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J. Tulkki
Laboratory of Physics, Helsinki University of Technology, SF 021-50 Espoo, Finland

N. M. Kabachnik*
Fakultat fiir Physik, Universitat Bielefeld, $800 Bielefeld, Germany

H. Aksela
Department of Physics, University of Oulu, SF 90570-Oulu, Finland

(Received 8 February 1993)

The angular anisotropy nz and spin polarization (2 parameters have been calculated for Ar
L3MM, Kr M4 5NN, Xe N4, 500, and Xe M4, 5NN Auger transitions using the multichannel mul-
ticonfiguration Dirac-Fock method (MMCDF). The results of our MMCDF calculations are in good
general agreement with experiment. We have also determined the separate contributions of the ex-
change, relaxation, and channel interaction to the angular anisotropy of the Auger process. We have
shown that especially for Auger lines having at least two strong partial amplitudes corresponding
to different values of the orbital angular momentum both the exchange and channel interaction can
change the value of the o.2 parameter significantly and sometimes even change its sign. Because of
the additional eigenchannel phase shifts the o;2 parameters are more sensitive to channel interaction
than to the exchange. In contrast the relaxation has a small effect on the angular distribution of
Auger electrons. A comparative study showed that the n2 parameters are usually le88 8ensitive to
correlation than the branching ratios or even the total Auger rates. This was traced back to universal
scaling of the modulus of transition amplitudes and to the existence of one dominating ionization
channel in most transitions. The (z parameters were small for all strong Auger lines and exceedingly
sensitive to all correlation efFects.

PACS number(s): 32.80.Hd, 32.80.Fb

I. INTRODUCTION

The angular distribution of Auger electrons in the de-
cay of ionic states with total angular momentum j ) 1/2
is in general anisotropic [1]. The anisotropy is due to the
alignment of the initial state of the Auger process during
the primary ionization or excitation of inner-shell elec-
trons by a directed beam of particles or photons. In a
conventional two-step description of the Auger decay the
degree of anisotropy is determined [2] by the products
of the alignment parameters describing the polarization
state of the decaying ion and the anisotropy parameters
which characterize the intrinsic anisotropy of the partic-
ular Auger transition and which depend on Auger ampli-
tudes. Recently it was realized that measurements of the
Auger electron angular distributions as well as measure-
ments of their spin polarization can provide a wealth of
information on Auger decay dynamics [3]. This informa-
tion is additional and more detailed than that obtained
by standard measurements of the Auger electron energies
and intensities.

In the past several years measurements of angular dis-
tributions for normal, satellite, and resonant Auger tran-
sitions in noble gases have been published [4 —17]. There
were also attempts to measure the spin polarization of
Auger electrons [4, 10, 15]. These measurements stimu-
lated a number of theoretical investigations [18 —29].

Comparison of the results of the calculations with ex-
periments and other calculations has revealed that angu-

lar anisotropy and spin polarization of Auger lines can be
very sensitive to subtle details of the description of the
decay dynamics. However, not all of the lines demon-
strate such sensitivity. According to Ka,mmerling et al.
[7] Auger transitions can be classified into three cate-
gories: (i) Auger transitions with only one allowed par-
tial wave permitted in any coupling scheme, for example,
transitions to the J = 0 final ionic states; (ii) Auger tran-
sitions with only one allowed partial wave in L S coupling;
and (iii) Auger transitions with several contributing par-
tial waves in any coupling scheme.

The transitions of the first category have the
anisotropy parameters independent of the Auger ampli-
tudes. The spin-polarization parameters of these Auger
transitions are zero. As a rule the anisotropy of the tran-
sitions of second category, having single open channel
in IS coupling, is weakly sensitive to the details of the
atomic model if the atom can be wel]. described in the
IS approximation. There is also an exception to this
rule: As one will see below there are transitions which
are isotropic in LS coupling due to occasional cancella-
tions of the contributions of j = l + 1/2 partial waves.
The values of the anisotropy parameters for these tran-
sitions are very sensitive to the details in the description
of continuum electron. Finally, the transitions of cate-
gory (iii), with many contributing continuum channels,
are in general very sensitive to the theoretical model and
provide a good testing ground for difFerent methods of
calculating Auger amplitudes.
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Comparison of the calculated anisotropy parameters
with the experimental data for noble-gas Auger transi-
tions shows that in general the agreement is satisfactory
[24, 28]. However, there are some lines in Kr and Xe
for which the agreement is still rather poor (see below).
Discrepancies exists also between experimental data ob-
tained by different groups. On the theoretical side all
intermediate-coupling calculations neglected relaxation
and channel-interaction effects. The continuum orbitals
were optimized in a simple single-channel potential dis-
regarding exchange interaction.

The importance of the relaxation and channel interac-
tion for K Auger rates was discussed by Howat, Aberg,
and Goscinski [30] and Howat[31] in lowest order Lat. er
the channel interaction and relaxation effects have been
studied using more advanced methods for several Auger
spectra [32—35]. That the exchange effects in the con-
tinuum should be properly taken into account has been
demonstrated earlier as well [36].

The observed large relaxation, channel interaction, and
exchange effects in the Auger energies and line intensities
have prompted us to study the inQuence of these corre-
lation efFects on the angular distribution and spin po-
larization of Auger electrons. In our calculations based
on multichannel multiconfiguration Dirac-Fock method
(MMCDF) [37] the many-electron effects are classified
as initial ionic-state configuration interaction (IISCI),
final ionic-state configuration interaction (FISCI), final
continuum-state configuration interaction (FCSCI, also
called channel interaction), and relaxation. In this work
we concentrate on FCSCI, exchange, and relaxation ef-
fects. The IISCI that has been found to afFect the Auger
electron energies and the total transition rates [38] is ne-
glected in the present calculations. We assume that its
influence on the angular anisotropy of inner-shell Auger
transitions in noble-gas atoms is fairly small.

In the next section we describe the theoretical ap-
proach and the computational approximations. In
Sec. III we present and discuss the calculated o.2 and
(z parameters for the LsMM transitions in Ar, M4 5NN
transitions in Kr, and M4 5NN and N4 500 transitions
in Xe. In Sec. IV we will compare the inhuence of vari-
ous many-electron effects on the angular anisotropy with
their infl. uence on the branching ratios and on the total
Auger rate.

II. THEORY AND CALCULATIONS

The following analysis of angular dependence and spin
polarization of Auger electrons is based on a two-step
treatment of Auger decay. Thus the excitation process
is taken into account only in terms of polarization and
alignment of the initial state of Auger decay. General ex-
pressions for the angular distribution of Auger electrons
can be found elsewhere (see Ref. [3] for instance). These
expressions are rederived and presented in the Appendix
within the &amework of MMCDF method. In the ma-
jority of cases studied experimentally the general formula

I

[see (A24)] can be simplified by including only the first
two terms in the expansion (A21) over the state multi-
poles. Note that in the photoinduced Auger process only
these two terms contribute due to the dipole character of
photoabsorption. The Auger electron angular distribu-
tion for either unpolarized or linearly polarized incoming
photons is given by

de, ~g~ (0)
dO

(7)
~ [1+n2AzpP2(cos 9)]

4m

where (2 —— gl5/16P2 and P2 is determined by Eq.
(A27). Note that we have used the same definition of
parameter (2 as in papers [3, 39], which differs by a fac-
tor of 3/2 from the definition used in Refs. [24, 29].

The n2 and (2 parameters were evaluated by adding
the various many-electron efFects stepwise into the wave
functions and transition amplitudes. This made it pos-
sible to determine how each of them contributes to the
anisotropy of Auger process. In order to analyze the ef-
fects of relaxation and FCSCI on Auger decay we need
a generalization of Fano's [40] theory of autoionization
by allowing for the nonorthogonality between the ini-
tial single-hole atomic-state function (ASF) ~@~), where
p = p, J;, and the final continuum ~4&@) states [41]. Here

~4&&) (I' = I'y Jf+EJ;) are K, noninteracting MMCDF
continua corresponding to the final ionic ASF ~illr gf)
and the continuum orbital ~y„). The symmetry of the
continuum electron is specified by the quantum number
K and the kinetic energy by e. The total energy of the
Anal state E = Ey + e is given with respect to the rest
energy of the system. The MMCDF wave functions are
calculated using a two-step procedure described in detail
in Ref. [37] and also summarized briefly in the Appendix
in Eqs. (A7)—(A10). The diagonalization of the discrete-
continuum Hamiltonian [40] gives the full relaxation mul-
tichannel Auger amplitude

where WJ J is the total Auger rate between the initial(T) ~

J;m Jf
and final ionic states having total angular momenta J;
and Jy, respectively. In Eq. (1) A2p describes the align-
ment of the initital state of the Auger decay, o.2 is the
anisotropy parameter, and P2(cos 0) is a second Legendre
polynomial. The angle 0 gives the direction of the Auger
electron wave vector with respect to the alignment axis
of the ion. For unpolarized photons the axis of alignment
is directed along the photon wave vector and for linearly
polarized photons along the polarization vector of pho-
tons. The expressions for the total rate TVJ J and theJ,~Jy
o.2 parameter in terms of Auger amplitudes are presented
in Eqs. (A23) and (A26).

The spin polarization of the Auger electron is perpen-
dicular to the plane determined by the axis of alignment
and the Auger electron wave vector and it is given by [3,
39]

6&zp sin 20
1 + nzA2pP2(cos 0)

(3)
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In Eq. (3) H is the Hamiltonian of the ion and the Auger
electron, P denotes the principal value, the K matrix
is determined by FCSCI, and Z & includes the Dirac-
Fock and multichannel phase shifts. The single-channel
amplitudes are given by

(@~la Sly &) = D~ + D~ + Do (4)

where the two-electron D„, one-electron D, and con-
stant operator Do parts are given by

(5)

(6)

In Eq. (6) the single-particle operator h~ includes the
kinetic energy, nuclear attraction, and spin-orbit inter-
action. In the discussion of the relaxation effect it
is meaningful to split the two-electron amplitude into
D~„= D „+D~„. The principal amplitude D in-
cludes a product of an overlap factor [42] and the dy-
namical two-electron matrix element (yp, yp, lri2ly;y~)
where ly ), T = Pi, P2, i, A, are the orbitals correspond-
ing to the final and initial holes and the Auger electron.
All other partial amplitudes in D„resulting from per-
mutations are called conjugate and denoted by D~ . In
calculations based on the use of the same bound orbitals
in the initial and Gnal states only the D remains in Eq.
(4) with the overlap factor equal to one [35]. Although
the relaxation and FCSCI effects should be included si-
multaneously, the relaxation and a weak FCSCI effect
are approxiinately additive [35].

In all calculations we used a single-hole-configuration
initial-state ASF. For the final ionic ASF we accounted
for FISCI by always mixing all configuration-state func-
tions (CSF's) that can be constructed by distributing the
two final holes on the M, N, or 0 subshells. For instance,
in the case of Xe M4 5NN Auger spectrum we obtain 35
possible Gnal ASF's. These are associated in the case
of the M5 initial hole with 138 Auger emission channels
including s, p, d, f, g, h, and i partial waves.

In our calculations we have neglected the FISCI of the
final ionic double-hole configuration ns np, where n =
3, 4, and 5 for Ar, Kr, and Xe, respectively, with the
triple-hole configurations nsnp nd and ns np nd . Cor-
respondingly the FISCI between the nsnp and ns np nd
configurations was also ignored. The CI between these
double- and triple-hole configurations is particularly
strong for the Xe N4 5OiO2 3 and N4 50iOi Auger lines
[43]. The calculated transition energies of these lines are
much smaller than the experimental values. A similar
FISCI effect is found also in the final state of the Kr
M4, 5~i~i and M4, st~2, s [44] and Ar L2,sMiMi
LI2 3M]M2 3 transitions [45). The CI with triple-hole con-
figurations also gives rise to intense FISCI correlation
satellites in the Auger spectrum and may also change

the angular distributions of the main lines.
The continuum orbitals were calculated in jj-average

field of the final ion, constructed using the generalized
occupation numbers of final ionic CSF's [46]. In all cal-
culations except in the one which excludes the exchange
interaction the Lagrangian multipliers were included to
orthogonalize the continuum orbital to the bound or-
bitals. Therefore to the Auger electron, there is asymp-
totically a doubly charged ionic Geld even when initial-
state bound orbitals are used for the construction of the
jj-average potential. In all calculations we used energies,
which were obtained as a difference between separately
optimized initial- and final-state ASF's (ASCF method).

The total Auger rates as well as branching ratios, an-
gular distribution, and spin-polarization parameters of
Auger lines were calculated in several approximations,
based on different one-electron and many-electron wave
functions. The four single-channel calculations are la-
beled by IE, I, RE, and FE and the multichannel calcu-
lation by FEMC in Tables I—VIII. In detail these results
were obtained as follows.

IE: In this approximation the bound orbitals, opti-
mized for the initial ionic state, were also used in the
construction of the Gnal-state many-electron wave func-
tion. The jj-average exchange interaction and the La-
grangian multipliers were included in the calculation of
the continuum orbital. We call this the nonrelaxed ap-
proximation since effectively it assumes that the bound
orbitals are frozen during the Auger decay.

I: The effect of exchange interaction between the con-
tinuum and bound electrons was studied by using the
same bound orbitals as in the IE calculation, but by ne-
glecting the exchange potential in the calculation of the
continuum orbitals. The continuum orbitals were then
Smith orthogonalized against the bound orbitals. The
difference between results IE and I hence gives an esti-
mate of the infIuence of exchange on the anisotropy of
Auger decay. This approach is identical to that used by
Chen [28]. The calculation of Kabachnik, Lohinann, and
Mehlhorn [24] difFers from our calculation I in three re-
spects. First in their work only the np (n = 3, 4, 5)
parent configurations were used in the construction of
the final ionic ASF's. This accounts effectively for in-
termediate coupling. Second the experimental transition
energies were used, and third the Smith orthogonaliza-
tion procedure was not applied to the continuum orbital.

RE: In this approximation the initial and final ionic
ASF's were optimized separately and the resulting non-
orthogonality was fully accounted for by evaluating Do,
D~, and D~„ in Eq. (4) according to Lowdin's formal-
ism [42]. Except for the different set of final-state orbitals
and the use of Eq. (4) the IE and RE approximations
have been obtained using identical computational proce-
dures. Consequently the difference between these results
is entirely assigned to orbital relaxation during the Auger
decay.

FE: This calculation is identical to IE, but the bound
orbitals which were optimized for the final ionic state
were also used in the initial-state ASF. This approach
has also been commonly used since it is based, in analogy
to IE, on the use of an orthogonal set of one-electron
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orbitals. Note that, according to first-principles neither
approximation, IE nor FE, has any advantage over the
other.

FEMC: In this calculation we include the exchange and
channel interaction by using MMCDF wave functions in
the final state. The computational method has recently
been described by Tulkki et al. [37]. The MMCDF cal-
culation of the Xe N4 5OO Auger spectrum has been dis-
cussed in detail by Mantykentta [47] and we have used
the same MMCDF Auger amplitudes and phase factors
to generate our n2 and (2 parameters. We calculated
the MMCDF Ar 13MM and Kr M4, 5NN Auger rates
using the same computational procedure as in the Xe
N4 500 case. For Ar the MCDF wave functions of the
final ionic state were calculated by including ten CSF's
obtained by distributing the two holes on the 38 and 3p
subshells. In the multichannel calculation we included
the corresponding 25 allowed ionization channels. For
the Kr M4 5NN Auger spectrum the ten CSF's obtained
from two holes on 4s and 4p subshells are associated with
25 (M4) and 27 (Mq) channels. In all FEMC calcu-
lations the bound orbitals were optimized for the final
state of the ion. Therefore the difference between our
FE and FEMC results will directly gauge the inHuence of
FCSCI.

III. ANGULAR ANISOTROPY:
RESULTS AND DISCUSSION

Using the approach described above we have calculated
the anisotropy parameter n2 and spin-polarization pa-
rameter (2 as well as the intensities for the LqMM tran-
sitions in Ar, M45NN transitions in Kr, and N4 500
transitions in Xe. In Table I we give the values of the o,2

parameter obtained in various approximations for Jy ——2
final ionic states. The identification of the transitions
in LS-coupling scheme is traditional and corresponds to
the leading component of the multiconfiguration wave
function [48). Table II includes only a few Auger lines
corresponding to the largest absolute values of the (2
parameter. Tables III—V include a comparison of our
MMCDF o,2 parameters with previous calculations and
experiments. The results for Xe M5NN transitions are
given in Table VI. Tables VII—VIII include the calculated
intensities and total rates of Ar I3MM and Kr M4 5NN
Auger spectra in all approximations.

A. Comparison of calculated results

As pointed out in the Introduction, the a2 and (2 pa-
rameters are not sensitive to computational approxima-

TABLE I. Angular anisotropy parameter n2 for selected Ar, Kr, and Xe Auger lines, corre-
sponding to total final ionic angular momentum Jy ——2. Column I indicates single-channel results
obtained by using intial-state bound orbitals and by excluding exchange interaction for the con-
tinuum orbital; IE is the same as I except that the exchange for the continuum electron has been
included; FE is the same as IE, but based on the use of final-state bound orbitals; RE indicates sin-
gle-channel values obtained with exchange and by using separately optimized initial- and final-state
orbitals to account for relaxation according to Eq. (4); FEMC is the same as FE, but includes the
interachannel interaction in the final state.

Ar

Transition

L3Mg, 3M2„3

L3MgM2 3

P
'D2
3P

0.789
-0.483
0.048

Approximation
IE RE

0.789
-0.500
0.042

0.788
-0.522
0.037

FEMC

0.787
-0.548
0.007

Kr M4N2 3' 3

M4NIN2 3

M5N2, 3N2, 3

M5NiNg 3

3P
D
P
P

1D
3P

0.088
0.153

-0.866
-0.323
0.252

-0.765

0.105
-0.036
-0.828
-0.316
-0.011
-0.664

0.112
-0.084
-0.822

0.108
-0.103
-0.823
-0.309
-0.091
-0.657

0.095
0.224

-0.839
-0.329
0.419

-0.746

Xe N402, 30',3

N4OgO2 3
NgOg, 302,3

N50i02 3

3P
D2

3P b

D2
3p b

0.262
0.083

-0.846
-0.257
0.228

-0.741

0.247
-0.077
-0.750
-0.243
-0.029
-0.671

0.249
-0.109
-0.655
-0.241
-0.065
-0.655

0.239
-0.116
-0.603
-0.240
-0.078
-0.663

0.231
-0.116
0.051

-0.385
0.094

-0.736

The final ionic states are identified by giving the dominant LS term in the pertinent multiconfig-
uration ASF [48].

These lines are very weak, see Ref. [47].
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TABLE II. Spin-polarization parameter (2 for selected Kr M4, sNN and Xe N4, sOO Auger
lines. The selected lines have the largest (q values in FEMC approximation. The computational
approximations are the same as in Table I.

Transition Approximation
IE RE FE FEMC

Kr M4N2 3' 3

M4Nl N2, 3

M5N2 3',3
M5NlNg 3

P2
P2

'Pl
P
P

'Pl

-0.099
0.002

-0.017
0.034
0.002

0.0001

-0.254
-0.0003

0.015
0.090

-0.005
0.009

-0.300
-0.0002

0.016

-0.313
-0.0002

0.016
0.114

-0.005
0.009

0.095
0.059

-0.271
-0.064
0.124

-0.215

Xe N402 3O2 3

N40l 02,3

N502, 302,3

N50l 02,3

P
3P
3P
P
P
Pl

-0.068
0.031

-0.298
0.035
0.069

-0.071

-0.275
0.114

-0.267
0.092
0.195

-0.192

-0.296
0.172

-0.144
0.102
0.220

-0.225

-0.296
0.201

-0.137
0.104
0.220

-0.236

0.040
-0.282
-0.091
-0.100
-0.070
0.262

tions for all of the Auger lines. The most interesting cases
in this respect are the transitions to the final ionic states
with Jy = 2. For these transitions previous calculations
predicted the largest influence of intermediate coupling
[24, 28]. On the other hand, for some of these transitions
there is also a discrepancy with experimental data.

The first two columns (I and IE) demonstrate the ef-
fect of exchange. For Ar the difFerence between the
results I and IE is small (less than 5%%uo) for strongly
anisotropic lines. It is slightly larger for the almost
isotropic L3MqM23 P2 transition. Small influence of
exchange on the o.2 parameter in Ar is due to the large
kinetic energy of emitted Auger electrons ( 200 eV).
A small exchange effect was also found (results without
exchange not shown in Table VI) for the Xe M4 sNN
transitions which also correspond to high kinetic energy

(200—500 eV). This observation can be directly related
to the one-electron Dirac equation of the continuum or-
bital. As the kinetic-energy term increases the exchange
potential loses its significance.

A difFerent situation occurs in Kr and Xe where the
kinetic energy of Auger electrons is much smaller (~ 50
eV and 30 eV, respectively). Here the exchange is
important and it can inBuence the angular anisotropy.
In fact, the efFect of exchange is dramatic for some of
the lines. For example, for the M4 5N2 3N2 3 D2 transi-
tions in Kr and for the N4 502 302 3 D2 transitions in
Xe inclusion of the exchange leads to a change of the
sign of the anisotropy. The results regarding the Kr
M5N2 3N2 3 D2 line are especially illustrative. For this
line a rather large positive value of the o.2 parameter,
in good agreement with experiment (Table IV), was ob-

TABLE III. Angular anisotropy parameter o.2 for Ar L3MM Auger transitions: a comparison
of the present MMCDF results with experiment and earlier calculations. The last two columns give
the spin-polarization parameter and the relative intensity I in percentage of the total MMCDF rate
of 5.57 ma. u.

Transition Experiment
a ICDF'

Theory
This work

Cl2 6 I(%)
L3M2, 3M2, 3

L3MlM2 3

P
3p

D
Sp
P
P

3p

1S

—0.48 + 0.10 —0.41

0.795
—0.010
—1.000
—0.441
—1.000

0.787
0.004

—1.000
—0.548
—1.000

0.007
—0.011
—1.000
—0.041
—1.000

—0.004
0.000
0.000
0.004
0.000
0.045

—0.214
0.000
0.000
0.000

27.37
9.62
2.52

31.91
5.80
9.16
2.01
0.02

10.28
1.30

Sarkadi et al. , Ref. [11].
Becker, Ref. [8].
Intermediate coupling Dirac-Fock final ionic state, no exchange for the Auger electron, Kabachnik,

Lohmann, and Mehlhorn, Ref. [24].
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tained by Kabachnik, Lohmann, and Mahlhorn [24] and
by Chen [28] without the exchange. However, when the
exchange is included the n2 of this line obtains a small
negative value. This shows that the agreement was in a
sense accidental.

A comparison of the results from the second and fourth
columns (IE and FE) shows that the calculations with the
one-electron orbitals obtained by optimizing the initial or
final ionic state give almost identical results. Except for
some weak lines and lines having a very small a2 value
the difference is smaller than a few percent. Therefore
the 0!2 parameter is relatively insensitive to the choice of
the basis set.

The effect of relaxation is demonstrated by the column
RE. These results were obtained by using separately op-
timized initial- and final-state orbitals and by accounting
for the resulting nonorthogonality by employing the gen-
eralized Auger amplitude in Eq. (4). Comparing the
results in the columns IE and RE one can see that relax-
ation affects the o.'2 parameters only slightly. This con-
clusion is valid for all transitions studied in this work.

Finally we consider the effect of channel interactions.
The last column (FEMC) in Table I shows the results of
a calculation involving final-state orbitals, full exchange
and full account of FCSCI as described in Sec. II and in
the Appendix. The pure effect of FCSCI can be seen by
comparing these results with those in the fourth column
(FE), which were obtained in the identical way except
that FCSCI was not included.

The largest FCSCI effects are obtained for the
M4, 5N1N2, 3 P1 and M4 5N2 3N2 3 D2 in krypton and

for the N502 302 3 P2, D2 lines in xenon. For the Kr
M4 5¹3N2 3 D2 transitions the n2 parameters have dif-
ferent signs in calculations with and without channel cou-
pling. It is interesting that exchange and channel interac-
tion affect the 0!2 value in opposite directions: the former
decreases the anisotropy whereas the latter increases it.
The exchange and FCSCI partly compensate each other,
so that the 6nal n2 value is only 50—70% larger than the
results obtained by disregarding both effects. For the
N502 302 3 D2 transitions in Xe the situation is simi-
lar, but here the FCSCI is not as strong.

A strong FCSCI effect is also observed for the
M5N1 N2 3 P2 transitions in Kr and N4 50102 3 P2
transitions in Xe. Earlier it was shown that for these lines
the o.'2 parameter calculated using many-body perturba-
tion theory (MBPT) differs considerably from the corre-
sponding Hartree-Fock result [21]. Although there is no
simple relation between the nonrelati'Uistic LS-coupling
MBPT and MMCDF calculations, the large FCSCI ef-
fect, for these lines, in Table I is in qualitative agreement
with MBPT result. The influence is especially strong for
the Xe N40102 3 P2 transition, but again the small line
intensity makes the comparison somewhat inconclusive.

In Table II we present the results of calculations of the
spin-polarization parameter (2. In all transitions consid-
ered the (2 parameter is extremely small, typically less
than 0.01. The resulting polarization would be so small
that it is not possible to observe it experimentally. Nev-
ertheless, in order to demonstrate the sensitivity of the
(2 parameter to various dynamical effects we have chosen
the transitions with the largest values of (2. One can see

TABLE IV. Angular anisotropy parameter cx'2 for Kr M4 5NN Auger transitions: a comparison of the present MMCDF results with experiment
and earlier calculations. The last two columns give the spin-polarization parameter (2 and the relative intensity in percentages of the total MMCDF
rates 2.89 ma. u. and 2.93 ma. u. for M4 and M5 holes, respectively.

Trans it ion Experiment

ICDF MCDF
Theory

This work

I(%)
M4N2 gN2 3

M4NyN2 3

3p
3p
3p

Sp
P

3P
Pp

Sp

0.21 + 0.09

!
—0.77 + 0.10

—1.02 + 0.07
—1.08 + 0.07

—0.77 + 0.04

0.017
—0.818
—1.000

0.240
—1.000

—1.000

0.098
—0.817
—1.000

0.154
—1.000
—0.865
—0.932
—1.000
—0.633
—1.000

0.095
—0.818
—1.000

0.224
—1.000
—0.839
—0.895
—1.000
—0.589
—1.000

0.010
—0.005

0.000
0.019
0.000
0.059

—0.271
0.000
0.004
0.000

3.47
6.09
1.07

14.79
11.58
9.08
1.91
0.33

29.81
21.87

M5N2 3' 3

M5NiN2 3

P2
Pg

D2
Sp
P2

3p

Sp

—0.31 + 0.06

0.18 + 0.04

—0.96 + 0.07
—1.20 + 0.05

—0.72 + 0.04

—0.303
—0.739

0.330

—0.323
—0.742
—1.069

0.286
—1.069
—0.762
—1.051
—1.069
—0.627
—1.069

—0.329
—0.737
—1.069

0.419
—1.069
—0.746
—1.011
—1.069
—0.569
—1.069

—0.064
—0.009

0.000
0.047
0.000
0.124

—0.216
0.000
0.028
0.000

9.39
3.69
2.26

11.88
7.79
5.01
5.55
2.13

30.91
21.39

Kammerling, et ar. , Ref. [7].
b Kammerling et al. , Ref. [16].

Intermediate-coupling Dirac-Fock final ionic state, no exchange for the Auger electron, Kabachnik, Lohmann, and Hehlhorn, Ref. [24].
Multiconfiguration Dirac-Fock final ionic state, no exchange for the Auger electron, Chen, Ref. [28].
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&om Table II that the (2 parameters are very sensitive
to all many-electron effects and also to the choice of the
one-electron orbitals. The relative change of the (2 value
calculated in different models is much larger than for the
o.2 parameter.

as a well-resolved intense peak in the experiment it is a
suitable test to the theory. Note that for Ar the effects
of exchange and channel interaction are rather small due
to the relatively large Auger electron energy.

B. Comparison with experiment 2. Xf' M4 5KK tf'aneitione

In Tables III—V we present the results of our MMCDF
calculations for all transitions together with experimental
data and some earlier calculations. Our results shown
here correspond to FEMC approximation in Tables I and
II, i.e., the most important effects of the exchange and
channel interaction are taken into account, but not the
relaxation effect, which on the basis of Table I does not
inhuence the o.2 values much. Next we consider each
Auger spectrum in more detail.

A.r L~MM t~aneitione

The present results (see Table III) are close to those of
Ref. [24] and agree quite well with available experimen-
tal data. For the L3M2 3M2 3 D2 transition the absolute
value of our result is somewhat larger than that of Ref.
[24], however, the o.2 value is still compatible with ex-
periment. Since the L3M2 3M2 3 D2 transition appears

For the transitions &om the 3d3g2 hole state our results
shown in Table IV are in good agreement with recent ex-
perimental data by Kammerling et al. [7, 16]. However,
both the present and earlier calculated anisotropies [24,
28] of the M4N2 sN2 s P2 and all M4NqN2 s lines are
slightly lower than the experimental values. The results
for the M5NN transitions fit the experimental data also
well and are close to the previous calculations [24, 28].
The similarity of our results with the calculations exclud-
ing FCSCI and exchange is due to the strong compensa-
tion of these effects. In the case of M5%2 3%23 tran-
sitions the comparison with experiment is most conclu-
sive for the intense and well-separated D2 and P2 lines.
All M4 5%1%2 3 lines are well resolved in the experiment,
which makes the determination of the o,2 parameters re-
liable. The discrepancy between theory and experiment
for the M4 5%1%2 3 P1 lines might be related to FISCI
involving the 48 4p 4d triple-hole configurations.

TABLE V. Angular anisotropy parameter n2 for Xe N4 500 Auger transitions: a comparison of the present MMCDF results with experiment
and earlier calculations. The last two columns give the the spin-polarization parameter (2 and the relative intensity in percentages of the total
MMCDF rates 5.16 ma. u. and 5.87 ma. u. for N4 and N5 holes, respectively.

Transition Experiment
ICDF MCDFf

Theory

This work

N40g 302 3
3p

Dg
Sp

N40yOg 3

P2
3P

Pp
~P

Sp

0.72 + 0.13
—0.73 + 0.11

0.05 + 0.06

1.2 + 0.2 0.156
—0.835
—1.000

0.055

0.250
—0.831
—1.000

0.086
—1.000

—0.847
—0.924
—1.000
—0.683
—1.000

0.231
—0.837
—1.000
—0.116
—1.000

0.051
—0.779
—1.000
—0.730
—1.000

0.040
—0.022

0.000
0.015
0.000

—0.282
—0.091

0.000
0.069
0.000

2.72
8.40
0.63

16.80
11.45

0.36
0.86
0.72

51.60
6.46

N50q, 302,3

P

D2
Sp

N50)02 3

Pg
3p

Pp
1P

Sp

—0.47 + 0.13
—0.77 + 0.17
—1.07 + 0.10

0.24+ 0.10

—1.0 + 0.2
—1.2 + 0.2

0.31

—0.09 + 0.10

!
—0.69 + 0.10

0.30 + 0.12

—0.227
—0.734
—1.069

0.139

—0.257
—0.736
—1.069

0.238
—1.069

—0.738
—0.924
—1.069
—0.647
—1.069

—0.385
—0.743
—1.069

0.094
—1.069

—0.736
—0.957
—1.069
—0.712
—1.069

—0.100
—0.008

0.000
0.053
0.000

—0.070
0.262
0.000

—0.003
0.000

10.80
3.89
3.57
9.50
3.94

1.33
1.82
0.32

59.86
4.96

Kammerling, Krassig, and Schmidt, Ref. [9].
Becker [54].
Whitfield et aL. , Ref. [17].
Intermediate-coupling Dirac-Fock final ionic state, no exchange for the Auger electron, Kabachnik, Ref. [24].
Multiconfiguration Dirac-Pock final ionic state, no exchange for the Auger electron, Chen, Ref. [28].
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8. Xe N4, 500 transitions

TABLE VI. Auger electron energies (E), relative line
intensities (I), angular anisotropy parameter (n2), and
spin-polarization parameter ((z) for Xe MsNN Auger transi-
tions. The results correspond to approximation IE described
in Table I. The total M5 Auger rates in various approxima-
tions were 24.14 ma. u. (I); 24.74 ma. u. (IE) and 21.87 ma. u.
(FE). See text for further details.

Transition E (eV) I ('%%uo)

M5N4, 5N4, 5

M5N2 3N4 5

M5N1 N4, 5

M5Ng, 3N2, 3

M5N1 N2, 3

M5N1 N1

3p R

D2
3Q
P

3p

D
1G

Sp
I'4

1D
3Q
D
P1
Pp
D3
D

3+
D2

1Q
1P
D3
D
D

lD
P
Pp

'D2
Sp
P
P

1P
1S

527.44
525.82
525.64
524.10
523.33
523.00
522.23
522.05
516.80
440.86
438.67
436.56
433.64
433.35
433.11
430.98
429.82
425.25
422.46
416.96
416.22
370.10
369.23
368.00
366.31
343.01
339.55
332.29
326.53
315.51
282.45
276.52
269.75
259.44
206.55

13.07
8.54
5.18
4.58
1.85
3.00
1.59

11.86
0.93
4.43
2.30
1.43
1.04
1.04
0.00
5.76
2.09
0.11
4.19
8.31
0.34
5.33
3.72
0.36
1.80
1.28
0.22
0.20
3.73
0.01
0.23
0.32

0.004
1.10
0.03

0.386
-0.226
0.336

-0.371
-1.069
-0.749
-0.124
-0.710
-1.069
-0.228
0.205
0 ~ 269

-0.095
-0.721
-1.069
0.788

-0.732
-0.754
-0.115
-0.256
-0.698
0.026

-0.208
-1.000
-0.391
-0.652
-1.069
-0.757
-0.667
-1.069
-0.736
-0.833
-1.069
-0.832
-1.069

-0.011
-0.002
0.021

-0.025
0.000

-0.000
0.092
0.003
0.000
0.015
0.007

-0.058
0.036

-0.052
0.000
0.041
0.007

-0.026
-0.018
-0.050
0.026
0.019

-0.040
0.040
0.059

-0.307
0.000

-0.005
0.089
0.000

-0.132
0.094
0.000

-0.011
0.000

For this line an experimental value of a2 ——0.431+ 0.12 has
been reported by Hahn et al. [4].

For the Xe atom the difference between the present
and earlier calculations is considerably larger than for
Ar and Kr (see Table V). The measurements show [9]
that the decay of the 4d3y2 vacancy to the 02 302 3 P2
final state is strongly anisotropic while the decay to the
02 302 3 D2 final state is almost isotropic. Our calcu-
lation agrees qualitatively with the experiment, but for
the former Auger line our and earlier calculations predict
a considerably lower o.2 value than the experiment. For
the transition to the D~ final ionic state we obtain a
small negative o.2 value whereas in Refs. [24, 28] a small
positive value was obtained, in agreement with experi-

ment. However, the calculated values are very sensitive
to the computational model since they involve large par-
tial amplitudes which almost cancel each other. The ex-
perimental determination of the anisotropy parameter is
also rather difBcult because the transition to the P2 fi-
nal state is rather weak and transitions to D2 is strongly
overlapping with the strong %502 302 3 P2 line. The re-
sults for the %40~02 3 P2 lines were very model depen-
dent. The anisotropy of the decay of the 4d5y2 vacancy
is well reproduced by the present calculation, except for
the N502 302 3 D2 line. For this nearly isotropic line the
calculated o.2 value is somewhat lower than the experi-
mental one, which is accurate because the line is strong
and well resolved. In analogy to Kr the discrepancies
between theory and experiment may be related to the
FISCI with the triple-hole configurations.

Xe Mg, s1V1V

These transitions are induced by ionization of a rather
deep inner shell of Xe and therefore the energy of Auger
electrons is high. One can expect that for electrons hav-
ing such a high kinetic energy the channel interaction
and exchange effects must be small. Therefore we cal-
culated the anisotropy and polarization parameters for
these transitions only in single-channel approximations
I, IE, and FE. Except for the weakest lines the branching
ratios and the o.2 and (2 parameters obtained in these
three approximations are almost equal. Therefore we
have given in Table VI (the M4NN data not shown)
only the results corresponding to the IE approximation
together with the rare experimental data. Our calcu-
lated o,2 parameters are very close to those reported by
Chen [28]. An exceptionally large value of (2 is found
for the M4%iN2 3 Pq line. Unfortunately, all strongly
polarized transitions have a low intensity, which makes
the experimental measurement of the polarization diK-
cult. Experimental studies of the Xe M4 5NN spectra
are, furthermore, hampered by the shift and broadening
of the lines caused by the super Coster-Kronig decay of
the final state.

IV. ANGULAR ANISOTROP Y VERSUS
BRANCHING RATIOS AS A PROBE

OF CORRELATION EFFECTS

In the above discussion the influence of the exchange,
relaxation, and FCSCI on the o.2 and (2 parameters was
studied without reference to the corresponding changes
in the branching ratios or in the total Auger rate. In this
section we will compare the sensitivity of the angular
anisotropy and branching ratios to these many-electron
effects. The unique feature of angle- and spin-resolved
measurement is that it gives information about the phase
differences between the transition amplitudes that can-
not be obtained from the total Auger rate or from the
branching ratios. However, according to Eqs. (A10) and
(3) the multichannel phase shifts rlr also influence the
branching ratios because of the incoming-wave boundary
condition. Note that the multichannel phase shifts were
neglected in earlier lowest-order studies of FCSCI [30,41].
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TABLE VII. Calculated and experimental Ar I3MM Auger energies and intensities. The columns are labeled as in Table I.
The experimental intensities have been normalized to the theoretical percentage intensity of the I3M2 3M2, 3 D2 line. Therefore
the experimental intensities do not sum up to 100'Fp.

Transition

L3M2, 3M2 3

I.3M' M2 3

I 3MgMg
Total rates (ma. u. )

P2
3P

Pp
D

1 g
P2

3p
'Pp
1p

Sp

Theory

207.18
207.04
206.98
205.07
203.25
189.88
189.75
189.68
182.03
165.07

205.2
205.1
204.9
203.5
201.1
191.1

187.4
178.0

Energy (eV)
Expt.

28.66
9.36
3.25

29.03
6.01

10.29
2.42
0.01
9.75
1 ~ 21
6.91

IE

27.87
9.09
3.18

29.19
6.31

10.10
2.38
0.01

10.33
1.53
6.88

Intensity ('Fo)

FE
26.22
9.27
2.46

30.23
6.46
9.80
2.10

0.001
11.44
2.03
5 ~ 10

FEMC

27.37
9.63
2.52

31.91
5.80
9.16
2.01
0.02

10.28
1.30
5.57

Expt.

21.0
9.3
0.4

31.9
8.4
7.5

5.8
4.8

4.4+0.4

Reference [55].
Reference [53].

In order to make the relation of the n2 and (2 parame-
ters to the transition amplitudes and their relative phases
explicitly visible we rewrite Eqs. (A26) and (A27) as

n2 N ) B„„A„A„co-s(A„„),
K)K

N ) C„„A„A„sin(A„„).
K)K

In Eq. (8) B„„I and |„„~ are geometrical factors and

A„= !(4'~,g, !!Hy]]4'r, 1 && )! is the absolute value of
the transition amplitude. The phase di8erence LKK be-
tween channels having Auger electron quantum numbers
K and K' includes the Coulomb phase shifts o„, short-
range phase shifts bK, and the multichannel phase shifts
qr according to Eqs. (A10) and (3). The normalization
factor is given by N = g„]A„]

In the sum over angular momenta in Eq. (8) the prod-
uct of partial amplitudes is proportional to the cosine of
the phase difference. Therefore the o, 2 parameters are not

TABLE VIII. Calculated and experimental Kr M4 5NN Auger energies and intensities. The columns are labeled as in Table L The experimenta
intensities have been normalized to the theoretical percentage intensity of the M4 5N2 3' 3 D2 lines. Therefore the experimental intensities do
not sum up to 100%.

Transit ion Energy (eV)
Theory Expt.

Intensity {%)
RE PE FEMC Expt.

M4N2 3N2 3

M4Ny N2 3

M4Ng Ng
Total rates (ma. u. )

P2
3p

D2
Sp
P2
Pg

1P
Sp

57.23
56.67
56.58
55.07
53.25
40.40
39.93
39.67
33.40
16.94

56.7

54.9
52.6
42.3
41.9

39.1
25.5

2.96
5.20
0.75

16.92
10.98
7.54
1.08
0.11

35.80
18.67
3.30

1.33
2.40
0.33

12.49
6.66
8.95
1.14
0.04

44.45
22.21

2.82

1.16
2.13
0.29

12.13
6.12
9.08
1.12
0.04

45.65
22.28
3.20

1.07
1.95
2.46

11.87
5.81
9.24
1.16
0.04

46.47
22.10
3.10

3.47
6.09
1.07

14.79
11.58
9.08
1.91
0.33

29.81
21.87
2.88

2.9

5.4
14.8
10.2
6.9
1.2

13.8
5.0

2.9+0.4

MgNg 3N2 3

MgNyN2 3

M5 Ng Ng
Total rates (ma. u. )

P2
3 P

D2
Sp
P2

3P
Pp

~P
Sp

55.93
55.38
55.28
53.78
51.96
39.10
38.64
38.37
32.10
15.64

55.4

53.6
51.3
41.1
40.6
40.4
37.8
24.2

8.26
3.06
2.03

13.69
7.79
3.71
4.70
1.71

36.08
18.99
3.15

3.68
1.34
0.93

10.71
4.79
4.18
5.49
2.03

44.17
22.68

2.84

3.01
1.08
0.78

10.35
4.12
4.30
5.73
2.10

45.99
22.54
3.15

9.39
3.69
2.26

11.88
7.79
5.01
5.55
2.13

30.91
21.39

2.93

10.9

11.9
9.7
4.0
5.4
2.0

14.8
6.1

2.9+0.4

Reference [55].
Reference [53].
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influenced by correlation effects that scales the Slater in-
tegrals in the transition amplitudes by a constant factor
if the relative phases remain unchanged or when there
is one dominant transition amplitude. In the following
we will consider several special cases in which this condi-
tion is approximately satisfied. We will not consider very
weak lines or lines having a very small o.2 value because
for these transitions the results are sensitive to all correla-
tion effects making conclusions difficult. Since the (2 pa-
rameters are proportional to sine of the phase difference
the diagonal terms r. = ~' are canceled in Eq. (9). There-
fore (2 is not stable against usually large many-electron
effects in the weak partial amplitudes, which makes (2
much more sensitive to correlation.

A. In8uence of the orbital set

We start by considering the inHuence of the choice of
one-electron orbitals. From Table VII we see that for Ar
L3MM transitions the total IE and FE rates are 6.88 and
5.10 ma. u. , respectively. This gives a relative difference
of 35% with respect to FE value. Still the changes in the
branching ratios are much smaller except for the weakest
lines. For the strong L3M2 3M2 3 P2 line the relative
intensity differs by 6.3%. However, from Table I we see
that corresponding change in the o.2 parameter is only
0.13%. This behavior can be related to the changes in
the transition amplitudes and their relative phase shifts.
The small changes in the branching ratios is explained
by a uniform scaling of the squares of the Slater inte-
grals appearing in the transition amplitudes by 25—30%.
The even smaller changes in the o.2 parameter are due
to the fact that the L3M23M23 P2 line is dominated
by the p~ (j = 1/2, 3/2) transition amplitudes, whereas
the d~ (j = 3/2, 5/2) amplitudes are very small. The p~

(j = 1/2, 3/2) partial waves have a very small phase dif-
ference in both approximations making the phase factor
cos L„K close to one. The common scaling factor of these
partial amplitudes is then normalized out in Eq. (A26),
leaving o.2 unchanged. For the Ar L3M2 3M2 3 D2 line
the situation is different because now also the d5y2 par-
tial wave has a non-negligible partial amplitude. The
interference between the d~ and p~ amplitudes gives rise
to a somewhat larger change in the o.2 parameter. This
indicates that the o.2 parameters are particularly insensi-
tive to the choice of orbitals when only one orbital angu-
lar momentum value significantly contributes to the line
strength. For the Kr M45NN and Xe N45OO Auger
spectra the difference between the IE and FE total rates
is much smaller than for the Ar L3MM spectrum. Due to
the substantially lower kinetic energy the scaling of these
transition amplitudes is not uniform, but depends on the
quantum numbers of the participating electrons. This is
reflected in larger changes in the branching ratios. How-
ever, the changes in the corresponding n2 parameters are
still very small because of the normalization effect.

B. The relaxation effect

The dependence of relaxation on the principal and an-
gular momentum quantum numbers of the initial and fi-

nal holes and the Auger electron has been recently stud-
ied by Tulkki and Mantykentta [35]. This study makes a
distinction between three basic cases.

(1) For Auger transitions corresponding to final holes
in deep inner shells the sudden approximation is valid and
the relaxation reduces all line strengths by a constant
overlap factor. Accordingly the effect of relaxation on
both the branching ratios and the angular dependence is
very small.

(2) For high kinetic-energy (more than 300—400 eV )
Auger transitions leading to double holes in the valence
shell, the total rate and the branching ratios are practi-
cally not influenced by relaxation. The same applies to
the corresponding n2 parameters. For cases (1) and (2)
the relaxation primarily implies an isotropic contraction
of the electron density. A small effect on angular distri-
bution is thus consistent with this general picture of the
relaxation process.

(3) Low-energy valence-shell Auger transitions are sub-
ject to a more complicated relaxation effect [35]. In this
case the overlap factor in the Do amplitude in Eq. (5) is
usually very close to one, but the Slater integrals in this
partial amplitude may be modified by contraction or ex-
pansion of the one-electron orbitals. Also the conjugate
amplitudes D~ as well as the kinetic energy D„and the
constant Dp amplitudes can all make an important con-
tribution. As a result the relaxation can either increase
or decrease the line strengths. This can lead to signifi-
cant changes in the branching ratios [47]. When several
partial waves having different orbital angular momenta
contribute to an Auger line in category (3) the relaxation
can also affect the angular anisotropy if one of the con-
tributing partial waves is sensitive to the orbital-collapse
phenomenon [49].

C. The exchange interaction

The comparison between the o.2 values obtained using
single-channel amplitudes without exchange (I) and mul-
tichannel amplitudes with exchange (FEMC) suggests
that with regard to the o.2 parameter the exchange and
FCSCI effects partially compensate each other. The same
holds true also for the total rates and branching ratios
with a few exceptions. In the case of the spin-polarization
parameters (2 the compensation is less systematic. A sep-
arate comparative study of intrachannel interaction and
exchange integrals is necessary to find out if this com-
pensation is more universal.

The Kr MsiViiV2 s Pi (Table VIII) line demonstrates
that one should not make too far reaching conclusions
on the basis of calculations neglecting exchange interac-
tion. The intensity of this line is increased substantially
when exchange is taken into account, but it is reduced
again by channel interaction. The corresponding o.2 val-
ues —0.632 (I), —0.685 (IE), and —0.569 (FEMC) be-
have qualitatively in the same way. The Kr MSN&N2 3
Pi Auger line involves the psy2, fs~2, and f~y2 partial

waves. The branching ratios of the f~, j = 5/2, 7/2, par-
tial rate to the p3y2 partial rate are 4.69 and 2.01 in I
and FEMC calculations, respectively. Since the fsy2 7/2
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amplitudes dominate in both cases this dramatic change
in the branching ratio results only in a small differences
in the corresponding n2 parameters. In contrast, the (2
values pertaining to this line were found to be —0.0094
and 0.00345 (not shown in Table II) for I and FEMC
calculations, respectively. In spite of the smallness of
these values they demonstrate that a calculation neglect-
ing exchange interaction would obviously give very poor
estimates for any variable that depends on the sine of the
phase differences L„„.

D. The inAuence of FCSCI

The FCSCI differs from the previous effects in that
it changes the relative phases through the phase matrix
in Eq. (A10). Nondiagonal terms (usually small for high
kinetic energies) in Z & result in mixing of transition am-
plitudes in the multichannel amplitude in Eq. (3). Pre-
sumably the o.2 and especially the (2 parameter would
then be sensitive to this correlation effect. A compara-
tive study of the effect of FCSCI on o.2 parameters and
branching ratios and total rates shows, however, that
again the relative changes in the n2 parameters are typ-
ically smaller than the changes in the branching ratios.
For the Auger transitions studied in this work the total
rate is least sensitive to the FCSCI. As an example we
consider the Kr M4 5N2 3N2 3 P2 transitions. FCSCI in-
creases the intensity of these lines by a factor of 3.4 and
3.1 for the M4 and. M5 initial holes, respectively. In con-
trast the changes in the n2 parameters are small. This
can be traced back to the dominance of the dsy2 partial
wave making the o;2 parameter insensitive to changes in
the absolute values of the transition amplitudes. Accord-
ingly, the minor changes in a2 of these lines are foremost
due to the multichannel phase shifts. A counterexample
showing a strong FCSCI effect both in the line strength
and n2 is provided by the Kr M4 5NiN2 3 Pi lines. Here
both pzy2 and fsg2 (psy2 and f~g2 for the Ms hole) have
large amplitudes. Therefore the large change in the in-
tensity ratio of these channels is accompanied by a large
change in the n~ parameter. Note that the correspond-
ing Xe N4 sOq02 s Pq transitions are governed by the fz
partial waves and therefore the changes of n2 parameters
are much smaller.

V. CONCLUSIONS

The angular anisotropy o.2 and spin-polarization (2
parameters have been calculated for the L3MM Auger
transitions in Ar, M4 5NN transitions in Kr and Xe and
N4 500 transitions in Xe by MMCDF method. It is
found that the n2 values are insensitive to relaxation.
The exchange and channel interactions are very impor-
tant for low-energy Auger transitions in Kr and Xe. How-
ever, these two effects influence the n2 values in opposite
directions and partly compensate each other. For the
high-energy Auger electrons (IsMM in Ar and M4 sNN
in Xe) the effects of exchange and channel interaction are
much smaller and may in general be disregarded. The
calculated values of the n2 parameters agree well with

the available experimental data. The spin-polarization
parameter (2, which determines the dynamical polariza-
tion, is found to be very small for the majority of tran-
sitions. We have found several lines with comparatively
large spin polarization ((2 ) 0.3); however, all these lines
are rather weak, which makes an experimental study of
(2 diKcult. It is suggested that the use of circularly po-
larized photons to polarize the initial state of the Auger
transition and the measurement of the resulting spin po-
larization of Auger electrons would be a more selective
probe of the theory. Finally we have shown by a compar-
ative study of n2 parameters and branching ratios that
due to various normalization and compensation effects
the latter are as a rule more sensitive to many-electron
effects. Large discrepancies between theory and experi-
ment remain for the branching ratios of some Auger lines
indicating that important many-electron effects, such as
the FISCI with the triple-hole configurations giving rise
to correlation satellites are not included in our calcula-
tions.
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APPENDIX: RELATIVISTIC THEORY
OF ANGULAR DISTRIBUTION

AND SPIN POLARIZATION
OF AUGER ELECTRONS

We have recently [37] described how various many-
electron effects are included in the calculation of angle-
integrated Auger rates using the MMCDF method. In
this complementary appendix we describe the calculation
of angular distribution and spin polarization of Auger
electrons. In Ref. [37] we emphasized that the theoretical
and computational methods utilized in the construction
of the MMCDF wave functions are independent of the
atomic ionization or scattering process und. er considera-
tion. In analogy we will use the general density-matrix
formalism to stress the close connection between angular
distribution and spin polarization of Auger electrons and
photoelectrons. The following results can also be easily
generalized to allow for the one-step treatment of exci-
tation and nonradiative decay of inner-shell-hole states
within the framework of scattering theory [41].

In the construction of final-state many-electron wave
functions we will use two kinds of one-electron continuum
wave functions. The spherical one-electron states corre-
sponding to definite values of energy, orbital angular mo-
mentum, total angular momentum, and its component in
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a specified direction are given by

r (iF,„O (A1)

I~ps ) —
I (, +,,)

). (2l+ ill' '
47r

exp[ —i(o„+b)]i'

In Eq. (Al) the large G,~ and small F~„radial com-
ponents of the four spinors are solutions of the nonlocal
Dirac-Fock equation. The quantum number ~ is defined
by v, = —2(j —l)(j + 1/2) and the total energy of the
electron by E = (s + c ) /

The angular part of the functions (Al) is given by the
two-component spinors

(l m ——,'s —,'I jm) Yirn —I/2

(lm+ -s —-'jIm)Yi +i/2
(A2)

The spherical states (Al) are energy-normalized ac-
cording to (y ly „)= b(s —s )b„„b and
asymptotically the radial components are given by

(.+2c2i"
G,„=

I I
cos[pr —(l+1)~/2

J
+yln 2pr + o„+8],

F,„=—
I

',
I

sin[ pr —(l + 1)~/2(7rc'p)
+y ln 2pr + o„+b] (A3)

where o„= (l + 1)vr/2 —arg I (p + iy) + rl —1/2vrp and
b is the phase shift coming from the short-range non-
Coulombic part of the central field potential. In Eq. (A3)
y, p, and g are given by

y =Z(s+e )/c p,

(
2 zz/ z) I/2

v. —iycz/(s+ c2)

p+iy

(A4)

I/cr 0)I
E0 (A5)

The helicity states can be expressed in terms of the
spherical states (Al) as

where Z is the charge of the ion.
The spherical states (Al) are used in the construc-

tion of the final-state many-electron wave functions cor-
responding to a fixed value of total angular momentum of
the ion and continuum electron. In contrast, an ionized
electron propagating in a fixed direction in space is most
conveniently described by means of helicity states. These
solutions of the one-electron Dirac-Fock equation corre-
spond to a fixed asymptotic value of the electron wave
vector p and the component of spin in the direction of
the wave vector (helicity). The helicity operator is given
by —Z n where n = p/Ipl and Z is constructed from the
Pauli spin matrices

&(l0-,'vlji )D", (4, ~, o)*Ix...). (A6)

In the rotation matrix D„[50]the angles 0 and P spec-
ify the direction of p with respect to the laboratory
frame. The helicity states (A6) are normalized according
«(~~~l~p p ) = b(p —p') bvv .

In the transition matrix elements the one-electron con-
tinuum states (A1) or (A6) are coupled and antisym-
metrized with the ionic ASF to give the total many-
electron wave function. The multiconfiguration ASF's
of the final (f) and initial (i) ionic state are in general
given as a linear superposition

N,

(A7)

of the N„s = (i, f), ionic configuration-state functions
). In Eq. (A7) we have for brevity combined the

quantum numbers P, J,M„s = (i, f), into one index P.
The multiconfiguration single-channel state is defined as
a properly coupled antisymmetrized product

I&a~~~ ~J~) = &(l@~,J,)lx.,)f, (AS)

where the total energy E = Ef + c is given with re-
spect to the total rest energy of the system. 'In Eq. (AS)
the angular momentum of the ion is denoted by Jy and
the total angular momentum of the ion and Auger elec-
tron by J, respectively. The spherical incoming-wave
normalized multiconfiguration multichannel wave func-
tions IC & & &JIIf) are obtained by diagonalizing the to-I'f Jf KRJM
tal Hamiltonian in the subspace (AS). The details of the
computational approach has been given in Ref. [37] and
hence we only give the final result of the diagonalization
(I' = I'g Jf~JM)

N

IC'iz) = ) . I&-~)
n=1

+) P
P=1

I&o~ )(6~ I~l&-~) dE nI''
(A9)

Z „=) U ~ cos q~ exp( —irlA) Uz ~ exp (—ebs) (A10)

where the multichannel phase shifts bz and the vector
components U A are obtained by diagonalizing the K
matrix on the energy shell [37].

The many-electron helicity states are obtained in anal-
ogy to (A6) as a linear combination of spherical waves
(Ag).

where the K matrix describes the coupling between the
N ionization channels. The incoming-wave boundary
condition is accounted for by the phase factor
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x ) (JyMygpI JMy+ p)DM, M, +&($, 0, 0) I@& z „&~M').
J,M'

(A11)

p") = ).&~~ I&"'I~~) I~~ )(~~ I
(A12)

Here I'y Jy specifies the final ionic ASF. The total energy
E = Ey + s', where e = Jc + c IpI —c . The mag-
netic quantum numbers My and p are given with respect
to the detector frame whereas the quantum number M'
of the spherical states is given with respect to the labo-
ratory frame. The detector frame is obtained from the
laboratory frame by first rotating it around the z axis by
an angle P and by a subsequent rotation by 0 around the
new y axis. Both rotations are counterclockwise when
looking down the rotation axis toward the origin. The
many-electron states (A9) and (All) are normalized in
the same way as the corresponding one-electron states
(Al) and (A6). Note that the definitions (A9)—(All) im-
ply that in the single-channel case Z r = 8 r exp( —

iver ).
We will now use wave functions (A9) and (All) to

obtain transition rates, angular distributions, and spin
polarizations of Auger electrons. In the following we as-
sume a two-step treatment of the Auger decay. We sim-
plify the derivation by neglecting the lifetime broadening
and assuming an ideal energy resolution which allows for
a distinction between each Auger line corresponding to
a pair of initial and final ionic ASF s. In the real ex-
periment this means resolving the diferent fine-structure
components of the Auger lines. The lifetime broadening
and finite energy resolution can be taken into account af-
terwards by taking appropriate weighted averages of the
following results.

We define the density matrix. p(~) and density operator
p(~) in terms of the helicity states (All) by

Tr[p(f) F]/Tr[p(f) ] (A14)

In (A14) F effectively projects out the relevant part of
the density matrix.

As an example we consider angle-resolved measure-
ment of Auger electrons which resolves the fine structure
but leaves the asymmetry of the final ion and the helicity
undetected. The detector operator is then given by

+~ = ).Ic'r, ~,~,p, )(@'r,z, M, p, I

Myp,

(A15)

and the angular distribution of the selected Auger line is
obtained by inserting (A15) into (A14).

In the second kind of experiment one determines an
expectation value of a physical variable. The physical
variable may be associated with the Auger electron only
(spin polarization) or the ion (alignment in the final ionic
state). The expectation values are again de6ned for the
observed subset of the energy-allowed final states. As-
suming that the final states to be observed in the ex-
periment are specified by the detector operator E the
expectation value of an operator X is given by

(X) = Tr[p( )XF]/Tr[p( )F]. (A16)

As an example consider the measurement of the compo-
nent of the spin-polarization vector perpendicular to the
scattering plane. The matrix representation of P~ in the
space of the helicity states in (A15) is given by

where the sum is taken over those final states that are
observed in the experiment. The relative probability of
detecting the system in subspace (A13) is then given by

where A stands for quantum numbers (I'y JyMypp). The
sum is taken over all final states on the energy shell E =
E; = Ey +e. Thus (A12) also implies an integration over
the direction of p. The diagonal elements (4'&Ip( ) IC'&)
of the density matrix give the relative probability that
after the Auger decay the ion will be found in a state
characterized by the quantum numbers I'y, Jy, and My
and that the Auger electron has a wave vector p and
helicity p.

In the following we make a distinction between two
kind of spectroscopic experiments. We first consider mea-
surements which aim at determining the relative proba-
bility that the system ion plus Auger electron is in a
specified subspace of the total "energy shell" (All) after
the decay process. We define the detector operator F
(also known as detector efBciency operator [52])

I(0 -i
~I

qi 0 (A17)

and the spin polarization is obtained &om P~
Tr[p(~) P F]/Tr[p(~) F].

In both measurements (A14) and (A16) the final-state
density matrix is needed in the calculation of the trace
of matrices. The final-state density matrix is connected
to the initial-state density matrix by

p(x) ~p(') ~t (A18)

where T is the transition matrix [51] T, y
(@ . J.M. I&rI@ 1 M ). Here Hr denotes the static
electron-electron interaction or its generalization H —E
according to Eq. (4) and possibly also the Breit interac-
tion. Using dE = (c2p/E)dp it follows from (A18) that
the total Auger rate in atomic units is

A
(obs states)

Io~)(c'~ I
(A13)

W,' ', = 2~T [p( )F ] = 2~T [Tp(') TtF~]. (A19)
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The detector operator Fz = f F~dO~ includes a sum
over all states on the energy shell E = Ef + e. The
angle-resolved differential rate is correspondingly given
by

de ~g~ (0, P) = 2vrTr[p iF~] = 27rTr[Tp(*iTtF~].
dO

(A2o)

erators, and summing over the magnetic quantum num-
bers. The spin polarization P~ is correspondingly ob-
tained from Eq. (A16) by using the matrix (A17). As-
suming that the initial state has been excited by unpo-
larized photons we obtain the well-known results

For Auger decay the initial state only includes electrons
and we can thus write the initial-state density matrix in
terms of the statistical tensors [52]. Since it is assumed
that the experiment resolves all initial-state ASF's, the
normalized, Tr[pi ] = 1, initial-state density matrix de-
scribes the population of magnetic sublevels correspond-
ing to the total initial-state angular momentum J,. We
can expand the density operator as

de, ~g, (0, Q)

dO

w(), i
4z.

K=2 (even)

o!~Ali pP~ (cos 0) I, (A24)

(A21)
K=2 (even)

P~A~pP&(cos 8) I

where

T~ ) ——(2J;+ 1) i ) (—1) *' (J;M J, —M'IKQ)
xl 1+

K=2 (even)

~~A~ pP~ (cos e)

(A25)
x I@~.~'M)(@~.~.~ I

(A22)

The total and angle-differential Auger rates can now be
obtained as an expansion over the state multipoles by in-
serting Eqs. (A21) and (A22) in Eqs. (A19) and (A20),
by inserting the helicity states (A11) in the detector op-

I

where in dipole approximation only K = 2 is allowed. In
Eqs. (A24) and (A25) P~(cos8) and P~(coso) are the
standard Legendre polynomial and normalized associated
Legendre functions, respectively [50].

The angular anisotropy parameter 0;2 is given by

li I i (@~,~. IIIII Il@z,j,~'~~, ) (oz, z, ~zz, IIHI Il@~.~. ) ~

j' K
2

(A26)

+ = ). (@~*&;IIHI Il@r,z zJ;)

and the spin polarization parameter by

sc
lm((e, ,, lla, lie...,„,~, )(e...,„~, IIIHIII@,,, ))z

(A27)

where [a, b, ...]i~2 = [(2a + 1)(2b+ 1) . .]i~2.. The results (A26) and (A27) are equivalent to the results of Kabachnik
and Sazhina [3]. Above we assumed that the incoming photons are unpolarized and the angle 0 is measured with
respect to the photon wave vector. For linearly polarized photons the axis of alignment coincides with the direction
of the electric-field vector. Therefore Eqs. (A26) and (A27) can be applied as such, but the angle e is now measured
with respect to the polarization vector of the incoming photons. Correspondingly Pi now gives the component of the
spin polarization perpendicular to the plane defined by the Auger electron wave vector and the polarization vector of
photons.

* Permanent address: Institut of Nuclear Physics, Moscow
State University, Moscow 119899, Russia.
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