-
photon or cascade resonances. Then the internal Hilbert
space of the atom decomposes into (a) one-dimensional
blocks in which

H e+ Hipy = H g =78, (C7)

and (b) two-dimensional blocks in which

H self +H int

1 * , —ikr,iwt
Q, +P,Ege e

= %PulEoeik're —iwt Qu s (C8)

where |i) is a state not resonant with any other and
[I),|u) are the lower and upper members of a resonant
pair.

We introduce the rotating frame by defining the uni-
tary operator U, (¢),

1 on one-dimensional blocks

Urot(t)= e(l/2)ia>t 0
0 e (172wt

on two-dimensional blocks.

(C9)

Then if the wave function is expressed as

W (1)= U, (W.(2) , (C10)

Schrédinger’s equation during the pulse takes the form

l‘ﬁg‘t“l’; = Ujot(t)(Hself'*'Him YU, o (W

— AU (1)U, (0,
=H'V, , (C11)

where
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U

rot

[ —— - d
H'=U], [Hself+Hint_’ﬁ:17

ﬁ(ﬂl-i-%a)) %PIuEae_ik.r

T 4P Ee™t #(Q,—1o) (12)

in the two-dimensional blocks, and H'=H . in the one-
dimensional blocks.
Since H' is time independent, the transformation of W¥;
during the pulse is given by
U'=e H™/A (C13)
In the one-dimensional blocks this is just e 'Y In the
two-dimensional blocks, we put o=, —{), by previous
assumption so that
#

—(Q,+Q
2(, w)

LiogePe kT
H'= lﬁ —ip,ikr _h_
iwpe " '%e 2 (Q,+Q,)

Zg(ﬂ.,-l-ﬂu )t+fiwg[ocos(k-r—¢)

+o,sin(k-r—@)], (C14)

U= Urot(tn +T)U,U10t(tn )
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where o, 0, and o; are the Pauli matrices, and
fioge '?=P,E, and #iwoge'?=P,,E,. The quantity wg
is the Rabi frequency.

If we now define

ogr =0 coslk-r—@)+o,sin(k-r—¢) ,

(C15)
o2 =1, '=g(01+9u)+%ﬁwRoR,
we have
e_(i/Z)wRURT=cos(-;—wRT)—iaRsin(%wRT) (C16)
and so
Ur=e "M hﬂ(cos%e——iaRsin%B) , (c17

where 6 =wp 7 is the pulse area.
Letting the pulse last from ¢, to ¢, +, we find that ¥,
is transformed by

e 'Y on one dimensional blocks
e—tﬂl(tn+7‘) 0 COS%G _isin%ee—i(k-r—cp)
= —i . i(kor— (C18)
0 e iQ (1, +7) —i sm%Oeﬂ(k' @) COS%G
+iQt
e I*n 0 ) .
X +iQ on two-dimensional blocks , (C19)
0 e un
. . —(12)i(Q,+Q )7 —(172)i(Q,+Q, Nt +7) +(1/2)i(Q,+Q )t
where we have again replaced o by Q, —Q,; and written e PP as e P e 777 In all

this work r has been carried along as an operator that can act on the external wave function of the atom.

2. Respecting H,;, before 7

We now suppose that in the time interval before the nth pulse the atomic wave function of the atom took the form

¥, =3 ¥ (r,0) + 3 Y (0D + 3T ¢y, (r,0lu)
i ! u

(C20)

where i ranges over the nonresonant states, / over the lower members of resonant pairs, and u over upper members of

resonant pairs. We may write (u standing for i, /, or u)

o —i[Q +(#/2m)q3 ]t
You(r,1)=3 C,qe'"e B .
q .

(C21)

Let us designate by I’ the upper partner of the lower resonant state /, and by u’ the lower partner of the upper resonant
state u. (Thus u,!’' may designate the same state, but will refer to different histories.) Then by (C18)-(C21) we have the
following.



1470 R. FRIEDBERG AND S. R. HARTMANN 48

3. Neglecting H,;, during 7

We have
Y (t,+1)=U¥(t,)

=2 |,) 2 Ciqeiq.re
i q

—iQ(t, + 1) —ih/2m )a%t,,

—i(#/2m)q?

q- ? —iQ,(t, +7) . —i
+3 3 Cge'e "([1)cosBe T — 1" )i sinBe (kT tﬂ"“"+7))
I q
iqr —iB/2m)q% —iQ, (1, +7) : —i
+3 3 C e "(|ludcosBe TV |yt )i singe Ttk T @lg Il t ) (C22)
u g
4. Respecting H;, after 7
Now the expressions e’*"and e ~’¥'T are operators acting on the external wave function to change its momentum; but

since we are writing the wave function in position space these exponentials simply enter as factors. The subsequent ap-

plication of the operator V2 from H,;, will now produce factors (q+k)

pulse we shall have

P,()=3 i) S G eiq're—i(ﬁ/Zm)qz(t—T)eiiQit
s iq
i q

o y i
+2 |I>C0592Clqe“I’l'e i(f1/2m)q*(t = 1), Qe
! q
—[1")i sing 3, Cjqe 9 e ~i%e
q
+3 |ludcos® 3 C, qe'e it/ 2mq ), T
“ q

—lu")ising 3, C, e 47T e
a

—i(#/2m)q}, —iA/2m)q+K)H e —t, —7) —iQut
e e

—i(fi/2m)qh, —i(f/2miq—k)Ht —t, —7) —iQ .t
e e

2 instead of q>. Hence after the application of the

(C23)

5. Setting 7 to zero

But because we have neglected the action of H,;, during 7, we may as well throw away all terms (#/2m )q’r, etc., in

the exponents, obtaining

Y ()= [ +cosd 3
u=i

p=lLu

]I#) EC“qeiq"e
q

—ising [Se ?l") Y C,qei(q+k)"e_i
! q

+3e?u’) 3 C, e’ TF e
u q

The three terms of (C24) proportional to 1, cosf, and
i sin@ correspond to the three cases of (3.9). On the other
hand, the decomposition into 3,|u), 3,1I'),3,lu")
gives the three cases of (3.10); note the momenta
q, q+k, q—k in the exponent.

We have assumed exact resonance, but any detuning
(<<77!) can be allowed for by replacing ¢ with
p+(w+Q;,—Q,)t,. Repeated application of (C24) then
leads to formulas (3.8)-(3.19) and to Rules 1-3. If the
atomic spectrum is more complicated, containing har-
monic vibrational modes or hyperfine Raman transitions,

~i[(fz/2m>q2+n“]t

—i(h/2m)@+ ), —[(F/2m)q—kP+Q,. )1 —1,)
e

[(#2m)Q2+Q, e, —i[(F/2m)(q+k)12+Q, )t —¢,)
11%n 15 n
e

(C24)

or if more than one k is active simultaneously, the Hamil-
tonian needs to be treated in larger than 2 X2 blocks and
the simple expressions (3.9) are replaced by an array of
transition amplitudes that may or may not be easy to cal-
culate; but apart from this change the “Feynman” rules
remain the same.

6. Standing-wave excitation

One generalization, that of a standing wave with k and
—k simultaneously active and of equal strengths, is easily
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treated. Since there is only one frequency present, the
Hamiltonian is still resolved into 2 X2 blocks. The field
may be written spatially as proportional to

ei(k~r—mt—qz+)+ei( —kr—ot—¢")

P I
=9 Ti0t, ilp” +o )/2811’1

+ —
P @ T
k-r 2 +2].

Neglecting atomic motion during the pulse, we may say
that an atom at r feels a pulse of area

+_ —
kr— 2 —@ *7

O(r)=0,sin 5

where 6, is the area felt at the crest of the standing wave.
Using the formula

ei[e(r)/z]ze(1/2)i008in(k'r_¢)
+ o0
=2 J 60 eim(k-r—q>)
m 2 ’
—

where p=(¢" —@~ +7)/2, we see that the even m con-
tribute to cos[ 50(r)] and the odd to isin[16(r)]. The
factor e ~/®" t97)/2 determines the origin of the rotating
coordinate system and therefore enters only into active
transitions (odd m). The result is that in (C24) the prod-
uct (cos18)e’d” should be replaced by

2 Jm(%eo)ei(q+mk)-rvm(<p —@ +m)/2 ,

m even

and (sin10)e 9*X)r should be replaced by
-, + — o o — +_ —
e+t(¢ +@7)/2 2 Jm(%eo)ez(q*}-mk)r m(p @ +m/2 .
m odd

This leads to Rules 1’ and 2’ as modified for standing
waves in Sec. IT'F.

Note that for small 6, the phases and amplitudes of the
terms in m=0,%1 reproduce the inactive and active
transitions due to the separately considered traveling
waves with wave vectors +k and —k and areas 6,/2.
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