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In this paper we discuss physical aspects of intractable (NP-complete) computing problems. We show,
using a specific model, that a quantum-mechanical computer can in principle solve an NP-complete
problem in polynomial time; however, it would use an exponentially large energy for that computation.
We conjecture that our model reflects a complementarity principle concerning the time and the energy

needed to perform an NP-complete computation.
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INTRODUCTION

In this paper we shall discuss physical aspects of in-
tractable (NP-complete) computing problems. A formal
mathematical theory of NP completeness [1] is based on
rigorous definitions of terms such as problem, algorithm,
and complexity and, of course, it uses strict mathematical
reasoning. However, computers are, after all, physical-
world machines, so physical aspects of the problem (in
addition to purely mathematical aspects) should be dis-
cussed as well. Can one learn something about the fron-
tiers in computation discussing computers as physical-
world machines?

The famous open problem of the complexity theory is
the P =NP problem. In this paper we shall discuss some
physical aspects of this problem. We shall try to solve an
NP-complete problem in polynomial time. In our discus-
sion we shall, however, use the language of physics rather
than rigorous mathematical language. Our constructions
will not be strict analogs to mathematical objects.

We shall discuss the famous traveling-salesman prob-
lem (TSP): A set of N cities is given with distance
d;EZ * for each pair of cities. The problem is to find the
shortest tour through the cities. (Actually we shall dis-
cuss a restricted problem where d;; are bounded d;; <L
for all N. This is still an NP-complete problem.)

There is an easy algorithm for solving the problem: to
enumerate all the tours and check the length of each of
them. The time needed to perform such an algorithm
grows exponentially with N since the number of tours is
of the order of N!. One does not know whether an
efficient algorithm exists for which the computing time
would grow only as a polynomial of N. (We refer to more
exact formulation of the P = NP problem in Ref. [1].)

A parallel machine evaluating all the N! tours simul-
taneously would do the calculation in finite time. But if
one takes N! processors one gets an exponentially grow-
ing space for the computer and an exponentially growing
time for the readout. A simple-minded parallelism is of
no help.

Naively one would think that a finite system cannot
treat an ‘“‘exponentially large” number of possibilities
simultaneously. = However, the opposite 1is true.
Quantum-mechanical systems can and in fact do handle
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an exponentially large number of possibilities at once.
We would like to show that this can, in principle, be used
for computing.

Quantum-mechanical computers were discussed for ex-
ample by Deutch [3] and Feynman [4]. Our methods will
be similar to those of Feynman [4], although his aim was
rather opposite to ours. Feynman has shown that a
quantum-mechanical computer can in principle be used
to perform the same type of calculation as a standard
computer based on logic gates. We shall discuss a com-
plementary problem: whether one can think of, at least
in principle, an alternative kind of quantum computing,
basically different from computing on a standard
machine.

We should stress the words “in principle.” In this
respect, our discussion will be similar to that of Feyn-
man. We do not want to design a technically possible
machine. Our reasoning will be in the spirit of thought
experiments. We can work with systems which perhaps
do not exist in the actual world but do not contradict any
law within certain theory. Such systems are therefore
principally acceptable. Our theoretical framework will
be the quantum mechanics. We shall show that it is pos-
sible to perform an “NP-complete” type of computation
in “polynomial” time and in polynomial space. We shall
construct a specific hypothetical quantum-mechanical
model of a TSP solver.

QUANTUM TSP SOLVER

Our hypothetical quantum computer looks like a mul-
tislot interference machine with Stern-Gerlach devices on
paths between the slots. In this section we shall describe
the machine only briefly. Details will be presented in the

Appendix.
For a TSP with N cities we shall need a machine con-
sisting of N —1 layers (2,3,4, ..., N) of slots, each layer

having N — 1 slots (2,3,4, ..., N). Therefore, each slot is
uniquely identified by two integers i,j. In addition to the
slots there is a source (“laser”) of particles at the position
S and a detector at the position D (see Fig. 1).

There are (N —1)Y 7! possible trajectories for a parti-
cle to get from S to D through the slots. A trajectory is
uniquely identified by listing the slots on it; for example,
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FIG. 1. A multilayer interference machine—the TSP solver.

the trajectory in Fig. 2 is
S,(2,2),(3,4),(4,3),(5,5),D .

It is clear that the layer identifiers can be omitted.
Therefore, the same trajectory can be described as

S,2,4,3,5,D . (1

The trajectory (1) can be seen as a code for the traveling-
salesman’s tour through five cities provided one identifies
the points S and D with the start and the end of the tour
(city 1). The trajectory (1) represents the route
1,2,4,3,5,1.

However, there are trajectories through the slots which
do not correspond to legal TSP routes, as, for example,

S,3,2,2,5,D .

This is not a legal TSP route since the city 2 was visited
twice and the city 4 was omitted.

Our next task will be to get rid of “illegal” trajectories
and to introduce the dynamics in such a way that the
particle which goes through our machine senses the
length of the corresponding TSP route.

To meet these demands we shall need particles with
certain internal degrees of freedom which would interact
with our machine. We shall use internal degrees of free-
dom similar to isospin. We should stress again that we
work here in a hypothetical world, so we can invent any
internal degrees of freedom, even if no corresponding
particles exist (are known) in the real world.

We assume that the internal states of our hypothetical
particles can be described by the following ket-vector no-
tation:

JCN3P )

where k€ {0,1,2,3,...,NL}, ¢;€{0,1}, and p€{0,1}.
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FIG. 2. A trajectory corresponding to a TSP route.

The quantum number k will be used to measure the
“number of kilometers” on the route and the numbers c;
will signal whether the ith city was visited or not. The
quantum number p has no relation to TSP. It will be
used as an auxiliary degree of freedom to implement the
desired dynamics.

Now we are ready to describe how the machine would
work. Let us consider a piece of trajectory between two
slots in neighboring layers,

(i,m)—(i +1,n) .

This would correspond to a part of the traveling-
salesman (TS) route between the cities m and n.

Let us assume that when the particle gets through the
slot (i,n) the quantum number ¢, will be changed as

c,=0—c,=1. 2)

Let us also assume that our particle does not move be-
tween the slots through free space, but through some field
arranged in such a way that the quantum number k in-
creases on this piece of trajectory between the slots (i,n)
and (i +1,m) as

k—k+d,, , (3)

where d,,,,, is the distance between the cities n and m. We
shall discuss the corresponding dynamics in the Appen-
dix.

Now assume that all the particles produced in the
source S are initially in the state

|0;0,0,...,0;0) .

Then after going through the machine, the particles will
be in the state

S lkiepcs04, -

trajectories

»CNSP )trajectory N 4)

Some of the trajectories in this sum correspond to legal
TS routes. It is easy to see that they are those for which
all the ¢ quantum numbers are equal to 1. This is
guaranteed by the rule (2). For those trajectories, the
value of the quantum number k in the corresponding vec-
tor in (4) is equal to the length of the corresponding TS
route.

Now let us imagine that we shall put a filter to the
point D which filters our (suppresses) all the states except
those with all the ¢’s equal to 1. Then the state of parti-
cles getting out of the machine would be

S llength 1,1, . ..

TS routes

’ l’p )TS route ° (5)

The corresponding filter should consist of a series of
Stern-Gerlach-like devices sensitive to quantum numbers
¢ absorbing states with ¢ =0. The spirit of our discussion
is similar to that used by Feynman in his lectures [2].

This is almost the conclusion. We shall still add an ad-
ditional Stern-Gerlach-like device to the point D, this
time sensitive to the quantum number k. It should split a
stream of outgoing particles into NL streams according
to the value of k (Fig. 3). If we add particle detectors to
each of the NL streams then the detector in the stream
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Stern - Gerlach Detectors

FIG. 3. A Stern-Gerlach-like device measuring the minimal
value of k.

corresponding to value k =M would fire if there exists a
TS route with the length equal to M. Out of the detectors
which fire, one can find the one with lowest correspond-
ing k. It signals the minimal TS route.

PROBLEM OF MEASUREMENT

We should, however, discuss the detection of the
minimal k value more carefully. According to orthodox
quantum mechanics, each particle which goes through
our machine is in the superposition of states as given by
the sum (5). A single particle senses all the trajectories
and in this way a single particle “knows” the minimal
value of k. The TSP solution is hidden in the final state
of a single particle which goes through our machine. A
particle certainly needs only “polynomial time” to get
through the machine, so the particle “knows” the TSP
solution in polynomial time. Can we arrange that we
(and not only the particle) know the solution, too? The
problem is how to measure (in the sense of measurement
in quantum mechanics) the minimal value of k present in
the superposition (5).

There are (by the order of magnitude) N! states in the
superposition (5) and it may happen that only one of
them corresponds to the minimal value of k. Therefore
we are looking for a state which is present in the superpo-
sition with extremely low amplitude, of the order of
1/VN). According to the postulates of quantum
mechanics it is possible to detect the presence of such an
amplitude in one act of measurement only with a proba-
bility 1/N!. So if our detectors have to fire with a
reasonable probability, we have to push through our
machine a large number of particles simultaneously. This
is in principle possible if the particles are bosons so that
one can form a classical field out of them in the same way
that laser light is formed by a large number of coherent
photons.

However, our “laser” should be very energetic: we re-
quire that the intensity of the classical field correspond to
N! bosons. Unfortunately, this means that we need “‘ex-
ponentially large” energy. So the “‘calculation” itself can
be done in polynomial time, but reading the result ex-
pends an exponentially large energy.

CONCLUSIONS

We have discussed one particular model, but we cannot
avoid the feeling that the result is perhaps more general.
It seems like a sort of complementarity principle with
respect to energy and time needed for an NP-complete
computation. The opposite situation has been extensively

discussed: it was shown that one can compute with zero
energy if one does not mind slow computation [4-6].
Here we have the other end: fast computation but with
extremely large energy.

Have we observed here a new principle, or is it a conse-
quence of some known laws of nature, e.g., the second
law of thermodynamics? Can one learn something from
the model presented here to get hints on how to approach
the “mathematical”” P =NP problem? We do not know.
We have presented our simple model more as an opening
point in a discussion rather than as a solution to the
problem.
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APPENDIX

We shall now discuss technicalities about the dynamics
which leads to required behavior as given in Egs. (2) and
(3). We shall start with Eq. (2). Since it concerns only
one quantum number c,, we can suppress all the other
quantum numbers as well as the index » in the notation.
Let us assume that in the slot there is a field which in-
teracts with the ‘“‘quantum number” ¢ and the corre-
sponding Hamiltonian is

H, :col(au—a) ,

where a' and a are the creation and annihilation opera-
tors defined as

atloy=11), afl1)=0,
alo)=0, al1)=]0) .
Then
exp(—iH t,)|0) = cos(@,t;)|0) —i sin(w;z;)|1) .

If one arranges the value of w; and the time ¢, of flight of
the particle through the field in the slot in such a way
that w,-t, = /2, then Eq. (2) is satisfied.

Now let us discuss Eq. (3). We shall first develop an
apparatus which will change the state of the particle go-
ing through it as

k) —lk+1) . (6)

We shall need the auxiliary quantum number p to arrange
the change of state (6) as a sequence of changes (now we
skip the ¢ quantum numbers in our notation),

lk;p=0)—lk+1;p=1)—|k+1;p=0) . (7)

To perform the first change of state, we let the particle
interact with some external field with Hamiltonian

H,=aw,(b'd " +bd) ,

where
bk;p)=|k+1;p) for k<L ,
b'lk;p)=0 for k=L ,
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blk;p)=|k—1;p) for k>0,
blk;p)=0 for k=0,
dllk;p=0)=|k;p=1), dflk;p=1)=0,
dlk;p=0)=0, dlk;p=1)=|k;p=0) .
Then
exp( —iH,t,)|k;0) =cos(w,t,)|k;0)
—isin(w,t,)|k+1;1) .

Choosing @, and ¢, (time of flight through the field) so
that w,t, = /2, we get the required change of state

|k;0)—|k+1;1) .

The next required change of p back to p =0 is easily done
using interaction with Hamiltonian

Hy=aw)d " +d)

and time of flight 75 such that w5t} =7/2.

However, one must be very careful here. If the times
t, and t} are not tuned very accurately we will get a small
admixture of a state with wrong quantum numbers k and
p- But this is dangerous: in the end we look for a state
with exponentially small amplitude. Even an exponen-
tially small admixture of state with “wrong” quantum
numbers can lead to a wrong result. It is not acceptable
to assume that the time tuning can be that fine. For-
tunately one can use the auxiliary p variable to test
whether the state was changed properly. All one need do
is to add after the first change of state |k;0) — |k +1;1)
a filter which would absorb any admixture of state |k;0).

k—> k+1 transformer

k:0 _ k+1:1 k+1:0
k- k+1 =0 . = :
P 150 Pty

0->1 filter filter

FIG. 4. Sequence of steps implementing the “k—k +1”
change of state.

This can be achieved by testing the value of p alone:
Hamiltonian H, keeps strict correlation between the
values of p and k. This is actually the most important
reason why we introduced the auxiliary variable p. We
cannot test for the correctness of the value of k +1 since
we do not know the value of k. Again after the change of
state |k +1;1)—|k +1;0) we have to introduce a filter
which absorbs admixture of state |k +1;1) in order that
we be sure to have the correct value p =0 before entering
the next k—k +1 apparatus. The whole k—k +1 ap-
paratus is presented in Fig. 4.

Now we know how to arrange the necessary change of
state k —k +d,,, between the slots n» and m: we put d,,,,,
pieces of “k—k +1” devices on the trajectory between
the slots m and n. Such devices should be put every-
where on trajectories between any pair of slots in our
machine. The filters in these devices decrease the lumi-
nosity of our quantum computer (some of the particles do
not go through), but since we need exponentially large
luminosity anyhow, this is not important. It should also
be stressed that the total number of “k—k +1” trans-
formers needed to build the TSP solver grows only poly-
nomially with N, so our quantum computer is only ‘“‘poly-
nomially large” both in space and in time.
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