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Compton scattering of photons from bound electrons:
Full relativistic independent-particle-approximation calculations
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Compton scattering from bound electrons is studied within external field quantum electrodynamics
and the independent-particle approximation (IPA), but without making use of any additional approxima-
tions, such as the impulse or incoherent-scattering factor approximations. Our calculations of the dou-

bly differential cross section for scattering of unpolarized and polarized photons from bound atomic
electrons as a function of scattered photon energy and angle are based on a numerical evaluation of the
second-order S matrix in self-consistent screened atomic potentials. Such calculations permit the simul-
taneous discussion of all regions of the Compton spectrum for scattering from any atomic subshell. We
present a systematic theoretical investigation of this process for atomic inner subshells at energies where
binding effects in these subshells are important. We also discuss the efficient evaluation of the total atom
scattering cross section in these cases. For individual subshells, we discuss the applicability of widely
used approximate methods with regard to the spectral features they describe. For the E shell, we com-
pare with earlier attempts at calculations within the relativistic S-matrix framework. We also discuss
the cross section singly differential in scattered photon angle, emphasizing the contribution of terms
neglected when making the incoherent-scattering factor approximation, as well as implications for total
cross sections and for attenuation coefficients. Finally we discuss several recent experiments, including
the efforts to find the infrared rise for soft photons.

PACS number(s): 32.80.Cy

I. INTRODUCTION AND GKNKRAL CONSIDERATIONS

In this paper we discuss the inelastic scattering of pho-
tons from bound atomic electrons, which results in ion-
ization of an atom. We numerically evaluate the relativ-
istic second-order S matrix for this process within the
framework of external field quantum electrodynamics
and the independent-particle approximation (IPA). A
preliminary report on this procedure and some represen-
tative numerical results have already been presented
[1—4]. We concentrate here on scattering from inner-
shell electrons at incident photon energies where more
approximate methods are not useful. Results are given
for both polarized and unpolarized photons.

The recent availability of intense tunable photon
sources and new methods of data analysis have stimulat-
ed considerable recent interest [5—10] in measuring such
inelastic-scattering cross sections on bound atomic elec-
trons. The Compton process serves as a probe of the
atomic environment, as in condensed matter; it must also
be understood to interpret the information about astro-
physical and fusion plasmas contained in spectra of radia-

tion emitted by or scattered from these plasmas. The
process presents an instructive and, in principle, soluble
example of the response of a composite system to pertur-
bation.

Compton scattering is, however, one of the few low-
order photon —bound-electron interaction processes that
has thus far resisted a reasonably accurate and systematic
treatment. While there have been attempts to evaluate
the relativistic second-order S matrix for this process
[11,12], these calculations were performed for only a few
physical situations and were not tested against known
limiting cases. The reason for the lack of a more
comprehensive treatment is the presence of difficulties,
encountered separately in calculating other atomic pro-
cesses such as bremsstrahlung and Rayleigh scattering,
which are encountered simultaneously in calculations of
inelastic scattering. As in the calculation of bremsstrah-
lung, accurate numerical calculations of the Compton
scattering spectrum require calculating many thousands
of slowly converging integrals over three oscillating func-
tions. The efficient evaluation of such integrals com-
mands much current interest [13]. An additional
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difhculty present in calculations of Compton scattering,
which also occurs in elastic photon —bound-electron
scattering calculations, is the evaluation of the relativistic
Green's function in a spherically symmetric atomic po-
tential. New methods to evaluate these Green's functions
are still being considered [14]. In this paper we employ
the inhomogeneous wave-function approach, which had
previously been successfully used in elastic scattering
[15]. It is apparent then that much e6'ort and computer
time must be invested in order to successfully and sys-
tematically calculate Compton scattering amplitudes.
The availability of high-speed supercomputers (in our
case the CRAY Y-MP and the Connection Machine
CM-5) has facilitated the task. In this paper, we begin a
more systematic attempt to understand Compton scatter-
ing. A detailed description of the theoretical basis for
our results is given. Some discussion of the validity of
more approximate approaches is presented along with an
examination of previous attempts to evaluate the relativ-
istic second-order 5 matrix for this process. Finally, we
use our code as a tool to understand the results of recent
Compton scattering experiments [5—9].

It is helpful to begin by remembering that inelastic
scattering of photons is one of the primary processes re-
sponsible for the attenuation of radiation in matter. Oth-
er processes responsible for photon attenuation include
elastic scattering, photoionization, and the production of
pairs. Generally, the photoionization cross section dom-
inates attenuation at low incident photon energies and
pair production at higher energies, leaving a broad range
of intermediate energies where inelastic scattering is the
dominant absorptive mechanism. The range of energies
where one or another of these processes is dominant de-
pends also on the details of the scatterer, in our case
roughly on the charge. Estimates of the importance of
these processes for various elements suggest that inelastic
scattering is more important than other absorptive mech-
anisms for energies of a few MeV in the heaviest ele-
ments. This range broadens considerably in lighter ele-
ments, being from a few keV to 100 MeV for a hydrogen
atom. In these intermediate energy ranges, scattering

I

occurs from all electrons with the innermost electron
contributions dominating the soft-photon portion of the
spectrum and the outer electrons dominating the peak re-
gion and the total scattering cross section [3]. Previous
treatments of attenuation have assumed Compton
scattering is adequately described in impulse approxima-
tion, as the scattering from a momentum distribution of
free electrons; in situations that Compton scattering is
the dominant attenuation mechanism it often can be well
described simply as scattering from free electrons. By
contrast the interest in scattering from bound electrons,
as in this paper, primarily concerns the situation that the
scattered photon is observed and conveys information
about the structure of the target.

We choose the independent-particle approximation
(IPA), in which all electrons move in a common self-
consistent central potential, to describe our electron
states. While the IPA neglects many electron effects such
as electron-electron correlations, these are not usually im-
portant at electron energies considered here. The IPA
has been successfully applied to other atomic processes at
these energies, such as photoeffect, bremsstrahlung, and
elastic scattering, and it has been customarily used in
other, more approximate, treatments of inelastic scatter-
ing. There are certain regimes, which will be outlined
below, where the IPA will not give an adequate quantita-
tive description of inelastic scattering. Even in these
cases some qualitative understanding is often obtained by
application of the IPA.

Our calculations, as described in the next section, are
fully relativistic. But many of the issues and features of
the process can be discussed at a nonrelativistic level.
Nonrelativistically, the Hamiltonian for the interaction
of the radiation field with an electrically charged particle
is given by [16]

e 3
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For scattering this leads to the Kramers-Heisenberg-
Waller (KHW) matrix element [17]
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Here
~f ) and ~i ) are IPA solutions to the Schrodinger

equation for the final and initial states of the electronic
wave functions, respectively. The sum over intermediate
IPA states

~
n ) is a sum over a complete set of intermedi-

ate states, including orbitals which are occupied in the in-
itial atomic configuration. Within this nonrelativistic
context the sum includes only states corresponding to
positive-energy states of the relativistic theory. The sum
over the negative-energy states in the relativistic theory
reduces to the first term of Eq. (2), which corresponds to

a first-order evaluation of the A term of the interaction
Hamiltonian (1). The remaining two terms correspond to
the p. A term of (1) evaluated in second-order perturba-
tion theory. In the KHW matrix element (2), E, ~

is the
binding energy of the electron before scattering, c, and c.z
are the polarization vectors of the incident and scattered
photons, and cu, and co2 are the energies of the incident
and scattered photons.

If the final electronic state is the initial state (
~f ) = ~i ),

co& =co2), one has the KHW matrix element for Rayleigh
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(elastic) scattering. The leading term is simply the form
factor; the remaining two terms have been analytically
evaluated for the case of the Coulombic E, L, and M
states in the dipole approximation [18] and including all
multipoles and retardation contributions for the ground
state [19]. (The elastic process, coi=co2 but f )A i ),
scattering without energy transfer but with change of
magnetic substate, has also been derived from the corre-
sponding relativistic amplitude using approximate
Coulombic Green's functions [20].)

Inelastic scattering occurs when the electron changes
state and energy (i.e., f )A~ii ), coi&c02). For a one-step
scattering process, within the IPA, the inelastic scatter-
ing cross section may be further broken down into
scattering with ionization of the atom and scattering with
excitation of the atom. Compton scattering is the topic
of this paper and this term has the conventional meaning
that the final state of the system includes an electron
ejected from the atom, a vacancy in the atom and the
scattered photon. The vacancy may be filled, resulting in
the emission of an additional photon or electron by
fluorescence or Auger decay. Scattering where the final
electron is bound is called Raman scattering. This pro-
cess is resonant when cu& is equal to the energy required
to make an upward transition from the initial state to the
final bound state. While this terminology seems quite
natural from the IPA viewpoint, much confusion persists.
The reason is that for certain scattered photon energies
and scattering states (when co2 corresponds to the down-
ward transition energy from an occupied state of the ini-
tial electron configuration to a lower occupied or unoccu-
pied state), the Compton scattering cross section is reso-
nant and mimics the resonant behavior of Raman scatter-
ing. Here the Compton process is called alternatively
resonant Raman scattering or resonant Raman-Compton
scattering [21].

Each term of the KHW matrix element [Eq. (2)] ac-
counts for a different feature in the Compton spectrum.
These features are shown schematically in Fig. 1(a) (this
figure represents a realistic case of Compton scattering
from the L2 subshell, as will be shown below). Using a
plane-wave final state, it is easily seen that a separate
evaluation of the first term (the seagull term) yields a to-
tally differential cross section dependent (aside from kine-
matic factors) only on the momentum density of the
scattering charge. For a nodeless initial state, this results
in a single peak centered at the average momentum of the
state. For wave functions with additional nodes, subsidi-
ary peaks may in principle be observable [22]. As will be
outlined below, a number of different theoretical ap-
proaches including the impulse and A (so-called form
factor) approximations have been used to evaluate this
term [22—31]. The two remaining terms in the KHW
matrix element (the pole terms) have been evaluated, in a
Coulomb field, by Gavrila and co-workers for the E shell
[32], the L shell [33], and for any nS electron [34]. The
second term of the KHW matrix element was shown to
be divergent for soft scattered photons in the zero energy
limit. This "infrared divergence" is expected on quite
general grounds [3S,36] and in the soft-photon region the
Compton matrix element is directly proportional to the
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FIG. 1 ~ (a) Schematic presentation of various spectral
features in a Compton scattering process; divergence behavior
for soft outgoing photons, resonant behavior near characteristic
x-ray energies, and broad Compton peak for hard outgoing pho-
tons. (b) Scattering geometry considered here. The scattering
plane is defined by the incoming and outgoing photon direction.
0 is the scattering angle and P is the angle between the vector of
incoming photon linear polarization and the scattering plane.
(c) Furry diagrams for the second-order amplitudes of the
Compton scattering process.

photoeffect matrix element. The third term contributes
resonant behavior to the spectrum. The term resonant
Raman or resonant Raman Compton (RRC) scattering is
often used to describe these resonances which occur at
scattered photon energies corresponding to fluorescence
lines of downward transitions from the initial electronic
configuration. The initial and final states of the system
are the same as in Compton scattering. We therefore
treat RRC as part of the Compton spectrum within the
limitations of the IPA [37] in this paper, and we use the
term resonant Raman Compton scattering.

The most general quantity which may be measured or
observed in Compton scattering is the cross-section
differential in the energy and angle of one of the particles
(say the scattered photon) and in the angle of the other
particle (the corresponding ejected electron), for specified
photon polarizations, ejected electron spin, bound-
electron subshell, and magnetic substate. Due to the
difficulties of measuring this process, involving a coin-
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cidence of the ejected electron and the scattered photon,
the most commonly measured quantities are the energy
and momentum (angle) of the scattered photon [38].
However, the scattered photon is sometimes detected in
coincidence with a fluorescence photon emitted when an
inner-shell vacancy is filled, permitting determination of
the scattering subshell. (Anisotropies in the fiuorescence
distribution can provide information on the magnetic
substate from which scattering occurred [39].) The quan-
tities measured when the coincidence mode is used are
the cross sections doubly differential in photon energy
and angle or the cross-section differential in photon angle
for a particular subshell. If the fluorescence photon is
not observed, the measured cross section contains contri-
butions from all energetically allowed subshells of the
atom. Experiments have generally used traditional nu-
clear sources of unpolarized photons at relatively high
energies (typically 59.54, 279.1, and 661.6 keV). Recent-
ly, the use of radiation from synchrotron sources
(prepared in a high degree of linear polarization) in
scattering experiments has made it possible to perform
studies of this process in regimes inaccessible to these nu-
clear sources [4—6] and as a function of incident photon
energy. While the results presented here are for Comp-
ton scattering where the ejected electron is not observed
(but both for coincidence with the fluorescence photon,
permitting determination of the scattering subshell, and
for total atom scattering), we wish to point out the recent
coincidence measurements of the scattered photon and
the ejected electron of Rollason et al. [10]. We are aware
of only one other reported measurement of the ejected
electron [40] at incident photon energies where binding
effects are important. These (y, ey) measurements indi-
cate much promise in the use of scattering as a tool for
investigating atomic structure. We are restricting our at-
tention here at the IPA level to one-electron Compton
ejection and are not considering multiple-electron Comp-
ton scattering. Such processes are related to one-electron
Compton scattering in the same way that multiple elec-
tron photoeffect is related to ordinary photoeffect. In
both cases the shake off mechanism may be invoked at
high ejected electron energy.

Developments in Compton scattering theory and ex-
periment have often proceeded hand in hand. The
scattering of photons by free stationary particles, and of
very-high-energy photons (several MeV) from bound elec-
trons in the hard-scattered-photon regime, is normally
adequately [41] described by the well-known relationship
due to Compton [42]

CO)

CO~ =C02= (3)1+coi(1 —cos8)
and the Klein-Nishina formula [43] for the singly
differential cross section,

+ —sin 8 . , (4)
CO CO

d Q2 ~N 2 co& M2 ~l.

where 8 is the scattering angle as defined in Fig. 1(b).
However, early experimental data for scattering of

lower-energy photons from bound electrons revealed that
the scattered photon energy is not uniquely determined
by the incident photon energy and scattering angle. The

d cr 2 1+cos8 ~z 1
(5)

spectrum of photons scattered from electrons bound to
atoms was found to be dominated by a peak structure
broadened and shifted slightly from the free Compton
scattered photon energy co, . Early theoretical calcula-
tions mere directed towards explaining this broadening
and shift (defect). The work of DuMond [44] is a re-
markable example of the combination of theory and ex-
periment to make use of scattering as a tool to answer
fundamental questions about the properties of matter.
DuMond used semiclassical arguments about the effects
of the momentum density of the scatterer on the scatter-
ing process in order to distinguish between several
different descriptions of the core and valence electrons in
beryllium. In this work one finds the beginnings of the
most widely used approximation to the Compton scatter-
ing process, the impulse approximation (IA).

The description of the doubly differential cross section
(in photon energy and angle) in this (often dominant)
peak region of the spectrum has witnessed the greatest
theoretical effort. Schnaidt [24] evaluated this cross sec-
tion for the K shell using only the first or A term of the
KHW matrix element [Eq. (2)]. His A or form-factor
approximation made use of the exact Coulombic nonrela-
tivistic wave functions for the initial and final states.
Bloch [25] soon extended this approach, deriving exact
formulas for scattering from arbitrary initial states. He
evaluated these formulas approximately for the K and I
shells in order to determine the Compton defect, i.e., the
variation of the peak energy from the energy predicted by
Eq. (3). Randles [26] used Coulombic relativistic wave
functions in this A term of the nonrelativistic matrix
element and obtained a semirelativistic form-factor ap-
proximation for the ground state of a hydrogenic ion.
Similar results were obtained independently by Pradoux
et al. [31]. Schumacher and co-workers extended this
approach to any s subshell [28]. Further work using ex-
act nonrelativistic Coulomb eigenfunctions may be found
for the L shell [22] and finally for any subshell [29].
These point-Coulombic approximations have proven to
be useful in the peak region at low energy. However, for
cases corresponding to the scattering of high-energy pho-
tons of traditional nuclear sources from the K-shell elec-
trons of high-Z elements, differences occur between the
predictions of the approaches using relativistic wave
functions and those using nonrelativistic wave functions.
It has not been possible to distinguish between these pre-
dictions experimentally.

While such use of Coulombic wave functions in
evaluating the A matrix element is instructive, the most
widely used approximation for the doubly differential
Compton scattering cross section has been the impulse
approximation [22,27,30,45]. A purely nonrelativistic
impulse approximation may be derived from the A term
of the KHW matrix element, treating the final electron
state as a plane wave and considering the initial electron
to be free with the momentum distribution of the bound
state. Within this approximation we have [45]



1138 BERGSTROM, SURIC, PISK, AND PRATT 48

CO i C02

p = ——'k.
k

(7)

The impulse approximation has been argued to be valid
for kao »1 [27].

Another commonly used version of the impulse ap-
proximation is the relativistic impulse approximation
(RIA), given most generally by Ribberfors [30]. This ap-
proximation starts from a relativistic expression for the
scattering of a photon beam colliding with a beam of
electrons. The doubly differential cross section for the
scattering of unpolarized photons from nonaligned bound
electrons, observing only the scattered photon, is

C02 1 ~ pp(p )X(p~ 8~@7~&@72)
dp

dco2dQ2 2 co, k s, E(p)

where X is a rather complicated expression given by Eq.
(37) of Ref. [30],where E=(p +1)' and where

E(co, —co2) —a) ico2(1 —cos8)
pz (9)

where

J., (p. )= ,' J-dppp. ~(p) (6)
Pz

In these expressions p„&(p ) is the bound-electron
momentum density, k is the momentum transferred to
the atom in the scattering process, J„&(p, ) is called the
Compton profile of the state with quantum numbers n
and l, p, is the component of the initial (bound) electron
momentum on the photon momentum transfer required
by energy and momentum conservation for free particles,
given in terms of the physical observables of the scatter-
ing process as

do. (co„8)
dQ2

=S(x) dc'

2
(12)

scribes the peak region under the additional condition
that the low-energy theorem value [Eq. (13) below] there
is very small. Less general relativistic impulse approxi-
mation calculations have been given by Eisenberger and
Reed [46] and by Manninen, Paakkari, and Kajante [47].

The use of the IA (both nonrelativistic and relativistic)
has been widespread partly due to the fact that calcula-
tions may be performed for any subshell, once wave func-
tions for that subshell have been obtained. While this
formalism has also been applied to scattering from the
whole charge distribution of the atom, care must be taken
to avoid problems which may occur when subshells con-
tribute past their kinematic limit. This problem occurs
because the shape of the spectrum in the peak region is
assumed to be a function of the momentum transfer. At
low momentum transfer, however, the peak region occurs
at the extreme hard-photon edge of the spectrum and the
inner subshells should not contribute due to kinematic
considerations. Unfortunately, tables [45] of whole-atom
profiles given as functions of p, will not work in this re-
gime as they ignore this problem of kinematic limits. To
avoid this problem one cannot use the total charge densi-
ty above, but sum subshell charge densities each with its
own kinematic limit.

Other approximations using the 3 term of the KHW
matrix element are directed towards describing depar-
tures from the relativistic Klein-Nishina formula [Eq.
(4)]. The singly differential cross section, observing only
the direction but not the energy of the scattered photon,
is commonly written in terms of the incoherent-scattering
factor S(x) (where x is the momentum transfer) [23,48] as

This expression for the component of the bound-
electron momentum in the direction of the photon
momentum transfer has the same meaning as expression
(7), except that it is derived using relativistic kinematics
for free particles. The region of validity of the RIA has
not been rigorously established. It has often been
presumed to be valid in the same region as the IA
(kao »1). Recently, Suric [2] used heuristic arguments
to give a more sensitive criterion for when the RIA ade-
quately describes the peak region of the spectrum:

P„
(10)

where k is the photon momentum transfer and

—(p2+ 2 ( 2) )1/2

Here p, is given by Eq. (7) or (9) and (p ) is the expec-
tation value of the square of the electron momentum for
the initial (bound) electron state. p,„has the meaning of
the average allowed momentum which contributes to
scattering photons into angle 8 with energy co2 [p, is fixed
by Eq. (7) or (9)]. The criterion (10) differs from the usual
criterion as it rejects the sensitivity of the peak region to
~p, ~. It should be added that (as our results presented
below will show) when Eq. (10) is satisfied the IA well de-

This singly differential cross section is in fact undefined,
due to the infrared divergence for soft scattered photons
mentioned above. However, the usual incoherent-
scattering factor approximation is obtained from the 3
term of the KHW matrix element (in which no infrared
divergence is present) and may be calculated by integrat-
ing over an 2 approximation for the doubly differential
cross section [49]. Whittingham [11), in his relativistic
S-matrix calculations, assumed an arbitrary low-energy
cutoff in order to define S(x). We are primarily con-
cerned here with calculation of the doubly differential
cross section and we wi11 only briefly discuss the singly
differential cross section, assuming a low-energy cutoff,
and also discussing its relation to the radiative correc-
tions to atomic photoeffect.

While measurement stimulated theoretical develop-
ment of predictions for the peak region of the Compton
spectrum, the opposite held true in the infrared and reso-
nant regions of the spectrum. Gavrila's initial nonrela-
tivistic Coulombic K-shell p. A calculations [32] showed
that an infrared divergence, which could have been anti-
cipated on general grounds [35,36], occurs in lowest non-
vanishing order perturbation theory in the soft fina) pho-
ton lixnit. This spectral feature occurs for radiative pro-
cesses which become indistinguishable from a corre-
sponding radiationless process in the region of su%ciently
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soft photons. In such a region one may relate the matrix
element of the radiative process to the corresponding ra-
diationless process, factoring out the divergent behavior
in the soft-photon region. This low-energy theorem has
been used in relating the cross section of electron brems-
strahlung in the soft-photon region to elastic scattering of
electrons [35,50,51]. Recently, it has been used in the
soft-photon region of Compton scattering [1,3,52], where
the doubly differential cross section may be written

2g QU [1—(pf 2) ] derv
dQf

dcozdQ2 (2m') m2 [1—vf(pf kz)]

(13)

In Eq. (13) do '/deaf is the photoeffect differential
cross section and Uf is the velocity of the ejected electron.
While at energies below experimental resolution the
divergent region of the Compton spectrum must be in-
cluded with other divergent radiative corrections to the
photoeffect, yielding a finite radiative correction to
photoeffect [53], Gavrila's calculation prompted experi-
mental searches which seemed to confirm the soft-photon
rise feature of the Compton spectrum [54,55]. Recent
measurements, however, have produced seemingly con-
tradictory results [5—7].

The subsequent Coulombic L-shell calculations of Cos-
tescu and co-workers [33] also show the expected infrared
divergence in this soft-photon region. Indeed the in-
frared divergence is characteristic of the soft-scattered-
photon spectrum for any subshell. A new feature in the
L shell was the resonant behavior which can be expected
from the third term in the KHW matrix element (2).
Separate resonances exist in all higher shell cross sec-
tions. The resonant Raman Compton feature has been
investigated experimentally [6,56] and some L and M--
shell resonances have been observed.

In Sec. II we present the method we have used to cal-
culate Compton scattering cross sections, relegating some
formal points to an appendix. We apply this method to
all regions of the spectrum in inner atomic subshells, dis-
cussing the use of more approximate methods. We find
that the soft-photon region is often adequately described
by results obtained from the photoeffect angular distribu-
tion in the low-energy theorem. The relativistic impulse

approximation appears to be the most successful more
approximate method in describing the peak region of the
spectrum. We also discuss the validity of adding the
cross sections from these separate methods. For the K
shell we discuss other attempts at relativistic S-matrix
calculations [11,12]. We integrate our results over scat-
tered photon energies in order to obtain cross sections
singly differential in scattered photon angle. We choose
different low-energy cutoffs to this integration in order to
discuss the contribution of infrared divergent terms to
this quantity. We apply the understanding gained in our
theoretical investigation of the inner-shell cross sections
in order to discuss the contributions of these electrons
and outer-shell electrons to whole atom cross sections.
We also present an example of using an S-matrix ap-

proach to calculate scattering from all atomic electrons.
In Sec. III, we use our code to discuss representative

recent experiments [5—9]. These experiments sample the
broad range of interests in inelastic scattering from
inner-shell electrons. Among them are traditional
scattering experiments utilizing relatively high photon
energies from nuclear sources on high-Z elements [8,9]
and an experiment with photons from a lower-energy nu-
clear source scattering from the K-shell electrons of an
intermediate-Z element. In these cases, the contribution
of the peak region is of primary concern. We also exam-
ine experiments using lower-energy synchrotron sources
on elements of intermediate Z in the K shell [5], where
the infrared divergence and peak region contributions are
both examined, and in higher shells [6], where the in-
frared divergence and resonant behavior are the primary
spectral features. We confine our discussion to experi-
ments where the observed spectrum is dominated by
inner-shell contributions. Therefore, we do not discuss
whole-atom rneasurernents in the peak region of the spec-
trum. We present our conclusions in Sec. IV.

II. THEORY

Mf, =M, +M, . (14)

In this expression M, is the contribution to the ampli-
tude of the second Furry diagram in Fig. 1(c). This ab-
sorption first matrix element may be written

We present a systematic procedure for performing cal-
culations of cross sections for the Compton scattering of
photons from electrons bound in atoms, starting from the
second-order relativistic S-matrix element in the IPA.
Our method is general in that it may be used for calculat-
ing scattering from any subshell in the atom and, unlike
earlier approximate treatments, over the whole spectrum
of scattered photon energies. While these calculations
may be performed for incident photons of arbitrary po-
larization, we concentrate on cases where the incident
photon beam is unpolarized or linearly polarized, corre-
sponding to situations which have been investigated ex-
perimentally. We limit our discussion to cases where the
ejected electron and the polarization of the scattered pho-
ton are not observed. The measured final-state observ-
ables are the scattered photon energy, the scattered pho-
ton angle, and the subshell (but not the magnetic sub-
state) from which scattering occurred. In Fig. 1(b) we
present the scattering geometry considered here. Our
calculations represent the results of scattering from a
given subshell and so correspond to experiments in which
the scattered photon has been detected in coincidence
with a fluorescence photon emitted when the vacancy
created in the scattering subshell is filled by a radiative
transition. In order to obtain results for the whole atom
[3], corresponding to the experimental situation where
the fluorescence photon is not detected, these results
must be summed over all subshells.

We evaluate the independent-particle approximation to
the external field QED matrix elements corresponding to
the Furry diagrams in Fig. 1(c). The second-order ampli-
tude for this process may be written
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M. = —4~ai fd'x d'y g&(y)y A2(y)

XSp'(y, x,E, +c.o, )y A, (x)1t;(x) . (15)

In this expression the subscripts 1, 2, i, and f refer to
variables associated with the incident and scattered pho-
tons and the initial bound and final continuum electrons,
respectively. Within the Furry picture the wave func-
tions of the electron and the propagator include the
effects of the IPA potential to all orders. This is accom-
plished by solving for these objects in the field of the nu-
cleus and the other atomic electrons. Here we obtain
these quantities in realistic spherically symmetric atomic
potentials V(r) In s.ome cases that we discuss a Coulom-
bic potential is used. However, in most cases a self-
consistent screened Dirac-Fock-Slater (DFS) atomic po-
tential with a Latter tail has been employed. These po-
tentials were obtained using the code of Liberman, Cro-
mer, and Waber [57]. The corresponding amplitude for
the emission-first diagram of Fig. 1(c) may be written

M, = 4nai —f d x d y QI(y)y A, (y)

X Sg"'(y, x, E,
—co&)y Az(x)id(, (x) .

d o = lS„l dco2d&2dIII .

Here

(21)

(A9), and (A12). We also decompose the photon wave
functions into multipoles [see Eq. (A7)] and are thus able
to express our matrix elements as the sum of terms given
by products of angular integrals, which may be straight-
forwardly evaluated in terms of Racah coefticients and
phase factors, and of integrals of products of the radial
components of the partial waves of the ejected electron,
the solution of the inhomogeneous Dirac equation, and of
the photon multipole. These radial integrals, given by
Eq. (A16), are not rapidly convergent for the absorption
first matrix element, as the solution of the inhomogene-
ous Dirac equation has continuumlike character. One of
the methods chosen here to evaluate the integrals has
been used before in calculations of Compton scattering
[11]and bremsstrahlung [58]. In some limiting cases, for
very soft photons, the asymptotic integration was per-
formed numerically using a complex coordinate method.

The fully differential cross section for the Compton
scattering process is

(16) Ss =2mMso(Ez+co2 E; —co, )
—. (22)

M, =4~ai f d'y QI(y)y A,'(y)F(y, E; +~, ),
M, =4~ai f d y g&(y)y. A, (y)F(y, E, —co&) .

(19)

(20)

We assume spherical symmetry of the atomic potential
in order to decompose into partial waves the wave func-
tion of the ejected electron and of the function F(y, r) ), as
discussed in the Appendix, yielding the results Eqs. (A4),

As has been discussed above, the calculation of the
propagator in the field is one of the complicating features
of this problem. We do not evaluate the propagator
directly, rather we follow the method of Brown, Peierls,
and Woodward [15] and define the function

F(y, ri) = —f d xSP'(y, x, ri)y A(x)g, .(x), (17)

which is the solution of the inhomogeneous differential
equation

[a p+0+ I'( lyl ) —g]F(y, r)) =a A(y)g, (y) . (18)

Here g is the energy of the propagator of the relevant
Furry diagram. We may then express the amplitudes (10)
and (11) in terms of the solution of this differential equa-
tion as

Our code calculates the differential cross section which
describes an experimental situation in which polarized
photons are scattered from unaligned electrons bound in
a particular subshell. As discussed, the ejected electron is
not observed nor is the polarization of the scattered pho-
ton. The absolute square of the matrix element Eq. (14) is
summed analytically over final photon polarizations and
final electron-spin and angular momentum states, aver-
aged over initial bound-electron magnetic substates. We
are able to write the doubly differential cross section for
the inelastic scattering of linearly polarized photons from
bound electrons into given scattering angle and fixed en-
ergy in the form

2 oo

=a N g CJPJ(cosB)+C&PJ(cosB)cos(2$),
dCO2d Q2 J O

(23)

where X denotes the number of electrons occupying a
particular subshell and PJ' are the associated Legendre
polynomials.

Our code evaluates the coe%cients CJ and Cz, which,
for co2 & 2 —E~, are given by the expressions

Li LI J+ I y Sfr) [(—I) ' I"r r')Z('r)Z(e', r
2(2'+1) [e,e', y, y']

I

[2a, ere, r'
( )eR'Zr)eRZ(er'l+ImZ('r ImZ ''r )a a a a

+( —1) ~a)~ e rr )Z(er)R. 'e,Z,(e'r )i, ', '

e a (24a)
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Co=Ci =—0,

C2- 2J+1 g (r)
2(2j+ 1)&(J+2)(J+ 1)J(J—1) (, ,

Lj Li J
1 1 —2

(24b)

X [ (e,e', x, r')I(e r)I(e 'r 1+(—1) ' ' 2 [e e .r',x ,)'

X(ReI '~ ReI(e' r')+lmI(e, r)lmI(e', r'))

+o f&, e'. r, r')I(e, r )ReI(e', r'1&
e a )

where

SJ =(—1) ' ' ' ' ' ' ' ' [(2L, +1)(2L +l)(2L', +1)(2L'+1)]'

X 1 [1+( 1) 2 2 2 2 ]1[1+( 1) 1 1 1 I
]2 2 1 —1 0

~(e e' r r') =(

os e 3' 'Y )=(

~ /

(L&+L2+A2+j +j&+J)
L2 L2

r
~ / ~ /

1)J J2( '+ ' +J) J] J &
J J1 J 1

L) Li j L2 L2

J& J&

Li L

I
(e e rr . 1'=, ,2('

Lj J
ji L

ln these expressions the symbol [e] denotes the set of
electron angular momentum quantum numbers
( [e]= [~„az]), where subscript 1 refers to the electron
propagator and subscript 2 refers to the outgoing elec-
tron. Similarly, the symbol [y] denotes the angular
momentum quantum numbers of both photons
([y]=[L&,A, &, L2, kz]). Subscripts 1 and 2 refer to in-
coming and scattered photons. The primed values have
the same significance; they occur in the absolute square of
the matrix element. I,' denotes radial integrals corre-
sponding to the emission-first matrix element and It'~j
denotes radial integrals corresponding to the absorption-
first matrix element. For the energies considered here,
the I, 'r) are real (they become complex for co2) 2 E~ ). —
The I,~'~~ are generally complex numbers and ReI,~'~~

and ImI,~'~~ denote their real and imaginary parts. The
explicit expressions of these integrals in terms of solu-
tions of inhomogeneous radial Dirac equations, outgoing
electron radial components, and photon radial com-
ponents are given in the Appendix.

Our code numerically solves inhomogeneous Dirac
equations for partial-wave components of the F function,
solves homogeneous Dirac equations for partial-wave
components of the 4, function, and calculates radial in-
tegrals I('~) and I('r) (A16a) and (A16b). We use these
radial integrals for calculating the coeKcients CJ' of Eq.
(23) for the doubly differential cross section for an in-
cident polarized photon beam. To obtain the unpolarized
differential cross section we have to average over incident
photon polarizations. Effectively this means dropping
the terms in CJ, and we obtain the doubly differential
cross section for unpolarized radiation

d2 QO

=a N g CJPz(cos8) .
dc02d Q2 J=O

(25)

In the remainder of this section we use the S-matrix
computer code, based on this Compton scattering formal-
ism, to investigate the cross section doubly differential in
scattered photon energy apd angle, considered as a func-
tion of energy for fixed angle. Our purpose is to develop
an understanding of inner-shell cross sections in regimes
where they may not be calculated adequately by any sin-
gle more approximate treatment. We then use the under-
standing gained from this effort in order to establish ac-
curate methods for calculating cross sections for Comp-
ton scattering of photons from all of the electrons bound
in atoms or ions.

We also integrate our Compton spectra over scattered
photon energies in order to determine the cross section
singly differential in scattered photon angle. We may dis-
cuss the contributions to this singly differential cross sec-
tion from spectral features which are not normally in-
cluded. These features are the soft-scattered-photon
divergence and the resonances in the doubly differential
cross section. They result from evaluation of the p A
term in the nonrelativistic interaction Hamiltonian, while
the singly differential cross section has typically been ob-
tained by integrating the contribution of the peak region
of the spectrum, which is derived from the A contribu-
tion to the nonrelativistic amplitude. In the next section
we integrate the singly differential cross section over
scattering angles in order to obtain the total cross section
for this process.

Our investigation of Compton scattering starts with
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the K shell. The K-shell doubly differential cross section
exhibits only two of the three spectral features discussed
above. These features are the soft-photon rise of the
spectrum and the Compton peak; the resonant efFect is
possible only in the L and higher shells. The questions
which we seek to answer are when one or another of
these spectral features is dominant and when some com-
bination of these features is necessary to describe the
spectrum. There are a number of different approximate
methods available to calculate K-shell cross sections. We
investigate which of these approximations best describes
the doubly differential cross section. Finally, some previ-
ous attempts at S-matrix calculations for the K-shell dou-
bly differential cross section are discussed [11,12]. We
also discuss the singly differential cross section for I|-
shell Compton scattering. The principal effects which we
examine are the contribution of soft scattered photons
and the adequacy of various 2 approximations in
describing this quantity.

We then consider scattering from L-shell electrons.
The L-shell doubly differential cross section may contain
all three features discussed above (although the resonant
effect is relatively weak in the Ll subshell). We examine
the validity of approximate methods for L-shell calcula-
tions. We also discuss the efFect of screening in the L
shell. We discuss results for the L-shell singly differential
cross sections, including the effect of the K-L resonances
on this quantity.

Finally, we present methods for combining the cross
sections from the various subshells in order to obtain
cross sections for Compton scattering from all of the elec-
trons in a given atom or ion. One may simply sum the
S-matrix results over all of the atomic electrons. This
method is inefficient in general, however, because of the
large computational effort necessary in outer shells,
which are often adequately described in their dominant
regions by approximate methods. We discuss which
combination of approximate methods may be used in
place of full S-matrix calculations for outer-shell elec-
trons.

The computer code developed to implement the for-
malism described above is necessarily complex, making it
essential to have tests of all steps of the procedure in all
spectral regions. No single test is so comprehensive.
Rather it was necessary to compare against approximate
methods in regions where those approximations are
known to hold and to develop additional tests for aspects
left unaddressed by such comparisons. The approximate
methods chosen for our initial tests were those methods
which may be derived from the KHW matrix element
without significant further approximations. The nonrela-
tivistic point-Coulombic dipole results of Gavrila and
co-workers for the X [32] and I. [33] shells are expected
to be good, over the entire scattered photon spectrum, for
Za « 1 and Zasta, -/Ez «2. These results are also valid,
for higher incident photon energies, in the soft-scattered-
photon part of the spectrum. A corresponding dipole
calculation using our code checks the operation of the
homogeneous and inhomogeneous differential equation
solvers and radial integral solvers in our code. For the
hydrogen atom agreement between Gavrila's K-shell cal-
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FIG. 2. Doubly differential cross section for the scattering of
2.5-keV photons from the ground state of hydrogen into (a) 5'

and (b) 180'. Shown here are the S-matrix calculations ( X ) and
the nonrelativistic form factor (dashes), i.e., A approximation.

culations and our code, using a point-Coulombic poten-
tial and the dipole term only, was within 0. 1%%uo over the
spectrum. For the L shell similar agreement was found
in the cases which were run. In order to gain confidence
in the multipole expansions of the photons' wave func-
tions, the partial-wave expansions of the propagator and
the continuum electrons and the angular momentum cou-
pling, additional multipoles need to be taken. The 3 ap-
proximation, which includes all photon multipoles, de-
scribes the peak region of the spectrum for high incident
photon energies. In Fig. 2 we show results in this region
for the scattering of very high-energy photons (2.5 keV or
nearly 200 times the binding energy) from the K shell of
hydrogen. Excellent agreement is evident both in the
near forward and backward directions. In order to more
rigorously test these aspects of the code at energies of ex-
perimental interest, where approximations based on the
KHW matrix element do not apply, we performed a
separate analytic calculation of the Compton cross sec-
tion in the Born approximation. (The same approxima-
tion has been used by Owen [27], but with some addition-
al simplifications which were not completely justified by
the author. ) This corresponded to setting the potential
equal to zero in the calculation of the solution of the in-
homogeneous wave equation and in calculating the final
electron state. We made these assumptions in our code
for a wide range of photon energies (15 eV to 600 keV)
and for a wide range of Z. These independent Born ap-
proximation calculations always agreed within 0.1%. At
the highest energies in this range a very large number of
multipoles contribute to the cross section, lending
confidence to the part of our code which combines the
matrix elements and the angular momentum coefficients
to get the coefficients of the expansion of the cross sec-
tion.

As we have discussed, there are numerous theories
available for calculating K-shell Compton scattering
spectra. We have chosen to analyze only the most com-
monly used [24,30,32,45]. Where no adequate theory is
available, we present new approximate methods for cal-
culating the Compton spectrum. In the peak region of
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the Compton spectrum, the most familiar approaches are
the nonrelativistic A or form-factor approximation (FF)
[24], the impulse approximation (IA) [45], and the relativ-
istic impulse approximation (RIA) [30]. In addition to
the fact that these methods are employed fairly often to
calculate the Compton scattering doubly differential cross
section, they represent different levels of approximation
to the problem. The form-factor approximation is an ex-
act evaluation, using solutions of the Schrodinger equa-
tion for an electron in a Coulomb or screened field, of the

term in the nonrelativistic amplitude. The impulse
approximation is derived from this term under the fur-
ther assumption that the final electron may be described
by a plane wave, enabling one to write the cross section in
terms of the momentum distribution of the scattering
state. This approximation is generally evaluated numeri-
cally, using screened wave functions. In what follows,
when we present impulse approximation results, we use
the tabulated values of Higgs, Mendelsohn, and Mann
[45]. These tables are the most extensive available and
have been calculated using bound-electron wave func-
tions similar to those chosen in our S-matrix calculations.
They are widely used. Finally, we consider the relativis-
tic impulse approximation due to Ribberfors [30]. This
approximation is derived from a relativistic treatment of
the scattering of photons from free moving electrons [36].
As with the IA, the resulting expression for the RIA is
written in terms of the momentum distribution of the
scattering electron. In the RIA calculations given here
we use momentum distributions obtained from the same
wave functions which have been used in our S-matrix cal-
culations. The difference between the IA and the RIA
lies in the fact that the RIA uses relativistic kinematics.

At the time of our initial calculations, the only avail-
able theoretical results in the soft-scattered-photon re-
gion were those of Gavrila [32). This theory is an exact
evaluation of the p. A terms of the nonrelativistic ampli-
tude, using Coulombic wave functions and the Coulomb
Green's function. Numerical results were obtained in the
dipole approximation only. In addition to our S-matrix
calculations, in this work we present cross sections ob-
tained from photoeffect angular distributions using the
low-energy theorem Eq. (13) (LET). These calculations
include the effects of screening and all contributing pho-
ton multipoles and have been used to successfully de-
scribe the full S-matrix calculations for low scattered
photon energies [1,3].

The question of which feature dominates the K-shell
Compton spectrum of a particular element for given in-
cident photon energy and scattering angle is possible to
answer using simple arguments. The kinematic limit of
the spectrum (i.e., the maximum scattered photon ener-
gy), equals the incident photon energy minus the binding
energy of the scattering shell. In order for the maximum
of the peak to be part of the observed spectrum, it must
shift to kinematically allowed scattered photon energies.
The shift of this peak for bound electrons is equal to the
free electron Compton shift to lower energies, given by
Compton's formula Eq. (3), added to the Compton defect
(taken here to be Bloch's value E~ /6 shifted to higher en-
ergies [25], as cited in Ref. [59]). For energies of several

hundred keV and larger the Compton peak will be visible
for most angles. We may derive an approximate expres-
sion for when the center of the Compton peak will appear
which gives

7E~
CO( +

6(1—cosO)

1/2

(26)

As has been stated above, the free Compton line is
broadened by the momentum of the bound electron. The
half-width of the resulting peak is of the order of the elec-
tron binding energy. This means that the onset of the
peak may be observed, for fixed scattering angle, at some-
what lower energies, in the form of a cross section rising
until the cutofF is reached. Examination of Eq. (26) re-
veals that the center of the peak cannot be observed for
forward scattering and is more likely to be observable (at
fixed incident photon energy) for large scattering angles.
The contributions due to the p. A terms monotonically
decrease with increasing scattered photon energy. Addi-
tionally, as these contributions may be expressed in terms
of the photoeffect matrix element, which decreases rapid-
ly in magnitude with increasing incident photon energy,
they show a corresponding decrease with increasing in-
cident photon energy. Usually, one expects the Compton
peak to be the dominant feature when it is shifted to ob-
servable energies, with the crossover to infrared rising
behavior at lower scattered photon energies. In order for
there to be comparable contributions from both terms,
the peak must shift to low scattered photon energies for
incident photon energies not far from the ionization
threshold. This situation is possible only for scattering at
several times threshold from high-Z elements.

In Fig. 3, we present results for the doubly differential
cross section for the scattering of 2.94 keV photons from
an electron bound in the IC shell of carbon (the results
given in this paper will be per electron unless otherwise
noted) into 0, 60, 120', and 180'. The incident photon
energy is approximately 10 times the energy needed to
ionize a K-shell electron. However this energy is still
smaller than that needed to shift the maximum of the
Compton peak into the kinematically observable range (9
keV for 180 ) as predicted by Eq. (26). So the free Comp-
ton peak (represented by the vertical arrow) remains out-
side the kinematically allowed range of scattered photon
energies for K-shell electrons. The maximum shift of the
peak to lower energies (0.04 keV at 180') is smaller than
the expected shift of the peak to higher energies due to
the Compton defect (approximately 0.05 keV). Therefore
one does not expect the cross section at the end point to
be within the halfwidth of the bound Compton peak.
Indeed, the extreme hard-photon region of the spectrum
only gives the onset of the peak [if one carries the impulse
approximation calculation for this case past the kinemat-
ic limit of the shell (as in incoherent-scattering function
calculations) to the incident photon energy, the integrat-
ed peak intensity is approximately 50 times the peak in-
tensity shown]. In this region, the nonrelativistic form-
factor approximation most adequately reproduces the
spectrum. The IA and the RIA are i~distinguishable for
this case. While these approximations qualitatively
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FIG. 3. Doubly differential cross sections for the scattering
of 2.94-keV photons from a K-shell electron of carbon into (a)

0, (b) 60', (c) 120', (d) 180. The cross sections shown are ob-
tained from nonrelativistic form-factor calculations [24]
(dashes), the nonrelativistic impulse approximation [45] (dotted
line), the relativistic impulse approximation [30] (chain-dashed
line), the results of the nonrelativistic p- A calculations of Gav-
rila [32] (circles), results obtained from photoeffect cross sec-
tions using the low-energy theorem [Eq. (13)] (boxes), and the
results of the present S-matrix calculations ( X ). The energy for
Compton scattering by free electrons is shown by the vertical
arrow. Lines through the symbols have been drawn to aid the
eye. Note we are showing cross sections per electron, not for
the filled subshell.

reproduce the cross section at the hard-photon end, the
result appears shifted to higher scattered photon ener-
gies. We will see, subsequently, that this difference is not
a shift but reAects the narrower Compton peak predicted
within the impulse approximation.

For scattering from light elements, the shift of the
Compton peak towards lower scattered photon energies
with increasing angle is not large enough for the peak to
be observable even though the incident photon energy is
much larger than the threshold value. For higher in-
cident photon energies, the Compton peak could shift to
scattered photon energies which are kinematically al-
lowed. At these higher incident photon energies, for
finite angles, the Compton spectrum would be adequately
described by the IA or RIA as the contributions from the
p. A terms become much smaller, corresponding to the
decrease in the photoeffect cross section.

We now consider, in Fig. 4, the scattering of 100-keV
photons from the K shell of copper. This high incident
photon energy results in a shift of the Compton peak
greater than or equal to the binding energy for scattering
angles larger than 60 . At back angles, the peak is almost
completely visible and dominates the spectrum. The
agreement of the RIA, the IA, and the form factor with
the S-matrix calculations is excellent in this region, al-
though the form factor is somewhat smaller at interrnedi-
ate and large angles. While the low scattered photon en-
ergy portion of the spectrum and the entire spectrum for
forward scattering are still given adequately by the low-
energy theorem results, the cross sections in these re-
gimes are much smaller than the peak region values.

In Fig. 5 the scattering of 279.1-keV photons from the

FIG. 4. Same as Fig. 3, except for the scattering of 100-keV
photons from a E-shell electron of copper.
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FIG. 5. Same as Fig. 3 except for the scattering of 279.1-keV
photons from a K-shell electron of lead.

K shell of lead is considered. This energy is approximate-
ly three times the binding energy of the scattering elec-
tron. In this case, several interesting departures from the
results of the preceding cases are apparent. Although the
peak is the dominant feature at most angles, contribu-
tions corresponding to the p. A terms are also significant,
even in the peak region. Significant differences exist be-
tween the low-energy theorem results and those of Gavri-
la. The low-energy theorem results more adequately
reproduce the S-matrix calculations in the soft-scattered-
photon regime; these results are larger than the Gavrila
results at forward angles and smaller at back angles.
These differences between the low-energy theorem and
Gavrila's result reQect the need for additional rnultipoles
at these energies. Significant differences also exist be-
tween the relativistic impulse approximation and the im-
pulse approximation. Neither theory shows systematic
agreement with the S-matrix calculations.

It is appropriate at this juncture to discuss other calcu-
lations of Cornpton scattering from bound electrons per-
formed within the framework discussed here, relativistic
second-order QED. We are aware of two other calcula-
tions for the doubly differential cross section [11,12].
These calculations were performed only for K-shell
scattering in a few cases. The methods of Whittingham
are quite similar to those presented here. Wittwer used a
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FIG. 6. Same as Fig. 3 except for the scattering of 279.1-keV
photons from a E-shell electron of tantalum into (a) 60' and (b)
120'. Also shown are the S-matrix results of Whittingham [11]
(solid line without data points).

different, direct approach to calculating the propagator.
As has been mentioned, we do not calculate the propaga-
tor directly, but instead solve the inhomogeneous wave
equation. Neither of the previous attempts at an S-
matrix calculation of Compton scattering mentions
checks against known limiting cases.

The calculations of Whittingham [11]were performed
for the scattering of 279.1- and 661.6-keV photons from
the K shell of U, Pb, Ta, and Sm. These calculations used
point-Coulombic potentials only and a limited number of
multipoles were retained due to the limitations of the
available computers. The propagator was not calculated
directly but was included in the solution of the inhomo-
geneous wave equation, as in the present work, using
Brown's method [15]. We have performed calculations
with our code at 279.1 keV for Ta and for Pb and at
661.6 keV for Pb. (All calculations for these cases, with
the exception of the IA, which uses the tables from Ref.
[45], were performed in a point-Coulombic potential. )

We have just seen, for the scattering of 279.1-keV pho-
tons from the K shell of lead (including screening), that
none of the approximate theories which are commonly
applied may give more than a qualitative description of
the spectrum. We now consider the scattering of 279.1-
keV photons from the K shell of Ta. This data is given in
Fig. 6 for 60' and 120'. We also give the S-matrix results
of Whittingham (solid line without data points). Again,
no approximate method is adequate. Whittingham's re-
sults are larger than all other results for both 60 and
120. This agrees with observations made in the point-
Coulombic 279.1-keV lead case which has been presented
elsewhere [1,2). As in the screened lead case just dis-
cussed, Gavrila's results are smaller than those obtained
using the low-energy theorem (which agree with our S-
matrix calculations for small scattered photon energies)
for forward scattering and bigger for backward scatter-
ing. This indicates that the discrepancy is due to the
need for additional photon multipoles and not to screen-
ing corrections (the results are point-Coulombic).
Significant differences between the IA and the RIA are
evident. In Fig. 7 we present calculations for the scatter-
ing of 661.6-keV photons from the K shell of Pb into 60'
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FIG. 7. Same as Fig. 3 except for the scattering of 661.6-keV
photons from a K-shell electron of lead. Also shown are the S-
matrix results of Whittingham [11] (solid line without data
points).

and 120' (where Whittingham presented data) as well as
for forward and backward scattering. We compare again
with relativistic results obtained using the low-energy
theorem and the RIA, with the nonrelativistic theories of
Gavrila and Schnaidt and with the results given by Whit-
tingham. The agreement in the peak region of the spec-
trum between the RIA and our results is excellent. At
low scattered photon energies, agreement with the low-
energy theorem results of Eq. (13) may be observed.
Gavrila's calculations are not adequate here, as they are
smaller than the LET calculations for forward angles and
larger at back angles. The results of Whittingham and
the nonrelativistic calculations (the form factor and the
IA) differ substantially from our calculations and from
each other, as in the case of scattering 279.1-keV photons
from Ta and Pb. Here Whittingham's results are sub-
stantially larger than all others at 60 and are smaller
than ours at 120'.

Wittwer [12] performed calculations for the scattering
of 145-keV photons from the K shell of Sn and Au and
for 320-keV photons from Au. These calculations used
screened DFS atomic potentials. An interesting feature is
the direct calculation of the propagator. This permitted
the identification of spectral features in terms of corre-
sponding contributions of the propagator. Wittwer
found, as would be expected [60], that the peak region
was described almost entirely by the sum over negative-
energy intermediate states and that the infrared diver-
gences was due to the sum over positive-energy inter-
mediate states. This corresponds to the discussion
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FIG. 8. Comparison of our S-matrix calculations for the
scattering of polarized photons into 90' for the scattering
geometry where the polarization vector of the polarized in-

cident photon beam is (+) in the plane, (o) perpendicular to
the plane defined by the incident and scattered photon momen-
ta. Results for unpolarized photons ( X ) are also shown. (a)
Scattering of 60-keV photons from a X-shell electron of ger-
manium, (b) scattering of 279-keV photons from a K-shell elec-
tron of tin.

presented above describing the spectrum in terms of the
KHW matrix element. Because we have not calculated
the propagator directly here, we can make no similar
identification. We can, however, test the separability of
the S- matrix into the nonrelativistic components for cer-
tain cases. If one looks at the first term of the KHW ma-
trix element [Eq. (2)], it is apparent that the peak contri-
bution vanishes when c,

&
and e2 are perpendicular to each

other. This orthogonality may be assured for a 90'
scattering angle and a linearly polarized beam if the po-
larization vector of the incident beam lies in the plane
defined by the incident and scattered beam momenta
[corresponds to 6=90', @=0 in Eq. (23)]. We demon-
strate this efFect for the scattering of 60-keV photons
from the K shell of Ge in Fig. 8(a). The pluses indicate
the S-matrix results when the polarization vector is in the
plane of the beams and the circles indicate when it is out
of the plane. The peak vanishes, as expected, for the case
where the polarization vector is in the plane, confirming
the approximate separability of the S matrix into its non-
relativistic analogs for this case. At higher incident pho-
ton energies, in scattering from high-Z elements, where
the spectral features make comparable contributions, this
separability may not exist. We demonstrate this in Fig.
8(b), for the scattering of 279-keV photons from the IC

shell of tin. Here, the peak in the polarized cross section
appears even where it is not allowed in the nonrelativistic
treatment (although it is not very large in magnitude).

In Fig. 9 we compare the same approximations that we
have been examining and our calculations with those of
Wittwer [12] for the scattering of 145-keV photons from
Sn. The bars on the Wittwer data reAect his error esti-
mates. The agreement between the S-matrix approaches
is excellent, except for forward scattering, which is to be
expected due to the limited number of multipoles used in
Ref. [12]. In the forward direction, our results are in
agreement with the LET. The center of the Compton
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FIG. 9. Same as Fig. 3 except for the scattering of 145-keV
photons from a E-shell electron of tin. The points with the er-
ror bars are the S-matrix calculations of Wittwer [12].
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FIG. 10. Same as Fig. 3 except for the scattering of 145-keV
photons from a K-shell electron of gold. The points with the er-
ror bars are the S-matrix calculations of Wittwer [12].

peak is observable at 120' and 180. All peak region ap-
proximations give reasonable results in this regime.
While the LET agrees with the S matrix at low photon
energies and for forward scattering, the nonrelativistic di-
pole results of Gavrila [32] again are different. In Fig. 10
we present similar data for the scattering of 145-keV pho-
tons from Au. The level of agreement between S-matrix
approaches here is even better than in the preceding case.
The incident photon energy is not large enough here for
the peak to make a significant contribution.

Finally, in Fig. 11, we consider the scattering of 320-
keV photons from Au. Wittwer's S-matrix calculations
are in agreement with ours, except for forward scattering.
In the forward direction, our results may be obtained by
adding the LET and the nonrelativistic form factor. In
this case, the peak region is substantial at other angles.
In the peak region the RIA, the IA, and the FF do not
agree. The IA seems less adequate than the other ap-
proaches. At soft-scattered-photon energies the LET is
in agreement with the S-matrix calculations. As in the
other cases at relativistic energies, the nonrelativistic di-
pole calculations are smaller than the relativistic calcula-
tions in the forward direction and larger for scattering at
back angles.
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FIG. 11. Same as Fig. 3 except for the scattering of 320-keV
photons from a K-shell electron of gold. The points with the er-
ror bars are the S-matrix calculations of Wittwer [12].

Usually, the Compton scattering doubly differential
cross section may be obtained, to a good approximation,
by adding the low-energy theorem results to the IA or
RIA results for cross sections (although for light ele-
ments it may be preferable to use the nonrelativistic
form-factor cross sections because of the narrower IA or
RIA peaks). There are a number of reasons for this. For
low-energy scattering, the spectral features are well
separated and the intermediate region is relatively small
in magnitude (any interference effects in that region are
usually not observable). For high energies there may be
regions where both terms contribute significantly. How-
ever, the contribution of the peak is real and the LET
contributions have a phase given by ie ' [61],(where 5& is
the phase shift of the dominant partial-wave contribution
to the ejected electron wave function). At the electron
energies available, 5& should be small, leading to a small
interference term in the square of the sum of the ampli-
tudes. We demonstrate this in Fig. 12. In the left panel,
we plot the S-matrix results and the approximate
methods which we have been examining. In the right
panel we plot the S-matrix results and two curves
representing the sums of approximate methods. The top
curve is the sum of the nonrelativistic form-factor ap-
proximation and the dipole results of Gavrila. Clearly,
this sum does not adequately reproduce the S-matrix re-
sults. This is not due to the need for an interference
term, however. It may be seen that in this case, as for all
high-energy, high-Z cases, the Gavrila results are inade-
quate, principally due to the dipole approximation made
in those calculations. The sum of the low-energy
theorem results and the relativistic impulse approxima-
tion results is in reasonable agreement with the S-matrix
calculation, except where the RIA does not adequately
reproduce the peak. This confirms that no interference
term is necessary when adding the LET and the RIA in
these high-energy, high-Z cases.

We may now summarize what we have learned about
the K-shell Compton scattering doubly differential cross
section. For light elements, at energies where departures
from free Compton scattering may occur, cross sections
generally decrease monotonically to the hard-photon end

of the spectrum where only a small part of the peak may
be observable. For elements of intermediate nuclear
charge, larger parts of the peak become visible as the in-
cident photon energies become large enough for the
Compton peak to shift significantly and as the scattering
angle increases. We did not observe significant
discrepancies between relativistic and nonrelativistic ap-
proximations to the cross section in either the peak or
soft-photon regions of the spectrum at low incident pho-
ton energies. For higher energies and heavier elements,
discrepancies between the approximate methods and the
S-matrix approach and between the various approximate
methods exist. In the peak region, the RIA most ade-
quately reproduces the S-matrix results; the IA is less
adequate here. For soft-scattered-photon energies, the
results of Gavrila consistently underestimate the cross
section for forward angles and overestimate it at back an-
gles. This is a result of the dipole approximation made in
those calculations. The LET agrees very well with the S-
matrix calculations for these energies. In general the
peak region and the soft-scattered-photon behavior are
well separated. We have explicitly demonstrated that
these features are separable for most cases. However, for
the scattering of photons with energies several times
threshold from high-Z elements, both features may be
present for all scattered photon energies. The simple ad-
dition of the approximate methods may give the S-matrix
results (i.e. , if the LET contribution is out of phase with
the peak contribution). At higher energies, the contribu-
tions of the LET are small and the cross section is ade-
quately given by the RIA.
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FIG. 12. Cross sections for the scattering of 279-keV photons
from a K-shell electron of gold into 150'. (a) The cross sections
shown are obtained from nonrelativistic form-factor calcula-
tions [24] (dashes), the nonrelativistic impulse approximation
[45] (dotted line), the relativistic impulse approximation [30]
(chain-dashed line), the results of the nonrelativistic p- A calcu-
lations of Cxavrila [32] (circles), results obtained from
photoeffect cross sections using the low-energy theorem (boxes),
and the results of the present S-matrix calculations ( X ). (b) For
the same angle we present results obtained by adding the nonre-
lativistic form-factor calculations [24] and the nonrelativistic

p A calculations of Cravrila [32] (circles), results obtained by
adding the relativistic impulse approximation [30], and the re-
sults obtained from photoeffect cross sections using the low-
energy theorem (boxes), and the present S-matrix results ( X ).
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We turn our attention now to the cross section singly
differential in scattered photon angle for this process. As
has been discussed, for scattering from free electrons at
rest, this cross section is given by the Klein-Nishina for-
mula which predicts the intensity of the Compton line at
each angle. A relativistic S-matrix calculation of this
cross section was performed by Henry [62] for the
scattering of several keV photons from the hydrogenic
ground state. As we have seen in Fig. 2, the cross section
in this case is well described by the nonrelativistic form
factor [24]. Therefore we will not further discuss this re-
sult. The question that we will consider is how to define
this cross section in the bound-electron case. It has usu-
ally been defined by integrating the 3 term of the nonre-
lativistic doubly differential cross section over scattered
photon energies. We have seen that these 3 approxima-
tions may not adequately represent the spectrum even in
the peak region. However, while the RIA is usually valid
in the peak region of the spectrum, it does not adequately
reproduce the S-matrix results over the entire spectrum.
Simply integrating the S-matrix result over scattered
photon energies is not possible due to the infrared diver-
gence in the soft final photon limit. In order for the in-
tegrated S-matrix result to have physical meaning, a
low-energy cutoff to the integration must be selected.
This cutoff should be defined with regard to the physical
situation being considered. One should consider experi-
mental constraints such as the detector response and
discriminator setting. Usually the experimental cutoff
which is chosen is the K-shell photoionization threshold
of lead. The reason for this is that at the high incident
photon energies of the nuclear sources which are tradi-
tionally used, the bound-bound transitions in the lead
shielding dominate the Compton signal. We shall show
such cutoffs in the comparison with experiment. We
shall also integrate our S-matrix results using two other
cutoffs. The first cutoff that we choose, scattered photon
energies equal to the binding energy of the scattering
shell, is a practical experimental cutoff. Namely, below
this energy many photons may be expected in the radia-
tive decay of holes created by K-shell photoionization,
which dominates the inelastic scattering cross section by
orders of magnitude in most cases considered here. The
Compton signal may be comparable to the uncertainty in
the cross section of the dominant process, making it
difficult to separate the effects. The other cutoff which
we assume, 1% of the incident photon energy, has been
chosen to give us an idea of the contribution of the low-
energy region of the spectrum to the singly difFerential
cross section.

In Fig. 13(a), we plot the singly differential cross sec-
tion for the scattering of 2.94-keV photons from the K
shell of carbon. Actually, we give the ratio (sometimes
called the scattering factor) of the scattered photon singly
differential cross section to the free-electron Klein-
Nishina value. This ratio gives some idea of the relative
efficiency of bound-electron scattering versus the free-
electron process. The integrated RIA results are ex-
tremely small, as the Compton peak is not important in
the spectra given in Fig. 3. While the S-matrix results,
calculated using the cutoffs described above, are much
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FIG. 13. (a) Ratios of the cross sections singly differential in
scattered photon angle for the scattering of 2.94-keV photons
from a K-shell electron of carbon to the free-electron cross sec-
tions. The singly differential cross sections were obtained from
cross sections doubly differential in scattered photon energy and
angle by integrating over the scattered photon energies. The
theories used were the relativistic impulse approximation (+),
and the present S-matrix calculations (circles and diamonds) (or
low-energy theorem results and relativistic impulse approxima-
tion results were used where the S-matrix results were not avail-
able). The circles are calculated assuming a low-energy cutoff at
the K-shell photopeak, the diamonds were obtained assuming a
cutoff of l%%uo of the incident photon energy. (b) Same as (a) ex-
cept for the scattering of 50-keV photons from a K-shell elec-
tron of copper. (c) Same as (a) except for the scattering of 100-
keV photons from a E-shell electron of copper. (d) Same as (a)
except for the scattering of 279.1-keV photons from a I(-shell
electron of lead.

la'rger than the RIA results, the angular distributions
remain small relative to the scattering of photons from
free electrons.

In Figs. 13(b) and 13(c) we give the singly differential
cross sections for the scattering of 50- and 100-keV pho-
tons from the K shell of copper. At 100 keV the three
methods agree reasonably well, rejecting the small mag-
nitude of the p. A contributions to the double differential
cross section. At back angles, the scattering factor for
100-keV photons is nearly unity. This is expected as the
full peak in the doubly differential cross section is nearly
kinematically observable. For 50-keV photons the angu-
lar distributions reAect a mixed situation, where the peak
region and the p A terms make comparable contribu-
tions to the spectra.

Finally, in Fig. 13(d), we give the scattering factors for
the scattering of 279.1-keV photons from the K shell of
lead. In this case the contribution of the low-energy
behavior below the E edge and of the spectrum above the
E edge are comparable. At intermediate scattering an-
gles, when one includes photons below the K edge, the
scattering factor is greater than 1. This means that the
bound electron is scattering photons more efficiently than
free electrons would. The agreement of the integrated
RIA result with the S-matrix result (which is cut off at
the IC edge) at back angles reilects the suppression of the
p A contributions for backscattering. These latter two
results are smaller than unity, reAecting the facts that the
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entire peak region is not kinematically allowed and that
some of the peak region is below the low-energy cutoff.

Clearly, in most cases considered here, the singly
differential cross sections for scattering from bound elec-
trons is smaller than the free-electron Klein-Nishina re-
sult. At small scattering angles, the S-matrix results are
nonzero. This is in accord with the behavior of the spec-
trum, which is nonzero for forward scattering. At larger
angles, the major portion of the scattering factor is found
by integrating the peak contribution. The ratio of the an-
gular distribution to the free-electron result approaches
one in cases where the peak is completely observable and
where the low-energy behavior is negligible.

We now discuss the scattering of photons from L-shell
electrons. L-shell spectra are more complicated than K-
shell spectra because of the possibility of resonant
behavior. As has been discussed, these resonances occur
for scattered photon energies equal to the K-L 1, K-L2, or
K-L3 energy difference. These resonances are highly
suppressed in the L1 subshell due to the dipole selection
rules for bound-bound transitions. As with the K shell,
kinematic arguments may be made for the position of the
Compton peak in the spectrum. The L-shell Compton
peak may be observed in some cases where the K-shell
peak contribution is cut off because the lower L-shell
binding energy means that the kinematic limit of the
spectrum occurs at higher scattered photon energies.
The variety of approximate methods available for the K
shell also exists for the L shell. The range of applicability
of some of these methods is more limited due to effects
such as screening.

In Fig. 14 we consider the scattering of 2.94-keV pho-
tons from the L1 subshell of carbon. This energy is well
above the K- and L-shell ionization thresholds. Also
shown are the IA and RIA results, the p. A calculations
of Gavrila and Tugulea [33], the low-energy theorem cal-
culations in a point-Coulombic potential and in a
screened potential. As in the K-shell case, much of the
spectrum is dominated by the contributions of the p- A
terms. However, the effects of screening in this regime
are evident as the point-Coulombic results of Gavrila and
Tugulea and the results obtained from the low-energy
theorem using a point-Coulombic potential agree reason-
ably well, whereas the screened S-matrix calculation
agrees with the low-energy theorem results obtained in
the same screened self-consistent potential. Within a
nonrelativistic formalism K-L 1 resonant structure is
strictly forbidden. In our relativistic S-matrix calcula-
tions such structure exists in principle, but is highly
suppressed in this low-energy regime. We will show such
resonances in a subsequent, more relativistic case. There
we will see the K-L1 structure is negligible compared to
K-L2 or K-L 3 structure.

The IA and the RIA agree with each other and with
the S-matrix results at the hard-photon end of the spec-
trum for finite angles. The values of the scattering cross
section in the peak region are much larger here than in
the K shell. This may be simply understood in terms of
the impulse approximation. In terms of IA, the smaller
average momentum means that the peak width is nar-
rower than for the inner shell since the double differential
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FIG. 14. Cross sections for the scattering of 2.94-keV pho-

tons from an L1 subshell electron of carbon into (a) 0', (b) 60',

(c) 120', (d) 180'. The cross sections shown are obtained from

the nonrelativistic impulse approximation [45] (dotted line), the
relativistic impulse approximation [30] (chain-dashed line), the

results of the nonrelativistic p. A calculations of Gavrila and

Tugulea [33] (circles), results obtained from photoeffect cross
sections using the low-energy theorem in a screened potential

(boxes) and in a point-Coulombic potential (diamonds), and the

results of the present S-matrix calculations ( X ). The energy for
Compton scattering by free electrons is shown by the vertical

arrow.
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FIG. 15. Same as Fig. 14 except for L2 subshell. The energy
for the characteristic K-L2 transition (in screened potential) is
also shown by a vertical arrow.

cross section, away from the peak, gets contributions
from high momenta which are less probable for outer
shells. The height of the peak is a measure of the average
of the inverse magnitude of the momentum. Consequent-
ly, the peak height for an outer shell must be larger.

The situation is quite different for the L2 subshell.
This may be observed in Fig. 15. The Compton peak re-
gion is still adequately given by both the IA and the RIA.
However the rest of the spectrum is dominated by the K-
L2 resonance at approximately 0.28 keV, which is much
wider than the K-L1 resonance due to the dipole allowed
transition. The low-energy theorem is adequate only for
extremely soft-scattered-photon energies because, for
higher energies, the S-matrix result is pulled to higher
values by the resonance. Only below resonance do the S-
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lar, we consider the scattering of 279.1-keV photons from
the L1 subshell of Pb in Fig. 24. In this case the reso-
nance at the K-L1 transition energy is evident; it is indi-
cated by an arrow. As expected, for the forward-
scattering cross section the peak is not completely
kinematically allowed. However the onset of the peak
makes a contribution comparable to that of the divergent
LET terms over a broad range of scattered photon ener-
gies. Comparison of the L 1-subshell peak with the corre-
sponding K-shell peak of Fig. 5 shows that the peak has
narrowed and become significantly higher, corresponding
to the smaller average momentum of the L1 subshell.

The higher kinematic limit for L-shell scattering and the
substantial shift of the peak maximum enables one to ob-
serve the entire peak for most angles. Agreement of the
IA and RIA results with our S-matrix calculations is ex-
cellent, although as in the K shell, the IA results are
somewhat smaller for back angles. Here we also see, in
the spectrum at 180', the appearance of secondary maxi-
ma above (but not below) the peak due to the nodal struc-
ture of the L 1 state.

The corresponding doubly differential cross sections
for the L2 subshell are given in Fig. 25. The low-energy
rise is confined to very low energies and is not very large
in magnitude. The resonance at the K-L2 transition en-
ergy dominates the center of the spectrum at all angles
and clearly dominates the K-L1 resonance in the L-shell
cross section. The nonrelativistic p A results of Gavrila
and co-workers [33] accurately predict the low-energy
behavior and the resonance behavior, although the reso-
nance is shifted somewhat due to differences in the transi-
tion energies of the different atomic models. For finite
angles, the Compton peak dominates the high-energy end
of the spectrum. This peak is broader than in the L1
case. The agreement of the IA and the RIA with the S-
matrix results is reasonable, although the IA is somewhat
smaller at intermediate angles. For backward scattering,
the Compton peak has shifted enough to interfere slightly
with the resonance structure.

In calculating the singly differential cross sections for
the L subshells, we considered only the previous L 1 case
where some agreement with the RIA results is possible.
We do not show the curves here. The cutoffs which we
used in our calculations were the K-shell photoionization
threshold and l%%uo of the incident photon energy. In the
S-matrix results we neglected the narrow K-L1 reso-
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FIG. 24. Doubly differential cross sections for the scattering
of 279.1-keV photons from an L1 subshell electron of lead into
(a) 0', (b) 60, (c) 120, (d) 180. The cross sections shown are ob-
tained from the nonrelativistic impulse approximation [45] (dot-
ted line), the relativistic impulse approximation [30] (chain-
dashed line), the results of the nonrelativistic p. A calculations
of Gavrila and Tugulea [33] (circles), results obtained from
photoeffect cross sections using the low-energy theorem in a
screened potential (boxes), and the results of the present S-
matrix calculations ( X ). The energy for Compton scattering by
free electrons is shown by the vertical arrow. The data are
shown on. a logarithmic scale for better presentation of the nar-
row K-L1 resonance (indicated by vertical arrow) and secon-
dary maxima, due to nodal structure in the L1 subshell.
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FIG. 25. Doubly differential cross sections for the scattering
of 279.1-keV photons from an L2 subshell electron of lead into
(a) 0, (b) 60', (c) 120', (d) 180'. The cross sections shown are ob-
tained from the nonrelativistic impulse approximation [45] (dot-
ted line), the relativistic impulse approximation [30] (chain-
dashed line), the results of the nonrelativistic p A calculations
of CJavrila and Tugulea [33] (circles), results obtained from
photoeffect cross sections using the low-energy theorem in a
screened potential (boxes), and the results of the present S-
matrix calculations ( X ). The energy for Compton scattering by
free electrons is shown by the vertical arrow as is the energy of
the E-L2 transition.
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nance. The detailed agreement of the S-matrix results
with the RIA was also reAected in the singly differential
cross section; the principal differences occurred at small
scattering angles. The S-matrix result was nonzero for
forward scattering, rejecting the contribution of the
soft-photon rise in the spectrum. This contribution was
small, however, and so there were only small differences
between the S-matrix results, despite large differences in
the cutoff energy. The cross section rose above the free
photon case, rejecting the infrared rise for soft photons
seen with a lower-energy cutoff.

Our calculations of L-shell Compton scattering cross
sections have made clear the variety of features in the L
shell. For the L1 subshell, the doubly differential cross
section may exhibit weak resonances, infrared behavior,
and the Compton peak. For scattering of photons below
the K-shell ionization threshold, the spectrum will be
dominated by the soft-photon rise. For energies above
the K-shell threshold, the Compton peak region becomes
more prominent. We have been able to observe secon-
dary peaks predicted in the L1 doubly differential cross
sections by more approximate calculations. In the L2
and L3 subshells, resonant behavior may be important.
The resonances occur at the K-L2 or K-I 3 transition en-
ergy and dominate the spectrum for incident photon en-
ergies just below the K edge. For incident photon ener-
gies far below these transition energies, some evidence of
the resonances remains observable at the hard-photon
end of the spectrum, although the spectrum is dominated
by the soft-photon rise. For incident photon energies
above the K edge, all three spectral features may be ob-
served in the L subshell spectra.

We now discuss the characteristics of outer-shell cross
sections and methods for calculating whole-atom cross
sections. The principal issues of concern are how the
outer-shell cross sections differ from the inner-shell cross
sections that we have already discussed, which approxi-
mations are adequate in the outer shells, and which shells
require an S-matrix treatment.

All three spectral features occur in outer-shell spectra.
For incident photon energies above the K-shell photoion-
ization threshold, resonances occur at the K-X, L-X,
M-X, . . . transition energies, if X is the scattering sub-
shell above the K, L, M, . . . subshells. The K-X thresh-
old occurs near the K-L resonance energy, broadening it
on the high-energy side. All other resonances occur at
significantly lower energies.

The soft-photon energy divergence exists in all outer
subshells. The contribution of outer shells in this low-
energy region is small. This may be understood in terms
of the low-energy theorem. For incident photon energies
above inner-shell thresholds, the dominant shell contribu-
tion for atomic photoeffect is the shell with the ionization
threshold closest to the incident photon energy. Because
the Compton matrix element is proportional to the
photoeffect matrix element in this low-energy regime, the
ratio of the photoeffect cross sections for different shells
serves as a rough guide to their contribution to the
Compton cross section for soft-scattered-photon energies.
We demonstrate this in Fig. 26. Here the low-energy re-
gime for the scattering of 2.94-keV photons from the
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FIG. 26. Comparison of Compton scattering doubly
differential cross sections obtained from photoeffect angular dis-
tributions using the low-energy theorem for the scattering of
2.94-keV photons from an electron bound in the K shell (solid
line), the L1 subshell (dashed line), and the L2 subshell (dotted
line).
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FIG. 27. Doubly differential cross sections for the scattering
of 2.94-keV photons from all of the electrons of a carbon atom
into (a) 0', (b) 60', (c) 120', (d) 180'. We show impulse approxi-
mation results [45] idotted line), the S-matrix calculations of
this work ( X ), and results for K-shell electrons obtained from
photoeffect angular distributions using the low-energy theorem
(boxes). The energy for the characteristic K-L transition is indi-
cated by the vertical arrow.

electrons of carbon is given for a scattering angle of 60.
The ratio of the subshell contributions is in rough agree-
ment with the total screened photoeffect cross sections of
Scofield [63], who gives a K to L 1 ratio of 20 and a K to
L2 ratio of 1250 for 3-keV incident photons. Clearly the
K-shell contribution is dominant and is a good approxi-
mation to the whole-atom result.

In Fig. 27, we give the doubly differential cross sections
for the scattering of 2.94-keV photons from all of the
electrons in a carbon atom. Most of the spectrum is
dominated by the low-energy behavior corresponding to
the K-shell p. A terms. The resonances which were
prominent at 0.28 keV in the L2 subshell cross sections
are barely visible here. The peak occurs only at the
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hard-photon end of the spectrum. In the peak region, the
IA results are adequate. However, the IA results used
here are based on whole-atom Compton profiles. These
Compton profiles are functions of momentum transfer
only and cannot model effects associated with electron
binding. At 2.6 keV there is a break in the whole-atom
cross section due to the X-shell kinematic limit. This
limit is not adequately modeled in the IA based on the
whole-atom Compton profiles.

In Fig. 28 we give the scattering cross sections for
279-keV photons scattered from lead calculated in the IA
IA and the RIA. Superimposed on these results are the
K- and I.-shell cross sections. Clearly the low-energy
spectrum is dominated by the inner-shell contributions.
However, as expected, the contributions of the inner
shells are negligible in the peak region. Differences be-
tween the IA and the RIA calculations exist for hard
photons where the RIA predicts a step structure that is
not given by the IA. Again this is due to the fact that the
IA calculations were obtained from whole-atom data,
neglecting kinematic limits, whereas the RIA calcula-
tions were obtained by summing subshell results which
took kinematic limits into account.

The low-energy regime in total atom scattering, and
the entire spectrum for forward scattering, is given by
resonances superimposed on the low-energy rise of the in-
nermost scattering state. For higher scattered photon en-
ergies, the peak region is dominant. The behavior of
outer subshells in this region is quite different than the
inner-shell shape. The average momentum in the inner
shells is much larger than in the outer shells, causing the
inner-shell profiles to be broader and smaller in magni-
tude than the outer-shell results. Therefore, the center of
the peak is given primarily by the outer subshell cross
section, whereas the width of the peak is given by the
inner shells. The outer-shell cross sections are adequately

given by the RIA or IA results at the energies considered
here. Impulse approximation calculations obtained using
whole-atom momentum distributions may be in error due
to neglect of kinematic limits. This problem in calculat-
ing whole-atom IA results may be remedied by summing
the correct subshell cross sections rather than using
whole-atom momentum distributions.

For most practical applications (incident photon ener-

gy above the K-shell ionization threshold and scattered
photon energies above the resonant region), the cross sec-
tion singly differential in scattered photon angle will be
dominated by the peak region contributions of the outer
shells and so the effects discussed here will not be
significant. For forward angles, electron binding is mani-
fested principally by the need to impose kinematic limits

on the doubly differential cross sections of individual sub-
shells. These kinematic limits are not reAected in tabula-
tions of the integrated whole-atom incoherent scattering
factors as simple functions of momentum transfer and,
hence, modifications to the incoherent scattering factor
should be necessary for this regime of small momentum
transfer. For incident photon energies below the K-shell
ionization threshold, substantial corrections to the in-
coherent scattering factor may be necessary to reflect the
dominant resonant behavior of one or more inner sub-
shells.

In Fig. 29 we investigate the effects of the divergent
contribution of the p A term on the total incoherent
scattering cross section for the hydrogen atom, assuming
a 10-eV cutofF in scattered photon energy. The same
cutoff was taken both for radiative corrections to
photoeffect and for Compton scattering. Results are, of
course, independent of the energy of the cutoff. We see
that, although in the hydrogen atom the p. A terms dom-
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FIG. 28. Doubly differential cross sections for the scattering
of 279-keV photons from all of the electrons of a lead atom into
(a) 0, (b) 60, (c) 120', (d) 180'. We show whole-atom doubly
differential cross sections calculated in the impulse approxima-
tion [45] (dotted line) and the relativistic impulse approximatior'
[30] (chain-dashed line). Superimposed on these whole-atom re-
sults are the S-matrix predictions of the present work for the K
shell ( X ), for the L1 subshell (boxes), and for the L2 subshell
(circles). The difference in the Compton peak region demon-
strates the importance of scattering from outer-shell electrons.

FIG. 29. Photon-atom interaction cross section for H.
Shown are the magnitude of the radiative corrections to
photoeffect [53,64] (boxes) and the contribution of the p. A
terms of the nonrelativistic Hamiltonian to the total Compton
scattering cross section [32] (circles), for incident photon ener-

gies above 100 eV. Also shown are total cross section for
photoeffect (solid line), elastic scattering (dotted line), in-

coherent scattering (chain dashed line) from the incoherent
scattering factor, and pair production (dashed line) (taken from
Ref. [65]),for incident photon energies above 10 eV.
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inate the Compton cross section to a relatively high ratio
of incident photon energy to electron binding energy,
these contributions are negligible compared to the
photoeffect and even to the radiative corrections to the
photoeffect in the total photon-atom interaction cross
section. Note however that the total Compton cross sec-
tion does not continue to fall at low energies in the way
that the incoherent scattering factor would predict.

III. COMPARISON WITH EXPERIMENT

In this section we compare cross sections, calculated
within the formalism presented above, with values rnea-
sured in several recent experiments [5—9, 55], typical of
work performed in this field. As has been mentioned, ex-
perirnents on inelastic scattering of photons have been
performed for many years and there are a number of
different types of experiments. While recent experiments
[10] detecting both the ejected electron and the scattered
photon are expected to be quite useful as diagnostic tools
for target electron momentum density, we do not discuss
these results, as the available data is generally in regions
well described by the impulse approximation. We con-
centrate instead on experiments where the scattered pho-
ton, and perhaps a Auorescence photon, is detected. If
the Auorescence photon is detected, the scattering sub-
shell can be determined. If it is not, then the scattering
occurs from any electron in the atom.

Four of the experiments discussed here are recent ex-
amples of coincidence experiments where the doubly
differential cross section for scattering of photons from
the K shell is measured. Two of these experiments are
rather typical of much of the work in this field; here
high-energy nuclear sources of unpolarized radiation
were used for scattering from the K shell of high-Z ele-
ments [8,55]. The other two experiments were performed
at much lower energies, using either a nuclear source or
radiation from a synchrotron which was prepared in a
high degree of linear polarization, on elements of inter-
mediate Z, in order to examine the validity of the impulse
approximation at intermediate momentum transfer [5,7].
Additional experiments in the coincidence mode have
been performed for the L shell [66]. We do not discuss
these experiments here as they have been performed
where the impulse approximation is adequate. In the
case where only the direction of the scattered photon is
observed in coincidence with the fluorescence photon, we
discuss the E-shell experiment of Wolff et al. [9], which
shows surprising agreement with Whittingharn s integrat-
ed cross section [11].

There have been a number of experiments performed in
which the fluorescence photon is not detected. These ex-
periments include results for the doubly differential cross
section for the whole atom, but more often only the direc-
tion of the scattered photon is detected, yielding the
incoherent-scattering factor. For the doubly differential
cross section we have already presented comparison with
whole-atom scattering experiments at photon energies
above the IC edge [3]. We have seen, in these cases, that
inner-shell contributions (which must be calculated using
the S matrix) are important mainly in the soft-photon re-

gion of the spectrum, where experimental data is not
available, and they contribute negligibly in the peak re-
gion of the spectrum. Here we discuss the experiment of
Briand et al. [6], which was performed below the K-shell
binding energy in an attempt to detect the contribution in
the infrared and resonant regions from the L shell. We
discuss the contributions of the higher shells in this case.

We do not present data for the whole-atom
incoherent-scattering factor, defined to be the contribu-
tion from the peak terms of the doubly differential cross
section. As discussed above, the inner-shell contributions
of concern here are only important away from the Cornp-
ton peak.

We discuss the results of the various experiments in
light of our exact calculations. In all of the results
presented below, our calculations use potentials and wave
functions obtained with the relativistic self-consistent-
field method. These IPA potentials should be adequate
for our purposes, where we are mainly interested in
descriptions of inner-shell states, as they have been ade-
quate in calculations of Rayleigh scattering [15] and
photoeffect [63] for these shells at these energies. (At
lower energies and for outer shells correlation effects
should be included. ) We use the same DFS potentials
and wave functions for results obtained from the
photoeffect differential cross section, with the low-energy
theorem, and in calculations in the RIA. Thus for a
given potential, we can see the importance of the different
levels of approximation. In the situations considered,
screening effects do rnatter.

We first discuss traditional coincidence measurements
using relatively high-energy nuclear sources. At these en-
ergies one must scatter from high-Z elements in order to
observe any deviation from impulse approximation [2].
The K-shell contribution to the total Compton cross sec-
tion is very small and, coupled with an isotropic source
which is not very intense, results in poor counting statis-
tics. In Figs. 30(a) and 30(b) we compare the results of
the measurements of Basavaraju, Kane, and George [55]
for the scattering of 279-keV photons from the K shell of
tin into 90 and 115 with the nonrelativistic form factor
[24], the IA [45], the RIA [30], and the S-matrix calcula-
tions of the present work. The experimental data is un-
able to distinguish between the theories, even in the peak
region where substantial differences between calculations
exists. In a subsequent study [8] the authors reported er-
rors in their method of data analysis, affecting the spec-
trum in the infrared and peak regimes. While they did
not report corrected values for the measurements just dis-
cussed, the authors did present data for the scattering of
320-keV photons from the K shell of holmium into 45
and 115' and for gold into 115'. The results of compar-
isons between our S-matrix results and these improved
measurements for holmium have been reported elsewhere
[1]. In Fig. 30(c) we compare these recent measurements
for the Compton doubly differential cross section of gold
with our S-matrix results. Also shown are IA [45] and
RIA [30] calculations and the form-factor results of
Schnaidt [24]. As in the previous study, although the
theoretical approaches differ the experimental values
show no systematic agreement with theory. Additionally,
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FIG. 30. (a) Comparison of our S-matrix calculations ( X )

for the scattering of 279.1-keV photons from a K-shell electron
of tin into 90 with the experiment of Basavaraju, Kane, and
George [55] (points with error bars). Other symbols are as in
Fig. 3. (b) Same as (a) except for 115'. (c) Same as (b) except for
320-keV photons from a K-shell electron in gold. The experi-
mental data are from Ref. [8].

the experimental uncertainties (due to poor counting
statistics) are larger than the substantial difFerences be-
tween the theoretical values. In the infrared region the
situation is worse as the large number of electrons which
may ionize can produce false coincidences via brems-
strahlung emission.

Manninen, Hamalainen, and Graeffe [7] performed an
experiment with a source of low-energy (59.54 keV) pho-
tons scattered from copper and zirconium through angles
8=125 and 6=128'. Their intention was to provide a
test for the validity of impulse approximation in the low-
momentum-transfer region. Although they did not ex-
pect good agreement with the impulse approximation
(since kao =0.94 for copper and kao =0.67 for zirconium
and, as was discussed in the Introduction, the usual cri-
terion for the validity of the IA has been kao »1), they
reported that the impulse approximation explains the
spectral shape surprisingly well. Their measurement was
not absolute, but was normalized to theoretical values in
the peak region. They estimated bremsstrahlung by as-
suming negligible Compton scattering contributions
below approximately 20 keV and that the bremsstrahlung
contribution be zero at the kinematic limit for K-shell
scattering. Measured spectra were presented for energies
above 20 keV. In Fig. 31(a) we present the criterion (10)
and in Fig. 31(b) we give the comparison of our calcula-
tion with Manninen's experiment for the K shell of
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FIG. 31. Scattering of 59.54-keV photons from the K shell of
copper into 125'. (a) The measure of validity of the impulse ap-
proximation [Eq. (10)]. (b) Comparison of the experimental
data of Manninen, Hamalainen, and Graeffe [7] (points with er-
ror bars) with our S-matrix calculations ( X ). Also shown are
Gavrila's p A results [32] (circles) and the relativistic impulse
approximation results [30] (chain-dashed line). (c) and (d) Same
as (a) and (b) except for the scattering of 59.54-keV photons
from the K shell of zirconium into 128 .

copper, shown on an absolute scale with their data nor-
malized to the IA values. We also present the corre-
sponding IA results for this case. Our results confirm
their conclusion that, as below in the experiment of Mar-
chetti and Franck on this same element for a similar en-
ergy [5], the impulse approximation is satisfactory, as
would be expected from criterion (10) [shown in Fig.
31(a)]. This point has been discussed in detail in Ref. [2].
We can also confirm the authors' assumption that near 20
keV there is no noticeable Compton contribution.

In Figs. 31(c) and 31(d) we present, along with the cri-
terion for the validity of IA [Eq. (10)], the comparison of
our calculation with the zirconium experimental results
in the high-energy part of the spectrum. As already men-
tioned, the authors did not expect to get agreement with
the IA because of the small momentum transfer
(kao=0. 67). To their surprise, they found very good
agreement with the impulse approximation. Our calcula-
tion shows similar behavior at the high-energy end of the
spectrum to that predicted by IA. However it also shows
that there is no region where the Compton contribution
can be neglected as the authors assumed when estimating
bremsstrahlung. Below 20 keV, the Compton differential
cross section rises as the scattered photon energy de-
creases. At 20 keV the Compton cross section is about
25% of the maximum value (at the hard-photon end).
Our calculation shows very good agreement at the soft-
photon end of the spectrum with more approximate cal-
culations (Gavrila's p A approximation and the low-
energy formula). At the hard-photon end it approaches
the impulse approximation as the criterion [shown in Fig.
31(c)] predicts. Based on our calculations, we suggest
that the authors have subtracted significant Compton
contributions together with the bremsstrahlung contribu-
tion (at their 20-keV point). Although it was not the
author's intention to observe the infrared divergent
behavior in the Compton spectrum, and they did not ob-
serve photons below 20 keV, we believe that the achieved
experimental accuracy in their measurement could make
it possible to observe this interesting behavior at 20 keV,
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if this accuracy could be attained in an absolute measure-
ment and if an independent estimate of secondary brems-
strahlung could be made.

The availability of synchrotron-radiation sources now
makes it possible to perform experiments in all regions of
the Compton spectrum [4]. The high-photon fluxes in-
crease the counting statistics, decreasing the experimen-
tal uncertainties, thus enabling one to better distinguish
between different theories. The advantages of using syn-
chrotron radiation in the resonant Raman and the in-
frared regions also includes the relatively low energies
available, the tunability of the source, and the possibility
to make use of the polarization properties of the photon
beam in order to minimize contributions of the A term
in the KHW matrix element [4].

Recently, Marchetti and Franck [5] have reported a
series of measurements of the scattering of 62- and 70-
keV photons from the K shell of copper. They reported
reasonable agreement with a numerical evaluation of the
A term of the KHW matrix element, using screened
wave functions. In Fig. 32 we present a comparison of
their experimental data for the scattering of 70-keV pho-
tons from the K-shell electrons of copper into 90 with
our S-matrix results. The agreement between theory and
experiment is good, although despite the fact that the
counting statistics in this case are the best reported by
these authors, the error bars are substantial and it should
be noted that there is an uncertainty of 15%%uo in normaliz-
ing the experimental data [5]. Estimates of the p A con-
tributions were also given as well as a very complete
analysis of secondary processes leading to false coin-
cidences. We have confirmed the conclusion, in this case,
that the spectrum in the low-energy region is much small-
er than the authors' estimate of photoelectron brems-
strahlung generated false coincidence counts.

A very recent experiment of Briand et al. [6] attempt-
ed to exploit the characteristics of synchrotron radiation
discussed above in a noncoi. ncidence measurement per-
formed on zirconium, using a linearly polarized synchro-

tron source at energies ranging between 14 and 17.4 keV
(the largest energy used is slightly below the K-shell bind-
ing energy for this element). Photons were collected
parallel to the incident photon polarization vector, assur-
ing that the A term of the KWH matrix element would
not contribute. As has been explained, this is a resonant
region for Compton scattering and, as predicted by Gav-
rila, resonances occur for energies corresponding to
fluorescent lines. The resonant behavior which corre-
sponds to the K-L resonance was observed at the high-
energy end of the spectrum. The resonance at its max-
imum was not observed because the incident photon en-
ergy was below the K-shell binding energy. The observed
resonant behavior was strongest at the highest applied
energy (17.4 keV). Scattered photons of all energies
higher than approximately 2 keV (which corresponds to
the highest 1. Mreso-nant energy) were detected. At the
low-energy end of the spectrum, a large number of soft
photons were observed. Since this was not a coincidence
measurement there were contributions from all energeti-
cally allowed, occupied shells of the atom. The authors
argued that the contribution of the shells less tightly
bound than the L shell to the Compton scattering should
not be significant as the infrared behavior is strongest for
the innermost energetically allowed shell. This may be
readily seen from the total photoeffect cross sections of
Scofield [63], which are much larger at this energy for the
L shell than for the M shell. The authors ascribed the
low-energy photons to the infrared divergence of the
Compton spectrum from L-shell electrons, a rise in the
spectrum stronger than theoretically predicted by rough-
ly an order of magnitude. They claimed to have correct-
ed for bremsstrahlung, but some doubts persist [67]. We
present results for this case including calculations for the
L and M shells. We include the M shell because the con-
tributions of all shells should be considered and, although
the M-shell infrared behavior is smaller than that of the L
shell in this regime, there are L-M resonances expected
where the excess photons were observed. In Fig. 33(a) we
compare our L-shell contributions with the experimental
data for the scattering of 14-keV photons. Clearly the L-
shell predictions do not adequately describe the experi-
mental data. In Fig. 33(b) we include the M-shell contri-
bution in our calculations for this case. Due to the fact
that there are several resonances, we only show the spec-
trum to the onset of this regime. We observe that con-
trary to the assumptions of the authors, the M shell be-
gins to dominate in this region due to the L-M reso-
nances. We also came to this conclusion in the highest-
energy case (17.4 keV) considered by the authors.

Finally, in Fig. 34, we compare the experimental re-
sults of Wolff et al. [9] for the singly differential (in scat-
tered photon angle) photon scattering cross section for
the K shell for scattering of 661.6-keV photons from lead
with our S-matrix results and with the results of Whit-
tingham. In the S-matrix calculations, a low-energy pho-
ton cutoff must be assumed in order to define this cross
section. In the calculations of Whittingham this corre-
sponds to an energy of approximately 100 keV. We chose
the experimental cutoff (103 keV) in order to facilitate
comparison, and we also tried a cutoff of 6 keV in order
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FIG. 33. (a) Comparison of the resonant experiment of Bri-
and et al. [6] (experimental curve) with our S-matrix ( X ) and
low-energy theorem calculations (boxes) for the L-shell contri-
butions for the scattering of 14-keV photons from all of the elec-
trons of a zirconium target into 90. Here the incident photon
beam is linearly polarized in the plane de6ned by the incident
and scattered photon momenta. The vertical line below 2 keV
represents the experimental cutoff. (b) Same as (a) except shown
are theoretical M-shell contributions [S-matrix calculation (+),
low-energy theorem calculations (circles)] and L+M contribu-
tions [S-matrix calculation ( X ), low-energy theorem calcula-
tions (boxes)]. The L Mresona-nt region is indicated by dashed
lines. Only the energy for the characteristic L1-M2 transition is
shown by the vertical arrow. All M-shell contributions are in-

cluded in our calculation.

to investigate the effects of retaining divergent low-
energy contributions. We also show the results based on
integrating the relativistic impulse approximation calcu-
lations. For forward angles, the experimental values do
not agree systematically with any theory. At these angles
the contributions of the p. A terms may be significant.
This is especially evident for forward scattering where, as
seen in Fig. 9(a), the doubly differential cross section is
completely given by these terms, yielding a nonzero
scattering factor. For intermediate scattering angles, the
S-matrix results with the cutoff taken near the experi-

'l.o

0.5

0
0 30 60 90 120

8 (deg)
150 180

FIG. 34. K-shell scattering factors for the scattering of
661.6-keV photons from the E shell of lead. Shown here are our
S-matrix calculations with low-energy cutoffs of 6 keV ( X ), 103
keV (boxes). Also shown are the S-matrix results of Whitting-
ham [11] (dashed line), the relativistic impulse approximation
[29] (solid line), and the experimental data of Wolff et al. [9].

mental cutoff, both Whittingham's and ours, agree
reasonably well with experiment. The experimental
values agree only with Whittingham's results for back an-
gles, where a large drop occurs. In Fig. 9(d) we show, for
a scattering angle of 180', that this discrepancy cannot be
explained by the p. A contribution. At this angle, and
for most back angles, the contribution of this term is
small and the doubly differential cross section is dominat-
ed by the peak, where excellent agreement between our
results and the RIA is evident. Whittingham did not
present data at this angle. However, as was seen in Fig.
7, his result is significantly smaller than both the RIA
and our calculation for back angles. He suggested that
this drop at back angles in his singly differential cross
section might be in error [11].

IV. CONCLUSIONS

We have presented an ab initio method for calculating
Compton scattering spectra, based on the numerical solu-
tion of the relativistic second-order external field QED
S-matrix element for this process in the independent-
particle approximation. This method predicts the ob-
served spectral features in the infrared region, in the peak
region, and in the resonant regime. This type of ap-
proach is necessary primarily for evaluating inner-shell
amplitudes, particularly in regimes where these spectral
features overlap and where no single simpler approximate
method adequately gives the spectrum. We have sys-
ternatically investigated inner-shell cross sections. An in-
itial assessment of the validity of widely used approxi-
mate methods has been given. We find that the use of the
relativistic impulse approximation [30] in conjunction
with the low-energy theorem adequately reproduces the
spectrum in many cases of physical interest. For the K
shell we confirm the limited earlier work of Wittwer [12],
but not the more widely quoted results of Whittingham
[11].

We have discussed the extension of our results to outer
atomic subshells, performing S-matrix calculations for all
atomic electrons at low incident photon energies and ex-
amining the use of approximate methods in the outer
shells at higher photon energies. In these cases we find
significant low scattered photon energy structure, in-
frared and resonant, in our S-matrix calculations, not
predicted by the usual impulse approximation results, but
understood in terms of the nonrelativistic p- A matrix
element. We also observe structures, in the Compton
peak region of our calculations, both due to the nodal
structure of the electron state (seen above the peak) and
due to kinematical limits of contributing subshells. The
latter are not predicted in tables of whole-atom Compton
profiles, but may be obtained in IA calculations per-
formed separately for each subshell. We have integrated
our cross sections over scattered photon energy, assum-
ing reasonable low-energy cutoffs, in order to obtain the
cross section singly differential in scattered photon angle.
Here we find significant departures from the incoherent-
scattering factor results, particularly at low incident pho-
ton energies for the K shell of light elements.

We confirm that recent experiments at 60—70 keV [5,7]
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on the E shell of copper are adequately described by
theories which use only the A term of the KHW matrix
element. We have found, in contrast to the authors'
analysis, that a corresponding recent experiment on the K
shell of zirconium [7] was not adequately described by
the impulse approximation. We present more detailed
calculations in the recent, controversial experiment of
Briand et al. [6]. Our calculations include significant res-
onant contributions from the M shell, which were
neglected by the authors. We have discussed the problem
of experimentally observing the infrared divergence pre-
dicted by the low-energy theorem, earlier nonrelativistic
Coulombic calculations, and within the present formal-
ism.
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APPENDIX: NOTATION AND DEFINITIONS

P, ~(r)= + (r) o"ry, (r)
r

(Al)—(j+1/2), i (j
(j+1/2), l )j,

where o.„,cr, and o., are Pauli 2X2 spin matrices. The
two component spinors y are given by

We use definitions of Dirac y matrices and other nota-
tions as are in Ref. [68]. The wave function of an elec-
tron with energy E, angular momentum j, and orbital an-
gular momentum I can be written in the form [68]

G„(r)
i q (r)

r

m —1/2
2

yk(r)=( —1)' (2j+1)' '
ym —1/2(~r)—m

J
ym +1/2Pr)m+1/2 ——' —m2

The YI are spherical harmonics and the objects in
parentheses are 3-j coeKcients defined as in Ref. [69].
The radial functions 6 and I' satisfy the coupled homo-
geneous differential equation

dG +—G„—[1+E—V(r)]I', =0,
dr r

wave phase shift, E denotes energy, p is the momentum,
and y, represents spin states:

0
0 1/2 0 ~ 'It —1/2 1

~

The wave functions P, =f, for the electron scattering
states are normalized as

dF
F —[1 E+—V(r)]G =—0 .

dr r

(A3) I fp, (r)gp, (r)d'r =5. ..5'(p —p') . (A5)

P, (r)= g (i)' '(q (p)q, )e "q„~(r),
~, m

(A4)

where f z is given by Eq. (Al), 5, denotes the partial-

For energies E & 1 the solutions are oscillatory functions
and, for E (1, the bound like solutions are exponentially
decreasing functions as r ~~, except for energies in the
negative-energy continuum, which behave in an oscillato-
ry fashion. In both cases the boundary conditions are im-
posed by requiring quadratic integrability for the solution
[68].

The wave function of an outgoing electron of asymp-
totic momentum p and spin projection cz is the solution of
the coupled equations which far from the origin behaves
as the sum of the appropriate distorted plane wave and a
distorted incoming spherical wave. The partial-wave ex-
pansion of this function is [70]

The bound-electron wave functions are normalized to
unity.

The photon plane-wave function used in our calcula-
tions is

A(x) = 1 «'" ", co= /k[,&2'( 2m')
(A6)

«""=4~ g (i)' '[e~,'"*(k)]a,"' (x,k),
L,M, A,

(A7)

where 1., M, and A, denote the angular momentum, the
projection of angular momentum, and the parity of the
partial wave. The function aL M(x, k) is given by

where e denotes the polarization and k the momentum of
the photon. For this wave we have used the multipole ex-
pansion [70]
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aL M(x, k ) J—L(kr)YL M(x),

aL"M(x, k ) = [&L + lgL, (kr )YL,L 1,M—(x)2L+1

of Eq. (All) and taking

gL M2. ~

( 1) 1 1[1+( 1) 1 0
]Kl, m

1 2

fL+1 k YL,L+I,M(x)] x-,'
(2ji + 1)(2jo+1)(2L + 1)

42rL (L+ 1)
(A8)

The vector spherical harmonics YL ~ and YL L ~ ~ are
defined as in Ref. [70].

Using the multipole expansion (A7) of the photon wave
we can write the function F(x,2i) [Eq. (17)] in the form

F(x, 21)=47r g (i ) [e.+'L"M]*(k)].FL"M(x, 21), (A9)
I.,M, A,

where

FL M(x, 2])= —f d y S,(x,y, 21)y aL M(y, k )g&(y) .

JI Jo L
1 1 0

Jo

m) —mo M (A13)

Kl

+ g —[1+ri—V(r)]f =G
(A14)

the radial functions g and f, in Eq. (A12) satisfy the
1 I

coupled inhomogeneous radial equations

with boundary conditions determined from the propaga-
tor boundary conditions. Namely, for ~x~ =r ~ 00,

—e"" " for I2]l & 1,
F z(

' —y)'~'r

(A 1 lb)

where F and Fo denote r-independent four-spinor func-
tions as determined by numerical calculations. Far from
the origin, the function Fl M should behave as an outgo-
ing spherical wave for ~2i~ & 1. This does not depend on
the sign of the energy in the propagator (for the
emission-first matrix element g can be negative if
coz & 2 Es). Equation—(Al la), with boundary conditions
Eq. (Allb), completely determines the function FLM.
This function FI ~ can further be expanded in the form

g~, (r)
i y, '(r)

r 1

FLM(xvl)= g A, ~ f { )
Klyml I

r

(A12)

Making a similar expansion for the inhomogeneous term

(A10)

Note this is still a function of all final electron spatial
variables. The function F& ~~ satisfies the inhomogeneous
Dirac equation

[i V a —1{2'—V(r)+21]FL M(x, 2])= aaL M(—x, k )gii(x),

(A 1 la)

The functions G„and F are the bound-electron radial
0 0

functions as defined in Eq. (Al). The function AL
contains the photon radial wave functions and has the
form

(kr ) =(110—111j)L(kr ),

(kr ) = (L —a'o &i)j L —1(«)

L
2L +1 (L +~0+a., + 1 )jL+,(kr ) .

(A15)

x f [G (r)f' (r)&L2 „(k r)

F(r)g' (r)&—L' (k2r )]dr,

I('r] =P('~](L,A, ,L „A,, )

(A16a)

X f [G (r)f ' (r )&L' (k 1 r )

F(r)g „' (r)&L—' (k 1 r ) )dr .

(A16b)

The factor P(' ](Lr„A,„Lz,k,z) differs in these two ex-
pressions by exchanging (L „A,, ) and (Lz, A,z); it is given
by

The radial integrals that appear in the expressions for
the coefficients CJ' of Eq. (23) have the form

I('r] =P ('r ](L A, L A. )

P(e, y](L P L P )
—1[1+( 1) 1 0 2 2 ]1[1+( 1) 1 2 1 1 ](2' +1}

(2jo+1)(2j2+1)(2Li+1)(2L2+1) Ji Jo L2 Jz Ji

L, (L, +1)L2(L2+1)
(A17)
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The subscripts on the electron angular quantum num-
bers are 0 for the bound electron, 1 for the electron in the
propagator [described by a partial wave of the F function
in Eq. (A12)], and 2 for the outgoing electron. Incoming
photon angular quantum numbers are denoted by sub-
script 1 and outgoing photon angular quantum numbers
by subscript 2.

To obtain the matrix elements I~'*~~ and I,~'~~ we solve
the homogeneous differential equations (A3) for radial

functions G, and F (E) 1), and the inhomogeneous
2 2

differential equations (A14) for g'„, f'„(g) 1) and g,',
1 1f' (g (1). We use the potential V(r) and the bound-

1

electron radial wave functions G and F„as numerical
0 0

input to our code. They can be obtained from the relativ-
istic self-consistent calculation already discussed. Our
code can use other potentials and wave functions as in-
put.
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