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Quantum suppression of collisional loss rates in optical traps

H. M. J. M. Boesten, B. J. Verhaar, and E. Tiesinga
Department of Physics, Eindhoven University of Technology, P. O. Box 518, MOO MB Eindhoven, The Netherlands

(Received 30 March 1993)

We present a coupled-channel study of optical collisions, restricted to a single atom-laser mani-
fold. Outside of a resonance region around the Condon point, we And a simple representation of the
solution in terms of propagating complex dressed states. The probability Qux for the Pzy2+ S state
at small interatomic distances can be interpreted in terms of two such interfering dressed states. The
coupled-channel solution displays some features that have previously been obtained with semiclas-
sical optical-Bloch-equation methods. An important quantum eKect, however, is a strong reduction
of atom loss rates at low collision energies that is roughly proportional to E

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

In recent years a rapid development has taken place
in the field of cooling atomic gases and storing them
in optical and magnetic traps. The interest is stimu-
lated by exciting opportunities ofFered by such cold gases,
such as the possible realization of Bose-Einstein conden-
sation and precision experiments such as the construc-
tion of an ultrastable Cs clock. The interest also comes
&om the expectation that collisions between atoms pro-
ceed in an unusual way at the temperatures which are
now being achieved. At low temperatures, the colli-
sion between a ground-state atom and an optically ex-
cited atom proceeds di8'erently due to the fact that the
spontaneous-emission time becomes comparable with the
collision time, which makes it essential to include spon-
taneous emission in a more fundamental way in the de-
scription of the collision (for an overview of research in
this area, see Julienne, Smith, and Burnett [1]).

A crucial aspect determining to a great extent the pos-
sibilities of carrying out experiments on atoms in traps
is the existence of loss mechanisms which shorten the
half-life of the atom density. For (magneto-)optical traps
Gallagher and Pritchard [2] Brst pointed to the existence
of two important mechanisms, both of which occur in
atom-atom collisions. The basic process involved is reso-
nant laser excitation

the atomic motion was treated classically, which intro-
duces an ambiguity as to the choice of the relative atomic
velocity on the excited potential. This type of ambigu-
ity can be avoided in a purely quantum-mechanical the-
ory. It is clear, however, that a rigorous fully quantum-
mechanical theory of optical collisions is beyond present
computational possibilities. Therefore it is of interest to
investigate partial aspects of the full problem in order to
obtain so much insight that adequate approximative de-
scriptions can eventually be developed. One such study
was recently carried out in the nonsaturated regime on
the basis of the WKB and a stationary-phase-like ap-
proximation for the atomic motion [5]. The result was
written in the form of a product of an absorption line
shape and a survival probability on the excited poten-
tial with an excited-state velocity determined by energy
conservation.

In this paper the treatment will be fully quantum me-
chanical, but limited to a single manifold [6] of coupled
states ~e, N) and ~g, N + 1) of the combined molecule-
laser system and a single combination of relative orbital
angular momentum quantum numbers L' and L for the ex-
cited and unexcited two-atom system, respectively. Here
e and g denote optically coupled excited and unexcited
internal states of the combined two-atom system, while
N and N + 1 stand for the associated numbers of laser
photons.

A(S) + A(S) + Ru m A( Ps]2) + A(S)

at large interatomic distance and subsequent accelera-
tion along a —Cs jR attractive excited-state-potential
surface. This is followed by either spontaneous emission
and the possibility of a subsequent escape of the fast-
moving ground-state atoms, or, more importantly, by an
exothermal fine-structure transition P3(2 m Pi)2 at
close interatomic distance giving the atoms enough en-
ergy to escape.

After the basic description by Gallagher and Pritchard
the theory was further developed in two papers [3,4],
which clearly demonstrated the rich variety of physical
phenomena involved in optical collisions. In these papers

II. METHOD OF CALCULATION

For the sake of definiteness we concentrate on the op-
tical collision of Cs atoms, and on the 0+ and 0+ excited
and ground states, respectively [3,5]. We thus deal with
a simple two-channel model of an optical collision, but
believe that the conclusions shed light on more realistic
situations with complications such as a number of subse-
quent radial avoided crossings due to hyperfine structure
or a number of excited potential curves besides 0+. We
consider collision energies from the mK range down to
values around 10 pK, where recoil efFects can still be ne-
glected both for linear and angular momentum. In view
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of the predominance of the —Cs/Rs potential, the cen-
trifugal effects in the e channel do not depend on the
precise value of l', which may therefore be taken equal to
l.

~
l(N)) = cos(0) ~e, N) + sin(0) ~g, N + 1),

~2(N)) = —sin(0) ~e, N) + cos(0) ~g, N + 1) (5)

The above restriction to a single manifold allows us
to take into account the loss of probability Aux due to
spontaneous emission but we do not consider the "recy-
cling" of ground-state atoms thereby produced on the
next lower manifold, i.e. , their subsequent laser exci-
tation. This first-order treatment in the spontaneous-
emission rate is valid as long as the depletion of the orig-
inal manifold is small. In practice, this also implies a
small depletion of the ground state, i.e., a restriction to
the unsaturated regime. The implied near-linear inten-
sity dependence is indeed indicated by experimental data
of Sesko et al. [7] and is also reproduced by optical Bloch
equation calculations [4]. Also for the more general case,
where the depletion of the original manifold is not small,
the present single-manifold study is of interest, since the
waves generated in lower-% manifolds by spontaneous
emission again behave according to the same coupled-
channel equations, so that the properties of the solution
may be used to develop an approach for the total prob-
lem.

We thus solve the system of coupled radial equations

h~ d h l(l+ 1) + h(u(R) F(R) = E F(R),

(2)

with p the reduced mass and

the coupled radial wave functions associated with the
~e, N) and ~g, N + 1) states. Furthermore,

(4)

in which A(R) = A(1 —R~&/R ) is the local laser de-
tuning with B~ the Condon point. For simplicity we
neglect the long-range retardation and the I/Rs van der
Waals potential at the large distances involved, while the
spontaneous-emission rate I' = 32.7 x 10 s and the
Rabi frequency A„are taken independent of R [4,5]. In-
cluding B-dependent corrections in our coupled-channel
calculations is straightforward but is not expected to
change the basic conclusions. We solve the set of cou-
pled equations (2), subject to boundary conditions to be
specified below.

It turns out that our coupled-channel solution has a
simple behavior outside the resonance region around R~.
It can be described to a very good approximation in
terms of decoupled solutions in a local-B basis of com-
plex dressed states consisting of the eigenvectors of the
non-Hermitian matrix u:

with complex coeKcients determined by
tan(20) = —0 / [A(R) + iI'] and the complex eigenval-
ues ——5 [A(R) + il ] + 250(R) in which O(R) = (0, +
[A(R) + il] )~~, the sign of the square root being cho-
sen in such a way that Re[A(R)] is positive right of R~.
The associated damped radial wave functions F;(~)(R)
satisfy the equations

h~ d2 521(l + 1) 1
+

2p QB2 2pR2
——5 [A(R) + iI']

1+—hO(R) F;(~)(R) = FF;(~)(R) (6)

with the + or —sign for i = 1 or 2.
In terms of the above decoupled solutions the bound-

ary conditions for the collision problem are an incoming
~2(N)) wave right of Rc and ~1(N)), ~2(N)) waves leav-
ing the environment of B~ both to the left and right.
For the collision energy E less than the threshold en-
ergy Eth = —2M, + zhRe[B(oo)] the ~1(N)) radial wave
function should go to 0 as B —+ oo. Our main conclusions
remain valid for other boundary conditions, in particu-
lar for waves approaching B~ from the direction of the
origin and thus also for the coupled problem where the
re6ection of radially ingoing waves from the small-R re-
gion calculated in Ref. 3 is taken into account. For the
simple case without spontaneous emission (I' = 0, E;(~)
real) the boundary conditions are illustrated in Fig. l.
We solve the set of complex coupled equations (2) in the
uncoupled basis in the resonance region around B~ with
a width of a few hundred ao to find a set of linearly inde-
pendent coupled basis solutions. Subsequently, we form
a linear combination to satisfy the above conditions at
the boundaries of this region.

In the erst instance we restrict ourselves to 1 = 0. The
program has been checked by applying it to a simple
model in which the actual Cs/Rs potent—ial is replaced
by a rectilinear potential having the same derivative at
B~. For such a simple avoided crossing analytical ex-

ES,N+1

internuclear distance R

FIG. 1. Boundary conditions for collision problem (I' = 0):
an incoming wave in the ~2(N))-channel right of Rc and out-
going waves in all channels.
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pressions for reflection and transmission coeKcients can
be derived [8] which agree excellently with our numerical
results.

III. RESULTS AND DISCUSSION

Figure 2 shows the probability fluxes J~, J, and their
sum in the uncoupled basis, following from the coupled-
channel solution for initial kinetic energy E = 1 mK,
detuning 4 = —I", and Rabi &equency 0„=0.8I'. For
reasons to be explained below we normalize to Jg+J:1
at small R. We see a behavior with an interesting physi-
cal interpretation: a decreasing Jg at large B due to laser
excitation on approaching B~ ——2950ao, an excited-state
flux J, starting at somewhat lower values, then first de-
creasing slowly due to the combined eKect of laser exci-
tation and spontaneous emission and subsequently, after
the passage of the resonance region around Rc, decay-
ing more rapidly due to disappearing laser excitation.
Around 2000op, Jg (as well as Jg +J,) reaches a plateau,
with Rabi oscillations in antiphase in J and Jg. It turns
out that in all our l = 0 calculations the passage through
the avoided crossing leads to negligible reflection of waves
back to large R. This applies even to the lowest collision
energies considered. This is in agreement with Ovchin-
nikova s analytical results [8] for rectilinear crossing po-
tentials, which can be readily extended to the present
calculations including spontaneous emission, as we will
show elsewhere. It also turns out that the Rabi oscilla-
tions do not appear in the sum Jg+ J„in agreement with
classical expectations. The decrease of Jg + J right of

the plateau is due to the loss of probability flux &om the
considered manifold by spontaneous emission. In prin-
ciple, one would have to go to the next lower manifold
in order to follow the recycling of this incoherent part of
the scattering state.

It turns out that the oscillating J, pattern is in its
totality rather accurately proportional to 0„,within wide
intensity limits to be given below, provided the solution
is normalized to a prescribed value for the total atom flux
J~+J, in the region left of Rt- where this sum has reached
a constant plateau. Figure 3 shows the J, pattern for
0„=0.4I', i.e., for one-fourth of the original intensity.
Clearly, apart &om a nonlinear interval around R~, the
J pattern is simply shifted along the logarithmic axis
relative to that in Fig. 2.

The linear intensity dependence can be explained in
the same way that the absence of saturation in the ex-
perimental Cs loss rate of Ref. [7] is explained in Ref.
[I]: in the plateau region most of the excited-state am-
plitude is due to oK-resonant excitation occurring well
inside R~, as this process is favored by improved sur-
vival. The flux lost previously to the lower manifold by
spontaneous emission is recycled according to the same
oK-resonant excitation probability. In this respect it is
of importance that the atomic velocity increase after the
first excitation —spontaneous-emission cycle is still rather
low. The new Jg, J combination on the next lower man-
ifold is therefore expected to be proportional to that of
the original manifold and can consequently be considered
to be part of the same total pure state, for which Jg and
J, behave in the plateau region as given in Fig. 2.

On the basis of this near linearity it is the ratio J,/0„
that in the limit 0„—+ 0 is relevant for the comparison
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FIG. 2. Probability 8uxes Jg, J~ + J (left scale), and
J, (right scale) in uncoupled basis as a function of internu-
clear distance, following from coupled-channel calculations for
E = 1 mK, A = —I', and 0„=0.8I'.
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FIG. 3. Fluxes Jg, Jg+J (left scale), and J, (right scale) in
uncoupled basis, following from coupled-channel calculations
for E = 1 mK, A = —I', and 0„=0.4I'.
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with experiment. Then normalization with respect to
the plateau value of J~ + J, is completely equivalent to
normalization relative to the incident value of J~ + J,
since the sum does not change near B~ in this limit.
Figure 4 shows the functions J,/O„Js, and Jg + J, in
the zero-intensity limit for L = —I and E = 1 mK. We
now see a maximum of the excited-state Aux near B~. To
illustrate the accuracy of the theoretical linear intensity
dependence of our J we give in Fig. 5 the value of J at
B = 10ao as a function of (0„/I') for E = 1 mK and
L = —I'. Clearly, the linear dependence is very accurate
until 0„/I' = 0.6.

It turns out that the period of the Rabi oscillations
in Figs. 2 and 3 agrees rather precisely with the lo-

cal precession frequency A,~(R) = (A (B) + 0„)
if one assumes the efFective velocity to be the average
(vg + v, (R)) /2 of the velocities on the g and e poten-
tials. Another interesting feature can also be seen, for
instance, in Fig. 2. The oscillation is seen to be sharper
at the bottom than at the top. This can be explained
classically in terms of the fact that part of the population
oscillates between the g and e states. The instantaneous
velocity therefore oscillates between the values vg and v,
of the local velocities.

Similar properties are obtained at lower energies. In
Fig. 6 we show as an example the radial fluxes for
E = 10 p,K and L = —I'. In general, for the same de-
tuning and intensity the main J,/0 maximum increases
with decreasing energies, corresponding to the slower mo-
tion of the atoms through the resonance region, with the
associated more efFective excitation. Other features seen
for lower energies are a smaller amplitude of the Rabi
oscillations, arising from a better adiabatic following of
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the polarization vector. The much stronger damping of
J, left of R~ is discussed below.

In Fig. 5 we have also presented the intensity depen-
dence of J at B = loao for E = 300 pK and E = 10 pK.
We notice that the linearity of J persists to lower max-
imum intensities for decreasing energies, again corre-
sponding to more efFective laser excitation.

The J, pattern in the foregoing Figs. 2 and 3 can be
understood more in detail in terms of the interference
of two radial waves in the complex dressed-state basis
~1(%)) and ~2(K)). For an intuitive picture of these ra-
dial waves it is useful to calculate the radial Buxes in

FIG. 5. Normalized flux J, (solid lines) and p, (dashed
lines), obtained with OBE, at R = 10ao as a function of
(0 /1) for some selected energies and A = —I', illustrating
near-linear intensity dependence.
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FIG. 4. Fluxes jg, Jg + J„and J,/(B /I') in the
zero-intensity limit for E = 1 mK and A = —I'.

FIG. 6. Fluxes Jg, Jg + j„and J, /(I1„/I') in the
zero-intensity limit for E = 10 pK and A = —I".
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this (nonorthogonal) basis. Figure 7 shows Ji(~) and
J2~~~ as functions of R for E = 1 mK, L = —I', and
0„= 0.4I'. The flux. Ji~~~ starts from zero right of
Rc, in agreement with the boundary conditions in Fig.
1. Near R~, Jz ~N ~

increases strongly and reaches a max-
imum 600ao left of R~. For all interatomic distances,
however, Ji~~~ is much smaller than J2~~~. Although
Ji~~~ still shows some remnants of a Rabi-type oscilla-
tion it is much smoother than J . A similar remark ap-
plies to J2~~~ compared. to J~. This already illustrates
that the complex dressed states are a suitable basis to
obtain radial waves with as regular behavior as possible.
It is also confirmed by the behavior which develops start-
ing at the plateau region towards smaller distances: the
l(N) and 2(N) components of the coupled channel so-
lution turn out to be uncoupled exponentially damped
waves converging to R = 0, with regularly changing
complex wave numbers. A simple calculation based on
such locally exponential waves shows that the amplitude
of the strongly oscillating J, pattern is roughly equal
to [Ji(~&J2(~)]i~2(50„/2)(hd) s~4E i~4(R/Rc)P~4. On
the other hand, we find the oscillations to take
place around an average value equal to cos (8)Ji(~) +
sin (8)J2(~), which tends to Ji(~) near R = 10ap. Both
predictions are confirmed by the actual J patterns.

We thus find that Jq~~~ is the physically interesting
quantity for the fine-structure changing loss rate, since
it is equal to the flux J of excited atoms at the cor-
responding avoided crossing near 10ao. The J2~~~ flux
determines the radiative escape loss, because its contri-
bution to J dominates in the wider range of interatomic
distances where radiative escape is most probable as the
final fate of the atoms.

For the physical interpretation of our coupled-channel
solutions it is of importance to compare Ji~~~ and J2~~~
with uncoupled adiabatic solutions Jz~~~ and Jz~~&. This
will make clear to which radial region the nonadiabatic
excitation is confined. Figure 8 shows Ji(~)/ Ji~~) and

J2(~)/J2p(~& for E = 10 pK, 4 = —I', and 0„=0.2I'.
The uncoupled fluxes are normalized in such a way that
the two ratios tend to 1 for R ~ 0. Clearly, most of the
excitation of J&~~~ occurs left of R~ due to the finite ra-
dial velocity. For the same reason the ratio J2(~)/J2 ~
grows for decreasing R: the 2(N) dressed state is de-
pleted more slowly than for zero velocity.

At this point we make a comparison with treatments
based on the optical-Bloch-equation (OBE) method [4].
In Fig. 5 we compare our J flux at R = 10ao for 4 = —I',
normalized as above, to the OBE value of the excited-
state population p, at the same radius. For higher ener-
gies, not shown in the figure, where the radial motion can
be treated classically, these quantities are equal. For the
1-mK and 300-pK OBE calculations we used the "en-
ergy conserving" trajectory choice [5]. For lower col-
lision energies, below Eth, we adopted the "switched"
and "asymptotic" trajectory choices, which lead to al-
most identical results (within 15%). We find a suppres-
sion of the excited-state occupation probability, due to
the quantum-mechanical nature of the radial motion, by
about one order of magnitude already at 1 mK and in-
creasing strongly with decreasing energy, roughly propor-
tional to E

The origin of this tremendous suppression is the de-
structive interference of the radial waves on the excited
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FIG. 7. Dressed-state 6uxes Js~~l (left scale) and Ji~~&
(right scale) in coupled basis for Z = 1 mK, A = —I', and
0„=0.4I.

FIG. 8. Ratios Jr~~l/ Ji&~& (left scale) and J2~~l/ J~~~l
(right scale) of fluxes in dressed-state basis and adiabatic
Buxes as a function of R for E = 10 pK, A = —I', and
0„=0.2I'.
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potential, arising &om excitation at the various radii left
of R&. Adding these wavelets as they arrive for instance
at loao, their phase difference is larger for lower colli-
sion energies: the velocity increase along the excited-
state potential during the passage through the excitation
region becomes more and more important compared to
the initial velocity. This destructive interference is fully
taken into account in our approach and is left out in a
classical treatment of radial motion. Apparently, it is a
dominating quantum effect at low collision energies. The
experimental relevance is associated with a strongly re-
duced atom loss in the unsatured regime, both for the
fine-structure and rediative-escape loss mechanisms.

All previous results were restricted to l = 0. In order
to get an impression of the inHuence of centrifugal effects,
we concentrate on a single l value equal to kB~/2, with
k the asymptotic wave number, and solve the coupled
equations. Far left of R~ we include the reflection from
the centrifugal barrier in the 2(N) channel and normalize
with respect to the flux of the left-going wave.

Again we find a linear intensity dependence of the J
pattern. This is illustrated in Fig. 9, where we present the
probability flux J, at B = 10ao as a function of (0,/F)z
for E = 300 pK, A = —I', andi = 30. We see a linear be-
havior up to 0„/F = 0.6 in agreement with the previously
mentioned off-resonant excitation. Comparing J, in Fig.
9 with J, in Fig. 5 for / = 0, we note that the survival
rate is about one order of magnitude lower at l = kRc /2.
Again, we compare also with the OBE survival. Appar-
ently, the quantum suppression is now even larger than
for l = O. This may be ascribed to the lower local radial
velocity vg, taking into account the centrifugal barrier,
which leads to an increased destructive interference.

Our calculations thus show that higher l and lower E
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survival rates are strongly suppressed relative to OBE
values. It should be noted that in our coupled-channel
calculations the unsaturated domain is restricted to much
lower intensities than suggested for instance by the Rb
experiments in Refs. [7,9]. This is probably due to the
fact that the inclusion of nuclear spin leads to a consid-
erable reduction of Rabi frequencies 0„, the total optical
dipole strength being distributed over the individual an-
ticrossings with the various P3y2 + S hyper6ne states.
We are developing the computational scheme for the in-
clusion of hyperfine structure both in the S+ S and the

P3y2 + S channels, needed for the description of such
optical collisions.

FIG. 9. Normalized flux J, (solid line) and p, (dashed
line), obtained with OBE, at R = 10as as a function of
(0„/F) for E' = 300 pK, A = —I', and l = 30.
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