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Quasiclassical analysis of laser cooling by velocity-selective coherent population trapping
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Laser cooling based on velocity-selective coherent population trapping is investigated theoretically.
Quasiclassical treatment is used to identify the conditions for optimal cooling and to study the dynamics
of the cooling process in detail. For different cooling schemes we give the analytical expressions for the
temperature of the cold atoms, which can be much lower than the Doppler cooling limit. The effect of
the degree of incompleteness of coherent population trapping on dynamics and the limits of laser cooling
are revealed.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

The phenomenon of coherent population trapping
(CPT) provides a very effective mechanism for superdeep
laser cooling of atoms. The striking example is the exper-
iment [1] by Aspect et al. , where the He atoms were
cooled by CPT to a one-dimensional effective tempera-
ture of 2 pK, two times lower than the so-called recoil
limit TR =4 pK, which is determined by the one-photon
recoil energy R: Tz =R /k~ =R k /2Mkit (k is the wave
number of the applied laser field, M is the atom mass, kz
is the Boltzmann constant).

The physical foundations of using CPT for cooling of
atoms are the following: In multilevel quantum systems
interacting with coherent electromagnetic radiation, spe-
cial superpositional, noncoupling states 1bNc), which are
not coupled with the rest of the system, appear under cer-
tain conditions. In the case of atoms moving in the field
of some light waves, the states ~QNc) can be localized in
well-defined regions of the momentum space (known as
velocity-selective coherent population trapping [1,2]).
Atoms, initially rather smoothly distributed in the
momentum space, can be accumulated in these regions by
means of spontaneous relaxation, which leads to forma-
tion of a narrow momentum distribution.

The width of a so-formed distribution decreases when
the time of interaction of atoms with the applied radia-
tion increases [2,3]. In the steady state it is determined
by the degree of incompleteness of the coherent popula-
tion trapping, i.e., by the part of the quantum system
population, which is not trapped in

~ QNc ) and which par-
ticipates in the process of interaction with the laser fields.
So, in case of a three-level A system (Fig. 1), the degree of
incompleteness of CPT is equal to the ratio of the relaxa-
tion rate I of coherency between the states ~1) and ~2)
(transversal relaxation rate) composing the superposition

~ QNc ) to the spontaneous relaxation rate y of the excited
state ~3) [4,5]. The value of I is determined in general
by the correlation degree of the exciting fields [6], by col-
lisional and transit-time broadenings, etc.

Thus, in real physical situations, the vector ~1bNc) is
determined in a state space with an accuracy of the ratio
I /y. Therefore, there exists a limit of laser cooling by
CPT, which is determined by I /y. Since, however, the
parameter I /y can be made in experiment very small
(I /y =10 for a slow beam of A atoms excited by well-
correlated laser fields [7]), the effective temperature of
cooled atoms can achieve values much lower than Tz.

Because of the stochastic nature of spontaneous emis-
sion, the process of populating the state 1lrNc), hence the
process of formation of the narrow momentum distribu-
tion, is the diffusion in a momentum space [2,3,8]. Such a
cooling is of rather limited effectiveness. It is possible,
however, to build the configuration of laser cooling (i.e.,
an atomic excitation scheme, directions and polarizations
of light waves, detunings of laser waves) so that an addi-
tional process appears, which "pushes" atoms diffusing in
a momentum space to ~1bNc). Such a process is per-
formed by the radiation force [8—10], which can have a
Doppler origin [8], or be a specific CPT force with a

Kq Kz

FIG. 1. Excitation scheme of a A atom. An electromagnetic
wave of the frequency co& and wave vector k, interacts with the
atom on the transition

~
1)-~3), while the wave with co& and k2

interacts with the atom on transition ~2)-~3). y, and yz are the
spontaneous relaxation rates, and I is the transversal relaxation
rate.
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characteristic narrow dip in its momentum dependence
[9,10].

The aim of this paper is to investigate the dynamics of
one-dimensional laser cooling of atoms by CPT caused by
both momentum diffusion and radiation force. It is
known (see, e.g. , [2]) that in the cooling process the atom-
ic internal degrees of freedom are established into the
steady state faster than the translational ones. This fact
allows the study of the laser cooling dynamics at times
t ))r (r is the relaxation time of the internal variables) by
use of kinetic equations for an atomic Wigner function
w(r, p, t) [11],where r and p are the classical coordinate
and momentum of an atom, respectively.

In order to derive the equation for w(r, p, t), we use the
quasiclassical approach when it is possible to neglect the
wave nature of atomic motion in laser light, i.e., if the
atomic coherence length A/5p (5p is the width of momen-
tum distribution of atoms) is small compared with the
laser wavelength A, =2~/k, or if Ak/5p &&1. Then one
can consider the atomic motion in laser light as a
Brownian motion described by a Fokker-Planck equa-
tion. Such an approach has some advantages over ap-
proaches based on a full quantum description of atomic
motion. First of all, it becomes possible to derive analyti-
cal expressions for the radiation force and the momentum
diffusion tensor, to investigate effectiveness and limits of
laser cooling by CPT, time scales of cooling processes,
dependence of the effective temperature of an atomic en-
semble on interaction parameters, and so on.

However, there are some restrictions in the approach
because of the condition Ak/5p « 1. So, it is impossible
to study the structures of momentum distributions hav-
ing widths 5p &haik (such as in experiment [1]). Conse-
quently, the temperature limit of the quasiclassical theory
is the temperature Tz. We emphasize that T~ is not the
limit for the real mechanism of laser cooling by CPT.
Physical phenomena do not depend on the method of
description. We believe, therefore, that the general con-
clusions about the dynamics of laser cooling by CPT,
which can be drawn from the quasiclassical theory, must
be valid in the whole region of temperatures, including
T &Tz.

Laser cooling by CPT in the framework of a quasiclas-
sical approach was studied in [9,12]. However, the inves-
tigations in [9,12] are not complete. They do not take
into account many important effects. So, the relaxation
rate I of the coherency of state ~QNc) is not taken into
account. The role of momentum diffusion in the cooling
process is also not investigated.

In the present paper a consistent quasiclassical theory
of laser cooling by CPT is developed. We study the dy-
narnics of formation of atomic momentum distribution
due to both momentum diffusion and radiation force aris-
ing under CPT conditions. The effectiveness of cooling is
shown to be improved considerably by means of a friction
force, the value of which is greater for a more asymmetri-
cal scheme of levels used for the cooling of atoms. We
find magnitudes of interaction parameters, for which the
temperature of atoms cooled by CPT can be much lower
than the Doppler limit TD =Ay/k~. The role of relaxa-
tion of the coherency of

~ QNc) as a factor limiting the de-

gree of cooling by CPT is demonstrated. We consider
some specific schemes of interaction of an atom with the
field and obtain the analytical expressions for radiation
force, dynamical friction coefficient, momentum diffusion
coefficient, and temperature of the cooled atoms.

II. QUASICLASSICAL APPROACH

1 VOk i k2 VOk2 (2.2)

where 6 =co —co3 are the detunings and co3 are the
frequency distance between the states

~
3 ) and

~
m )

(m =1,2).
In a momentum representation the wave function of

the trap state is a superposition of the two ground-state
wave functions, each multiplied by a 5 function [14]:

~QNc(p) ) =(Q2/Qo)5(p —(Mvo —A'k, ) j 1)
—(Q, /Qo)5(p —(Mvo —A'k2))i2), (2.3)

where Q={3~dE ~m )/2A' are the Rabi frequencies of
transitions ~3)-~m) (m =1,2), d is the atomic dipole
momentum operator, and QO=~Q&~ +~Q2~ determines
the sum intensity of laser waves.

The state ~QNc), being a superposition of two low
long-lived states, is populated by optical pumping
through the intermediate state

~
3 ) [4,5]. In this paper we

consider the dynamics of filling the trap state, hence the
dynamics of the momentum distribution narrowing (since
the trap state is localized in momentum space at points
p, =Mvo —Ak, and p2=Mvo —fzkz) by use of a quasiclas-
sical approach.

A quasiclassical approach to laser cooling implies the
analysis of kinetic equations, such as the Fokker-Planck
equation (FPE) for the atomic Wigner function. The
derivation of the FPE and its analysis are given here for
the case of A atoms interacting with the field of two
waves propagating along the z axis in opposite directions

In the present paper the mechanism of laser cooling by
coherent population trapping is investigated for a A atom
(Fig. 1) interacting wit the field of two traveling waves
with the frequencies co (m =1,2):

E(r, t ) =E&e tc os(co, t —k&r)+Ezezcos(cozt —k2r), (2.1)

where e are the polarization unit vectors, k with
~k ~=k =co /c are the wave vectors, and E are the
amplitudes of the light waves.

We assume that the upper level ~3) in the A atom de-
cays to the lower ones with the rates y for channels
3)-~m ) (m =1,2), which are allowed dipole transitions,

while the transition
~
1 ) -2 ) is dipole forbidden. More-

over, we take into account the damping rate I of the
coherency between the level 1 ) and ~2).

Such a system is known [13] to be the simplest quan-
tum system in which the population trapping is possible.
So, it can be easily shown [12,14] that the state ~QNc)
noncoupled to the rest of the system arises in A atoms,
the center-of-mass velocity vo of which satisfies the two-
photon resonance condition
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(as shown in Fig. 1). To describe the dynamics of A
atoms, we start from equations for the atomic density
matrix in a Wigner representation [10,11]:

onance [15],and therefore (2.6) takes the form

Ak R (y/r')=g(y/r') «1,
Ap Ry

(2.7)

i p» = —Q,exp( i—kz +i h, t )p»c c.0 +
dt

+iyi J43i(n)p33(p+nfic03i/c)dn

P12 Qlexp( 'kz +'~it)P32

where g=R/fiy «1 for strong dipole transitions under
consideration.

The trapping of population in the state
~ QNc ) is nearly

complete (i.e., when the population of ~QNc) is close to
1), when Qo)) ry [4,5, 15]. Under this condition, expres-
sion (2.7) can be written as follows:

+Q2exp( ik—z i 6—2t )pi3 —i I p, 2, g(y IQ, )2 «1 . (2.8)

i p, 3= Q—,exp( ik—z+ih, t)(p33 —p, , )

+Q2exp(ikz +i b 2t)p i2 i yp, 3—,

i p22= Q—2exp(ikz+ib2t)p32+c c
dt

+ i y2 I@32(n)p33(p+ n~32/C )dn

i
d p» = —Q,exp(ikz+ i 52t }(p33 p,+, )
dt

+Qiexp( ikz+—ih, t)p2, iyp2—3

(2.4)

For typical values of g, g=R/iiiy—=a 'm/M-=10
where a is the fine-structure constant and I is the elec-
tron mass, the intensity of exciting waves is limited by the
condition Qo &&10 y, which corresponds, e.g., for tran-
sitions 3S-3P of the sodium atom, to laser radiation in-
tensities I ))10 W/cm .

The condition (2.7) determines the intensities of excit-
ing waves, for which the expansion of elements

p &(r, p+fik/2, t) in a power series of the photon momen-
tum Ak is valid:

p t3(r, p+fik/2, t)=p &(r, p, t)

i p33= —Qiexp(ikz i h, t)p—&z

—Q2exp( ikz —i 52t )p23+ c.—c. 2i y—p,3,
where dldt =BIBt+v(8/Br) represents a convective
derivative, and we have introduced

3 1+72

p ti=p t(ir, p+A' k/2, t),
0

p~p p~p(r, p, t) .

For simplicity, we have also supposed in (2.4) that the
wave numbers of the waves are nearly the same for both
transitions in the A system: k, =kz =k. The functions

(n) deterinine the relative probability of the photon
emission in the n direction when the upper state decays
spontaneously into the channels ~3)-~m ) (m =1,2).
However, for our purposes the spherical symmetry ap-
proximation is sufficient for @3 (n): 43 (n) —= I/4m. .

Then, after the substitution of the off-diagonal density
matrix elements

p i3 pi3exp( —ikz +i b, ,t )

p23
=p23exp( ikz + i b 2t ),

pi2= pi2exp[2ikz i (hi —b 2)—t],
(2.5)

we expand in (2.4) the density matrix elements p*ti around
a point p in power series of the parameter

iiik/bp «1, (2.6)

where hp is the characteristic momentum scale of the
variation of the density-matrix elements.

In the presence of coherent population trapping in the
system, the quantity bp -=Ml '/k is determined by the
width I"= I +Qo/y of the narrow coherent trapping res-

(2.10)

where p'
& are unknown functions of the z component p,

of the atomic momentum p and can be determined by
substituting expansion (2.10) into the reduced set of equa-
tions (2.4). Considering the second order in photon
momentum Ak, we get the equation of Fokker-Planck
type for the classical atomic distribution function w:

a a+v w(r, p, t)= — (I', w)
a

a2+ g (D. .w),
j =x,y, z ~pj

(2.11)

where F, is the z component of the radiation force and
D" are the elements of the momentum diffusion tensor.

The radiation force and the diffusion tensor in Eq.
(2.11) completely determine the dynamics of A atoms in
the field (2.1). So, one can obtain the cold-atom tempera-
ture by use of the Einstein formula for the Brownian
motion

T=D„(p,=0)IPk~M, (2.12)

where D„ is the magnitude of the z component of the

+(erik/2) p &(r, p, t)+. . . (2.9)
ap.

In this case the description of the dynamics of a A atom
is possible using a single kinetic equation for the distribu-
tion function w =+3 ip~ (r, p, t) In the . following
analysis we consider, following the Bogolubov technique
[11], the density-matrix elements p &(r, p, t) to be func-
tionals of the atomic distribution function w:

8
p &(r, p, t) =p'tIw(r, p, t)+p"&A'k w(r, p, t)+

a
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diffusion tensor at p, =0, and

BF,
(2.13)

where the small nonadiabatic addition related to the
statistic of reernitted photons are not taken into account
[11]. In expressions (3.1) and (3.2) we denote

is the dynamic friction coefficient determining the rate of
narrowing of the momentum distribution. Then, the
width of the momentum distribution centered at p, =0 is
expressed through (2.12): 5p =(2k~ TM)'~ . Note that in
the quasiclassical description of laser cooling we use, the
width 6p cannot be less then the photon momentum Ak.
Otherwise, the condition (2.6) is broken.

In this connection we emphasize the following cir-
cumstance. The state ~QNc) is localized in the momen-
tum space in two points, p&

=Mvo —Ak& and
p2=Mvo —iitk2 (2.3). Therefore, the accumulation of
atoms in QNc) leads to the formation of the momentum
distribution with two peaks centered at p& and p&. How-
ever, the quasiclassical approach we use is limited by the
condition (2.6), and so the two peaks cannot be resolved.
In our theory the momentum distribution of atoms
trapped in ~QNc) includes a single peak centered at
po=Mvo (see the next section).

The derivation of the FPE for the case k, Wk2 is analo-
gous to that given above, except for the density-matrix
elements p

—
& being expanded around a point p in power

series of the small parameters Ak&/Ap and Rk2/Ap. Ex-
pressions for F, and D„ for arbitrary parameters are
given in the Appendix. The additional analysis of laser
cooling by CPT will be performed for various specific
types of A systems.

III. COOLING OF ATOMS BY COHERENT
POPULATION TRAPPING

A. Optical-optical double resonance (k &
——k2 )

Such a scheme of atoms interacting with the field can
be easily realized by optical excitation of the alkali-metal
atoms from hyperfine structure sublevels of the ground
state to the first excited state (the excitation of D, or D2
lines). Otherwise, the lower levels of the A system can be
generated by the Zeeman sublevels of one of the hyperfine
levels of the ground state. Both transitions ~m )-~3)
(m =1,2) in such a system are optical, and the magni-
tudes of the wave-vector moduli can be considered to be
approximately the same: ~k, ~

—= k2~ =k.
Using the technique discussed above, we obtain both

the light pressure force acting on the A atom and the z
component of the momentum diffusion tensor for times
I; )&p

F, =AkyqQ aL

D =28k yQaL

(3.1)

(3.2)

In this section we consider the laser cooling by CPT
for various types of double resonance in A systems. The
main results and conclusions are obtained for the case of
double optical resonance at k& ——k2. The results for the
other types of A systems are the straightforward generali-
zations of the case k, =k2.

'9=('Yi 72)/)'

a =4(ku, ) +20 I /y,
L =4(ku, ) +46,q(ku, ) +4(b, +y +Q )(kv, )

—20 hi)(kv, )+40 G

6'=a'r y2y+ Q',
where v, =p, /M is the z component of the velocity of the
atom's center of mass, and we assume that the frequency
detunings 6—:6 as well as the Rabi frequencies Q—:Q
are the same for both transitions ~m )- 3) (m =1,2). We
also assume the rate I of transversal relaxation to be
much less than the natural width of the upper state:
I «y. The latter is always valid for a A atom excited by
the correlated fields [6]. In addition, the condition for
the light wave intensities Q ))I y is considered to be
fulfilled.

One can see from (3.1) that in this case the radiative
force influencing the A atom is not equal to zero only for
the asymmetrical scheme where i)%0, i.e., y, &y2. Oth-
erwise, for y, =y2 the cooling of an atomic ensemble is

performed only due to momentum diffusion in a momen-
tum space (the experiment [1] by Aspect et al. on
subrecoil cooling of He atoms by CPT was carried out
precisely in case of y, =y2). The words "cooling due to
diffusion" can seem somehow strange. However, a more
accurate analysis shows that the momentum diffusion un-
der the CPT conditions is a such that during a certain
period of time the momentum distribution of atoms nar-
rows considerably, and that can be interpreted as cooling.

1. Cooling due to momentum diffusion

Let us consider the FPE (2.11) for the case of y, =y2
(i.e., when I', =0). We also assume the distribution func-
tion w to be spatially uniform: w(r, p, t)=w(p„t). Then
the FPE describing one-dimensional motion of atoms
along the z axis can be written in the following form:

aw ~D- Ow a aw
B~ Bp, Bp, Bp,

"
Bp,

(3.3)
where D„ is determined by Eq. (3.2) for y, =yz.

Formally, one can consider Eq. (3.3) as an equation of
transfer of atoms with density w in a momentum space.
Then the second term on the left-hand side of Eq. (3.3)
corresponds to the convective transfer, the first term on
the right-hand side corresponds to the diffusion proper
with the effective diffusion coefficient D„, and the second
term on the right-hand side of Eq. (3.3) plays the role of
the linear source term. Note that the direction of the
convective transfer is determined by the sign of the
derivative (BD„/Bp, ), while the sign of the second
derivative (8 D„/Bp, ) determines the nature of the
source term, viz. there is a source in point p =p' at
(8 D„/Bp, )~ ~, )0 and a sink at (8 D„/Bp, )~ =~ (0.
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The characteristic shape of the dependence D„on
momentum p, of atoms is shown in Fig. 2. In the range
of a momentum p, close to zero we have (c) D„/c}p, ) & 0,
and (c)D„/c)p, ) & 0 at p, & 0 and (c)D„/c)p, ) & 0 at p, & 0.
At the same time, the value of diffusion is small for small
values of momenta: D„(p, =0)=A' k yQ (I /y)/G
(since I /y «1; see Fig. 2 also). Therefore, at the initial
stage of momentum distribution evolution, the inhuence
of diffusion proper in the zero-momentum range is small.
On the contrary, atoms are washed away from the range
of momenta close to !p,*! where the coefficient D„ is
maximum (see Fig. 2). As a result, there is a stream of
atoms directed to p, =O in momentum space, giving rise
to the rapid increase in the number of atoms with p, =0
and to the narrowing of the momentum distribution.
However, since D„(p, =0)%0 [note that D„(p, =0)
—I /y], the diffusion proper becomes predominant for
certain time and the momentum peak centered at p, =0 is
washed out.

I.et us evaluate the characteristic time scales of source
~, and diffusion ~D in the range of small velocities of
atoms. The value of parameter ~, can be estimated as

—1

Qp p 0
=G /(4coz y II ), (3.4a)

rD=(hp, ) /[D„(p, =0)]
=20 G /(cozy I )=r, SQ /(G I y) . (3.4b)

Deriving the formulas (3.4), we suppose I « y and
0 » I'y, 0 &5 I /y. Therefore, rD »r, . So, for the
cooling of, e.g., the sodium atoms on transitions 3S-3I',

0.0e-

where co~ =R /A is the atomic recoil frequency. The time
of diffusion is equal to rD=(bp, ) /[D„(p, =0)],

where Ap, is the characteristic momentum scale. In the
case under consideration, the value of Ap, is determined
by the width I" of the narrow dip in the dependence
D„/(p, ) (Fig. 2): bp, =M I '/k =2MO2/yk [15].
Hence

16.0

12.0

8.0

4.0

0.0—1.5

1

I I I I I

—10 —05 00 05
kPz/My

I I I I

1.0 '1. 5

FIG. 3. Time evolution of the atomic momentum distribu-
tion w under the action of momentum diffusion. The width of
initial distribution 5p, ( t =0)=My /k corresponds to the
Doppler cooling. Other parameters are the same as in Fig. 2. 1,
Initial distribution; 2, distribution after the interaction time
t =5 X 10 sec.

we have ~, = 10 sec, ~D = 10 sec for 0=0.1y,
I =10 y, y =10 MHz, and 5=0. Thus, on interaction
times ~ such that ~, +~(&~D one can cool the A atoms
due to momentum diffusion in the sense that the momen-
tum distribution of atoms is strongly narrowed.

The picture of momentum distribution evolution de-
scribed above is illustrated by Figs. 3 and 4, which were
generated by solving numerically Eq. (3.3). A high nar-
row momentum peak centered at p, =O increases for
times t & t (Fig. 4). The height of the peak increases by
20 times, and the width decreases by 35 times compared
to the initial distribution (for the parameters of Fig. 2).
This leads to a momentum distribution having a width
substantially lower than that determined by the Doppler
limit of laser cooling. On the other hand, for times t ) t*
the distribution width increases and the height decreases
slowly (at the scale of Fig. 4, these changes are so small
that it would not be visible), i.e., the peak is washed out
with the rate rD

'
( « r, ').

0.06
CV

C4

0.04

C3

0.02

0.00 !
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I

I
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1
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- 0. 50

— 0.2 5
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FIG. 2. Dependence of the momentum diffusion coefficient

D„on the atomic momentum p, in the case of Na
(co~ =3X10 y). The width of the narrow dip I ' is equal to
MII /yk [15]. Rabi frequencies 0,=Q, =0.3y, detunings
6)=kg=0, and I =10 y.

y t/10

FIG. 4. Time evolution of the height m, „ofthe distribution
peak of Fig. 3 (curve 1) and of width 6p, (curve 2) of the peak.
Parameters are the same as in Fig. 2.
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The value of time t* and the minimal value of width
5p;„are found from the analytical solution of FPE (3.3),
which will be presented elsewhere [16]:

0.12-

t"= f),'/(4g~~ y'r ),
5p;„=MA(I /2y)'~ /2k .

(3.5a)

(3.5b)

0.08-
00

Expressions for t* and 6p;„as well as for ~& and ~D
show that the rate I of coherence of state QNc) deter-
mines both the character of the evolution and the limit of
cooling by CPT.

2. Radiation force gnder CPT conditions

0.04—

0.00—3.0
I t I I 1 I I

kPz/My(

30 5.0

In the more general case, when y, Wyz, the A atom ex-
cited by counterpropagating light waves with k& -—k2 is
subjected to the special radiation force (3.1) ("CPT
force") [3,9,10]. For a proper choice of interaction pa-
rameters, the CPT force improves considerably the
efticiency of A atoms cooling due to the action of two
factors. First, the force maintains atoms in the low-
momentum region, leading to a constant pumping rate in
the trap state I QNc) by difFusion in the momentum space.
Second, the CPT force causes a strong damping of atomic
motion.

Consider the momentum dependence of radiation force
(3.1) in Fig. 5 for different values of detunings h. Note
that the force F, is of constant sign in the whole range of
momentum variation. The dependence includes a sharp
narrow dip which is near the "resonance" momentum

po =Muo determined by the condition (2.2). The minimal
value of the force F, '" at the bottom of the dip is
small compared to the maximum force F, '": IF, '"I
= I+,(p, =0)

I
=&k gl«& I+, '"I =&k lri y («r ~=0).

Such a structure of the force leads to a strong decelera-
tion of atoms with p, &0 at g & 0 (or p, &0 at g &0) and
to acceleration of atoms with p, & 0 at i) & 0 (or p, & 0 at
ii & 0) with a dynamical friction coefficient p (2.13) having
an anomalously high value in the region of the dip.

As a result, an atomic momentum distribution is
formed having a width much lower than that obtained by
Doppler cooling. The peak is centered at a point near
the bottom on the left (right) slope of dip at g & 0 (ri & 0).
At the same time, the so-generated narrow peak is shifted
towards the bottom of the dip with a rate determined by

The time evolution of momentum distribution of
Na atoms under the action of force (3.1) is given in Fig. 6.

Sub-Doppler laser cooling of atoms taking into account
the CPT force was studied for the first time in Ref. [9].
However, it was investigated only for the case of 6=0,
when the center of the force dip is at the point p, =0.
Then the friction coefficient p is equal to zero at the point
p, =0 [see Eq. (4.5)]. Therefore, the only possibility in
this case is the monochromatization of an atomic beam
with nonzero average velocity ( u, ) .

When the detuning Ib, l increases, the center of the
coherent trapping resonance is shifted to regions of posi-
tive momenta of atoms [see the inset of Fig. 5(a)]. Hence,
here is p(p, =0)%0, permitting cooling of the atomic en-
semble with ( u, ) =0. One can obtain an explicit expres-
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FICx. 5. Momentum dependence of the light pressure force
affecting the A atom with k, =k2 (NB, ) ~ (a) For different com-
mon detunings of light waves; 1, 6=0; 2, 5= —y I,' 3,

2y I 4 6= 5y I with fixed laser intensity
Q&=02=0. 3y&, I =10 y&, g=1.33. (b) For different Rabi
frequencies: 1, Q&=0. 1y&, 0~=0.3y&, 2 Q]=0.2yl Qp=0. 3y
with fixed common detuning 6= —3yl, I =10 y&, g=1.33.
The inset shows the region of small momenta.

1 6.0

120-

s.o-

0.0—0.8
I—O. C 0.0 0.4

kp, ]Mq„

0.8

FIG. 6. Time evolution of the momentum distribution of Na
atoms (k &

=k~) under the action of the force F,. 1, initial dis-
tribution with the width 5p, (t =0)=My/k corresponding to
the temperature TD, 2, momentum distribution after the in-
teraction time t =3X10 sec, BI=02=0.3yi 61=62= 2yl,
g = 1.33, and I = 10 y &.
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P=co g Q EI /2G (3.6)

and the detuning 6 must be negative in order to cool the
A atoms. The time rr, = lPl is the characteristic time
of momentum distribution narrowing due to friction
force.

The time scales of the evolution under the joint action
of radiation force and momentum diffusion can be es-
timated in the same way as in the case of pure diffusion
cooling (see the previous section). Writing the FPE in the
form analogous to Eq. (3.3), we obtain the following:

(i) The time of effective source action (at point p =0)

7 S

BF, +
Bp

8 D„
Bp p, =O

sion for P at the point p, =0 by expanding the force (3.1)
into power series of the momentum p, up to the first or-
der: F, =F, +Pp, . Here the force F, =fikl gQ /(2G )

induces the motion of an atomic ensemble as a whole, the
coefficient P is equal to

T,„=T (I /2y)'i (3.9)

the smaller ~s. It is also important to note that the ex-
istence of radiation force F, improves the efficiency of
momentum distribution narrowing compared to cooling
due only to diffusion.

Let us obtain the temperature T of atoms cooled by
CPT, substituting expressions (3.2) and (3.6) into the for-
mula (2.12):

2(b, I /2y+Q )

The dependence of T on the detuning l
b,

l
is depicted in

Fig. 7. It can be seen that for large values of
l
b,

l
the tem-

perature of the atoms increases slightly linearly, while for
l
b,

l

—&0 the temperature rises rapidly due to the fact that
friction near the zero momenta is absent for 6=0.

As follows from (3.8), there exists a wide region of de-
tunings where T is much less than the Doppler limit TD.
The minimum value of temperature

[1+g (I /8y)(h /G + lb l/~g)]
G4

cog yQ
(3.7a)

is achieved at a detuning

lb, , l
=(2Q y/r)'

(ii) The time of diffusion

(3.7b)

rcF —(bp, ) F, —
BD„

4G (1+co+ lb, l /G ) (3.7c)

(iii) The time of "convective force'" action (or time of
drift of the whole atomic ensemble)

For example, for Na atoms cooled by CPT on transi-
tions 3S-3P, the minimum temperature T;„ is equal to
T;„=3X10 K at a detuning lh, , l

=4.5y for
Q=O. ly, q=1.33, I =10 y, and y=10 MHz (while
TD =240 pK and Tz -—1.2 pK). Thus, the joint action of
diffusion and friction force under CPT conditions is
shown to produce the deep cooling of atoms.

As regards the expressions (3.8) and (3.9), we remind
the reader that they are obtained in a quasiclassical ap-
proach and are valid only in the range T)Tz. This cir-
cumstance limits the values of laser field intensities and
the value of I [see condition (2.7)].

At I ((y, Q ))I y, and Q )b I /y, the time of
peak formation is much smaller than the times of its
washing out and drift: ~s &«z, ~c„. For example, we
have ~s-—5&10 sec, ~~ =10 sec, and ~c„-—10 sec
for Na atoms

l
b,

l

=
l b, , l

= (2Q y /I )
' =4.5y (such a

choice of lb, l
will be clear from the following discussion),

for Q=O 1y, I =10 y, g=1 33, y=10 MHz, and
co& ——25 kHz. Thus, in an interaction time t,
s —t TcF &D one can obtain a very narrow momentum

distribution.
We emphasize that the momentum distribution does

not become a 5 function when t becomes infinite because
of the incompleteness of population trapping in l QNc),
which is characterized by the parameter I /y. Note
that the expressions for the "convective force"
(F, dD„/Bp, ) at poin—t p, =0, as well as for the diffusion
coefficient D„at point p, =0, contain the factor I /y.
So, the smaller I /y, the smaller the "convective force"
and diffusion coefficient, and the larger the times ~cF and

At the same time, there is inverse dependence on
I /y for the source term (though the dependence is much
weaker than for "convective force" and diffusion proper),
i.e., the smaller I /y, the more insensitive the source and

B. Cooling of A atoms with k&Xk2

Here we discuss A atoms with substantially different
wave numbers of the applied fields: k, &k2. Remember
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FIG. 7. Dependence of the temperature T of the cold Na
atoms on the common detunings lb,

~
for the following: 1,

Ql =02=0 3yl 2 Q =02yl Q2=0 3yl 3 Q =0. lyly
Qz=0. 3y&. I =10 y~ and g=1.33.
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that the velocity-selective CPT phenomenon appears in a
A system for arbitrary wave numbers k& and k2. Our
general conclusions obtained in Sec. III A concerning the
role of the parameter I /y are valid in the case of ki&k2
as well.

Let us discuss the case of double resonance in a A atom
(Fig. 1), where the wave numbers of the optical waves are
substantially different: ki&k2. This excitation scheme
can be realized, for example, in the thallium atom, where
the states I ), 2), and 3) are the fine-structure states
6 P, /2, 6 P3/2 and 7 S,/2, respectively [17]. One has to
excite such a A system by two laser waves with
k, =1.68X10 cm ' and k2=1. 18X10 cm

Since k, &k2, from (2.2) it follows that the CPT is ve-
locity selective both in the case of counterpropagating
waves k, tlk2 as well as in the case of copropagating
waves k, pfk2. This fact allows one to carry out the
transversal cooling (collimation) of an atomic beam in the
field of two copropagating light waves (note that this is
not possible for ki =k2).

By using the technique discussed in Sec. II, we obtain
both the light pressure force F, and the z component D„
of the momentum diffusion tensor, for example of copro-
pagating waves:

F, =&(kiy]+k2y2)2II aL

D„=A (k +k )2yQ al.

(3.10)

(3.1 1)

where

2p =/1+72
a =2@~2+x2

m=0
cmx

x=qv, , q =k, —k2,
c0=8yQ 6
c, =2yQ hg,
c2=2y(y +5 ) +20 (k, y2 k2y, )—/q,
c3 —2b( k i y i + k2y2 ) /q

c~ = (k i yi+ k2y2)/q

n=(yi y2)/y . —

Here we suppose for simplicity that the Rabi frequencies
Q&=A@=—0 as well as the detunings 6&=62—=6 are the
same for both transitions in the A atom. Moreover, we
assume that e « 1 and 0 » I y.

On the whole, the momentum dependencies of the
force F, (3.10) and of the diffusion coeflicient D„(3.11)
only differ weakly from the ones examined in Sec. III A.
Owing to such a shape of force and diffusion, the narrow
momentum distribution of atoms is formed in the zero-
mornentum region. The effectiveness of laser cooling by
CPT can be evaluated as before by the temperature (2.12).
In the case under consideration we have

2(k, +k2)(2Q +b, I /y)
T TD (k 1 y 1+k2y2) I

~ qq l

(3.12)

The dependence of the temperature on the detuning in
the case of k, &k2 is analogous to that for k, =k2. It is
characteristic that here a temperature below the Doppler
limit TD can be obtained. The minimum value T;„ is
reached for a detuning ~b z, ~

=Q(2y/I )'

8(k i +k2 )0
i /2 (3.13)

In the case of Tl atoms, T;„=30pK at b,,~, ~
=5y for

0=5 X 10 y, I =2X 10 p g& =62 5 MHz and
y2= 70.5 MHz ( TD =3150 pK, Tii i ——0.33 iMK, and
T~2- 0. 17 iu—K). We note finally that for the systems with
k, Wk2, the longitudinal deceleration of atomic beams us-

ing a chirping scheme is possible.

IV. DISCUSSION

V. CONCLUSIONS

We have presented the quasiclassical theory of laser
cooling by velocity-selective coherent population trap-
ping. The process of laser cooling by CPT is based on ac-
cumulation of atoms in the state ~QNc) noninteracting

We have considered two simple excitation schemes of
atoms for which laser cooling by CPT can be used. It
was shown that these schemes permit the cooling to
effective one-dimensional temperatures substantially
below the Dopier limit. The same is valid for cooling by
use of CPT in three-level atoms with double radio-optical
resonance [5]. This fact opens the prospects of sub-
Doppler laser cooling for a wide class of quantum ob-
jects, viz. for atoms and ions of alkali metals K, Na, Rb,
and Cs, alkaline-earth metals Zn, Cd, and Hg [5], as well
as for elements Br, Tl, Ba, etc., and for some types of
molecules.

Note also the possibility of using the CPT mechanism
as a very effective tool to master the translation of atoms.
There are many physical applications of laser cooling by
CPT, such as collimation and compression as well as lon-
gitudinal deceleration of an atomic beam, localization
and channeling in a standing light wave [5,10]. The ex-
perimental realization of the application is in progress.

The technique discussed above is the one-dimensional
cooling. However, it is possible to carry out laser cooling
by CPT in two and three dimensions [2,3,8, 18]. In spite
of more complicated atomic and laser configurations then
those we have considered above, the physical mechanism
is the same. At the same time, the complexity of the
configurations leads to an excessive complexity of
theoretical description of cooling dynamics. We believe,
therefore, that the quasiclassical approach presented here
is rather useful just for two- and three-dimensional cool-
ing by CPT. We also suppose that some results of our
study (such as the effect of degree I /y of incompleteness
of CPT on the cooling dynamics) are valid in two- and
three-dimensional cooling, too.
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with the exciting field, which leads to their localization in
strictly defined regions of a momentum space. We have
shown that the dynamics of accumulation of atoms in

~lbNc ) can be described by the Fokker-Planck equation as
being due to the two processes: (i) the redistribution in
the momentum space by means of difFusion, and (ii) the
narrowing of momentum distribution under the action of
radiation friction force (in the case of asymmetrical
schemes). These two supplement each other, providing
effective cooling down to superlow temperatures. This is
in contrast to other schemes of laser cooling, such as
Doppler cooling, stimulated molasses, and polarization
gradient cooling, where momentum diffusion plays a des-
tructive role, heating an atomic ensemble at any time.

Quasiclassical description has allowed us to find the
analytical expressions for the temperature of cooled
atoms as well as to investigate the time scales of atomic
evolution. It was shown that the incompleteness of CPT
influences considerably the cooling dynamics, leading to
the appearance of a "damping" stage of the evolution
(when primarily formed narrow momentum distribution
is washed out) and, in general, to the imperfection of
cooling by CPT. Both characteristic time scales and tem-
perature are determined by the degree I /y of incom-
pleteness of CPT.

APPENDIX

We give here the common expression for the light pres-
sure force F and for the momentum diffusion coefficient
D„ in a A system when the Rabi frequencies 0, the de-

tunings 6, the wave vectors k, the rate I of the trans-
verse relaxation, and the mixing rate yo between the lev-
els

~
1 ) and

~
2 ) are arbitrary:

F=@kiy i+k2y2)p»

D„=A' (k &+k2)yp33

p33= 3 /B,
3 =yyoao(Q, az+Qza, —2Q, Q2b)+2QfQzaoy

B=2] ypdo +y~o [Qi(ye+ 3yo)u2 +Q2(y& +3yo)a,

+2Q 1Q2( y 3—y p)b ]+6Q &Q2a p y

do=aiaz b 2

a, =ap(y +a, )+Q~[Qp+e(y —a, ) —2aa, ],
a2=ap(y +a2)+Q, [Qp+e(y —a2)+2aa2],
b=Q, Q2[Qp+e(y +a,a2) —a ],
a =eQ+a+ey
a, =AI —k&v,

a2= 52 —k2v,

a=a& n2

Q =0+00 1 2 ~

2y =yi+y2
~=ryy .
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