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Macroscopic limit of a solvable dynamical model
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The interaction between an ultrarelativistic particle and a linear array made up of N two-level
systems (AgBr molecules) is studied by making use of a modified version of the Coleman-Hepp
Hamiltonian. Energy-exchange processes between the particle and the molecules are properly taken
into account, and the evolution of the total system is calculated exactly both when the array is
initially in the ground state and in a thermal state. In the weak-coupling, macroscopic (N ~ oo)
limit, the system remains solvable and leads to interesting connections with the Jaynes-Cummings
model, which describes the interaction of a particle with a maser. The visibility of the interference
pattern produced by the two branch waves of the particle is computed, and the conditions under
which the spin array behaves as a "detector" are investigated. The behavior of the visibility yields
good insights into the issue of quantum measurements: It is found that, in the N —+ oo limit, a
superselection-rule space appears in the description of the (macroscopic) apparatus. In general, an
initial thermal state of the "detector" provokes a more substantial loss of quantum coherence than
an initial ground state. It is argued that a system increasingly loses coherence as the temperature
of the detector increases. The problem of "imperfect measurements" is also briefly discussed.

PACS number(s): 03.80.+r, 03.65.Fd, 42.52.+x, 03.65.Bz

I. INTRODUCTION

Quantum mechanics is considered to be a fundamental
theory of nature, due to its successful predictions in many
practical applications. Nevertheless, we still lack a corn-
plete understanding of its interpretative postulates, in
particular on the so-called quantum-measurement prob-
lem [1]. There is not even unanimous consensus about
the very definition of the problem, and in fact there have
been long discussions in order to understand whether a
quantum-mechanical-measurement process can be ana-
lyzed within the quantum-mechanical formalism [2].

von Neumann's projection rules [1] are very useful com-
putational tools, but the presence of an external "classi-
cal" measuring apparatus is required in order to provoke
the "wave-function collapse. " We feel that this is not sat-
isfactory, because a measuring system is made up of ele-
mentary constituents that must be treated quantum me-
chanically, and is therefore a quantum-mechanical object
itself. On the other hand, the "classical" nature of the
macroscopic measuring system should be properly taken
into account, because we know that the above-mentioned
von Neumann's rules work well, in practical calculations.

In this paper we shall give a concrete example of in-
teraction between an elementary quantum system Q and
a model detector D. Notice that if we want to treat
the Q + D system quantum mechanically, we must con-
sider the quantum-mechanical structure of both systems,
and this is highly nontrivial if one of the two systems is
made up of many elementary constituents, because we

are forced to consider the interaction between the object
particle Q and every single elementary constituent of D.

In order to study the interaction between an object
particle and a detection system in the above-mentioned
sense, solvable models are very helpful: Not only do they
give good insights into physics, but they also provide us
with a better understanding of the complicated phenom-
ena involved. In this respect, a model Hamiltonian pro-
posed by Hepp [3] is very well known: It describes the
interaction between an ultrarelativistic particle and an
ensemble of two-level systems, and is usually referred to
as AgBr or the Coleman-Hepp model. Due to its relative
simplicity, the model has received considerable attention
in the past, and has played an important role in the lit-
erature on the measurement problem [4—8]. Another in-
teresting solvable model which describes the interaction
between a two-level system and the electromagnetic field
in a cavity (maser) was proposed by Jaynes and Cum-
mings some years ago [9].

Our purpose is twofold. First, by making use of a mod-
ified version recently proposed [10] for the AgBr Hamilto-
nian, we will study the interaction between the particle
and the detector when the latter is initially in a ther-
mal state. This situation is more realistic than the usual
one, in which the detector is initially taken to be in the
ground state, because D is macroscopic and cannot be
completely isolated from its environment. We emphasize
that it would be impossible to study the case of a ther-
mal detector starting from the original Coleman-Hepp
model, due to the absence of a free Hamiltonian for D.
The introduction of the latter will also enable us to com-
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pute several physically relevant quantities, such as the
energy "stored" in D as a result of the interaction, its
fluctuation, and their ratio.

Second, we shall consider a weak-coupling, macro-
scopic limit for the AgBr model. We shall see that
there is a connection between this limit and the 3aynes-
Cummings model. The link can be seen only in our mod-
ified version, which is able to take into account energy-
exchange processes between Q and D.

We will realize that the above-mentioned limit of a de-
tection system is extremely important from the point of
view of quantum measurements: Indeed, the visibility of
the interference pattern can be exactly computed for the
case of a finite number N of elementary constituents of
D, and its behavior in the N —+ oo limit is very interest-
ing. It will be seen that a macroscopic system does not
necessarily behave as a "detector, " unless other impor-
tant conditions are met.

This paper is organized as follows. We review the orig-
inal Coleman-Hepp model in Sec. II, and introduce the
modified version in Sec. III, where the case of a detector
initially in a thermal state is also considered. In Sec. IV
we compute the weak-coupling, N ~ oo limit of some
interesting physical quantities and of the scattering ma-
trix. A slightly modified version of the 3aynes-Cummings
model is displayed in Sec. V, and the relevant evolutions
are considered. We will see that the latter model yields
the same results obtained in the weak-coupling macro-
scopic limit from the AgBr ease. In this limit and under
certain conditions, the two Hamiltonians are shown to be
identical in See. VI. The correspondence will be pushed
further in Sec. VII, where the problem of quantum mea-
surements will be considered, in particular in the light of
the appearance of unitary-inequivalent representations in
the many-Hilbert-space theory proposed by Machida and
Namiki [11]. Section VIII contains additional considera-
tions concerning this issue and briefly touches upon the
concept of imperfect measurements.

(2.1)

where Hg is the free Hamiltonian of the particle and
H'~ ~ the interaction Hamiltonian. These are explicitly
written as

Hg =cp,
N

H'( ) = ) V(x —x„)ol (2.2)

where p is the momentum of the particle, x its position,
V is a real potential, x„(n = 1, ..., N) are the positions

of the scatterers in the array, and o.1" is the Pauli matrix
acting on the nth site.

Notice that the Hamiltonian H is invariant under ex-
change of scatterers in the array. Therefore, if we call 'P~
the group of permutations on (1, . . . , N), we can restrict
our attention to the P~-invariant sector 'R~ of the bigger
Hilbert space 'R(~) of the N scatterers. The former is
generated by the symmetrized states

~
j)~, j = 1, . . . , N,

where j is the number of dissociated molecules, while the
latter by the vectors [(j))~, representing states in which

j particular molecules are dissociated. The two types of
vectors are related to each other via the formula

(N) —1/2

) .[(i))n,
(i)

(2.3)

where the summation P( .
&

is over the permutations. In-

cidentally, observe that dim'R(~) = 2, while dim'H~ =
N+ 1. In the following, we shall concentrate our analysis
on the 8ymmetrized case, and give only a few comments
for the other case. The symmetrization will become a
delicate problem in the N —+ oo limit, to be tackled in
the following sections.

The above Hamiltonian is a nice model of a typical
measurement process and can be solved exactly. Let us
sketch rapidly the main results by making use of gener-
alized coherent states [6]. A straightforward calculation
yields the following S matrix:

II. REVIEW OF THE ORIGINAL
AgBr HAMILTONIAN

S(n)
n=1

. v.~
S~ j = exp i ) o(")—hc., ') (2.4)

Let us start ofF by introducing the Coleman-Hepp or
AgBr Hamiltonian, and by reviewing the main results
obtained by diferent authors in the past [3—8]. Even
though the content of the present section is not original,
light will be thrown on those results that are most impor-
tant from the "macroscopic" point of view to be analyzed
in the present paper.

The AgBr Hamiltonian describes the interaction
between an ultrarelativistic particle Q and a one-
dimensional ¹pin array (D system). One can think,
for instance, of a linear emulsion of AgBr molecules, the
down state corresponding to the undivided molecule, and
the up state corresponding to the dissociated molecule
(Ag and Br atoms). The particle and each molecule in-
teract via a spin-flipping local potential.

The total Hamiltonian for the Q + D system is

where

f . Vp6 ( )i
S(„) = exp

~

i o.,"—
n

(Vpb1 . ( ) (Vp61= cos —icr1 sin
( hc p ( hc ) (2 5)

p l[
&~)

The S matrix can alternatively be written as

(2.6)

and Vpb—:f V(x)dx. This allows us to define the
"spin-flip" probability, i.e. , the probability of dissociating
one AgBr molecule, as
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where

S( ~=expl i —NZ (2.7)
where I@;) = f dp;c(p;) lp, ) (i = 1, 2) are one-
dimensional wave packets, normalized to unity. Assume
that only @2 interacts with D. The final state of the total
system is

N
~(N) 1

N A=1

is the average spin. Observe that

j=123 (2.8) @~ = IA&lo&)v+ ~"'IA&lo&iv (2.16)

and after recombination of the two branch waves the
probability of observing the particle is

(2.9)

with i, S, k any even permutation of 1, 2, 3, so that the
operators NZz form a unitary representation of SU(2).
Moreover, by defining

~(N) 1 ~(N) ~ ~(N)
1 2 (2.1o)

one gets the algebra

Ng(N) Ng(N)

Ng( ) Ng( )
3

=-NZ( ',

=-2NZ~ ',

=+2NZ~ ).

(2.11)

NZ+ In)iv = Q(N —n)(n+ 1) ln+ 1)iv,

NZ 'ln)iv = g—(N n+ 1)n ln 1)iv

NZ.'"'In)~ = (2n —N) In)~,

(2.12)

The initial D state is taken to be the ground state IO)iv
(N spins down), and we shall first consider the situation
in which the initial Q state is a plane wave. The evolution
is easily computed from Eq. (2.7) by observing that

I' = l@~l' = 1@iI'+ I@21'+2Re &il»q(OI~"'lo&iv .

(2.17)

Interference is observed when a phase shifter is inserted
in one of the two paths (neutron-interferometer type),
or when the two branch waves originating from the slits
are forwarded to a distant screen (Young-interferometer
type). In both cases, the visibility of the interference
pattern is readily calculated by Eqs. (2.14) and (2.17) as

v = -" -'" = ~(ols("~lo)~ = (1 - q)"/2. (2.18)
Pmax + +min

Equations (2.7), (2.14), and (2.18) are the main results
of the above analysis. Observe that the result is exact
and holds true for every value of N. The N ~ oo limit
is a somewhat delicate problem, and will be one of the
main objectives of the present study.

Notice that, as was to be expected, for finite q g 0, the
interference pattern disappears in the N-infinity limit.
This is essentially the case considered by Hepp [3] and
Bell [4]. We shall instead consider the weak-coupling,
macroscopic limit by letting N —+ oo with qN = n =
finite [7]. In this case, the visibility becomes

and by making use of the formula [12] qN/2 —K/2—
N ~oo, qN =finit (2.19)

—iO.N Z1 tanh( —ia) N Z+ —1n [cosh( —ia)]N Zs+ e

„ tanh( —i~)NZ'")

=e—i tan(n) NZ+ —ln(cos n) NZ3+ e„—it ( )NZ&"'

The result is

(2.13)

Note that qN = n represents the average number of ex-
cited molecules, so that interference gradually disappears
as n increases. This is in contrast with the "sudden" dis-
appearance of interference in the finite q g 0 case.

It remains to be stressed that the Hamiltonian H can
be shown [8] to be equivalent to the one studied in Ref.
[13], if we restrict our attention to the Hilbert space 'Riv.

N N —j+' 'l««)n = ) ) , (—'v«)' (4« —«) lu, )«))N
&=o Ii)

N (N) i/2

=):I (—~K«)'(4« —
«) l««)~,

(2.14)

@I (@1+ @2) Io)iv (2.15)

where we have used the notation lp, (j))iv
lp)l(jk))v lp j)iv = lp)lj)iv The fa»ight-hand»de
in Eq. (2.14) is a generalized coherent state [6].

In a typical interference experiment a divider splits an
incoming wave function Q into two branch waves @i and
Q2, so that the initial state of the Q + D system is

III. THE MODIFIED AgBr HAMILTONIAN

The previous results are very interesting, but we should
remark that the above interaction Hamiltonian does not
take into account the possibility of energy exchange be-
tween the particle and the spin system: Both systems
never lose (or gain) energy as a consequence of the in-
teraction. According to Ref. [14], a measuring apparatus
that is not afFected by the interaction simply acts as a
"decomposer, " i.e., a device that is only able to perform
a spectral decomposition. In order to obtain a change of
the apparatus state reflecting the state of the measured
system one must, in general, modify the Hamiltonian of
the total system. In the Coleman-Hepp case, even though
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H =Hp+H',
Hp ——Hg + HD, (3.1)

the state of the spin array changes and the total energy
of the Q + D system is conserved, the energy levels of
the spin system are completely neglected. This is not
satisfactory, if we want to regard the spin system as a
detecting device, because we are implicitly assuming to
be able to distinguish energetically different states of the
array: On the other hand, this can be made only via a
free Hamiltonian of the spin system, which is absent in
the above description.

This situation can be improved [10] by taking into ac-
count both the energy levels of the D system and the
energy transfer between the Q and D systems: The free
Hamiltonian of the spin array is added, and an appropri-
ate operator is introduced into the interaction Hamilto-
nian. These modifications make the model more consis-
tent and realistic. Remarkably, the model remains solv-
able if a "resonance condition" is met.

The total Hamiltonian for the Q+ D system becomes

in the following way:

HI„)ip, f(„))= V(x —x„)p—

(3.3)

where H( )
is the H' term acting on the nth site,

~ p, j, ( ) )
represents a state in which the Q particle has momentum
p and the nth molecule is undivided (spin down), and
analogously for the other cases. We understand from
Eq. (3.3) that the interaction Hamiltonian H satisfies
a "resonance condition, " because the energy acquired or
lost by the Q particle in every single interaction matches
exactly the energy gap between the two spin states (i.e. ,
the energy required to provoke one spin flip).

The analysis of the previous section is readily extended
to the present case. The 8 matrix stems from the product
of factors [10]

( . Vo~
S(„) = exp

i

—i a(") u
ihc )

where the free Hamiltonians of the particle and of the de-
tector, Hg and HD, and the modified interaction Hamil-
tonian H' are written as

(3.4)

Hg =cp,
and is computed as

Ho = «'t««) (1+««" ), (3.2)
MINI .Vo6

S(„) =exp i ' ) ~(")—u
n=l n=l

H = ) U(2: —z„)oi exp i —os 2'(n) .(d

cn=l
N

(n) . (d= ) V(2: —2:„) o.+ exp i x——
Cn=l

= exp
i
-i XZ(~).u

~

.
. V06

hc
(3.5)

+~" exp +i —2;
c

Notice that the energy difference between the two states
of the molecule is Lu, and that the previous Hamiltonian
[Eq. (2.2)] is reobtained in the u —«0 limit.

Observe that, in contrast with every previous analy-
sis [3—8], we are not neglecting the free energy of the
scatterers, represented by HD, and are taking into ac-
count the energy exchange between the Q particle and
the spin system: This is accomplished by the above in-
teraction Hamiltonian, whose action can be decomposed

[Compare with Eqs. (2.4) and (2.7), and observe that the
spin-flip probability q is the same. ] We shall now com-
pute the evolution of the total system in two interesting
cases.

A. Initial ground state

If we take, as in the previous section, the ground state
~0))v as the initial D state, the evolution of the total
system is easily calculated as

(3.6)
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Once again, we obtain the value The condition Trpth = 1 yields

+max +min

&max + Pmin
(ol~~ jlo) = (i —q)"" (3.7) (3.13)

(Hz))y = N(ol& tHz)s lo)N = qN~, (3.8)

where I' stands for final state and the Q-particle states
are suppressed. The fluctuation around the average is

(PHD)p = ((Hz) —(HD)p) )~ ——QpqNM, (3.9)

where p = 1 —q, and their ratio is given by

(bHz)) p

(HD)~
p

qN
(3.io)

We stress that the above results (3.8)—(3.10) could not
be calculated starting from the original Coleman-Hepp
Hamiltonian (2.2), due to the absence of the free Hamil-
tonian HD.

The limit N —+ oo, qN = n & oo is very interesting
and will be discussed in the next section. We shall see
that such a limit can be consistently taken only for the
"modified" AgBr Hamiltonian introduced in this section.

for the visibility of the interference pattern. Notice that,
for the sake of simplicity, we are suppressing the depen-
dence on the "screen coordinate, " in the second equality
of Eq. (3.7) (see Appendix A). In the following, we shall
always suppress the Q states unless confusion may arise.

It is interesting to calculate the energy "stored" in the
array after the interaction with the particle. It is com-
puted as

( e
—Phut pr ~ ))~—(~+&)w

~—(N+i)Pn

(6H )'"

(Incidentally, notice that in the unsymmetrized space
'RANI there would appear different expressions for the
above two quantities. )

We are implicitly assuming that the interaction be-
tween Q and D takes place when our detector is in con-
tact with a thermal reservoir, at temperature O. Ob-
viously, after the interaction, D will thermalize again,
returning eventually to its initial state p&h, so that no
trace of the passage of the Q particle will be left. This
situation is not very interesting, from our point of view,
because we are just investigating under which conditions
the spin array responds to the interaction with the Q par-
ticle, detecting its passage. Only in such a case can the
D system be considered as a "detector. " In the follow-
ing analysis we shall assume that the coupling between
D and the thermal reservoir is very weak compared to
that between D and Q, so that the state of D immedi-
ately after the interaction with Q can be considered, to
a very good approximation, as the final state. Alterna-
tively, we can assume that the interaction between Q and
D is much quicker than between D and the reservoir, so
that the thermalization process of D after its interaction
with Q requires a much longer time.

The initial D state is characterized by the quantities

(H~)z" = Tr (Hz) pgh)

B. Initial thermal state

N

p h = —exp —P ) 1+as1 Ld' .=1
(3.11)

where Z is the partition function and P = I/kO, 0 being
the temperature. As previously stated, we restrict our-
selves to the symmetrized space 'RN, so that the identity
is written as 1 = p. 0 lj)NN(j, and

In the previous subsection we have considered the in-
teraction between a Q particle and a spin array D when
the latter is initially in the ground state. This situation
is not completely satisfactory, from the physical point of
view'. Indeed, our spin array is a caricature of a detector,
and is therefore a macroscopic object. A more realistic
description of D should therefore take into account such
macroscopic quantities as volume, temperature, and so
on. Let us now consider the case in which the detector is
initially in a thermal state, characterized by the density
matrix

e—pM

~ (I — — )'
(N + 1)2e—(N+1)phut )
(I e—(N+llPhur) )

(3.i4)

+p
( ) ( ) (3.i5)

where I stands for initial state.
The evolution of the Q + D system can be computed

explicitly, but the final state, expressed in terms of den-
sity matrices, does not have a simple expression due to
the presence of the Q-particle states. We shall see, in
Sec. VII, how it is possible to devise a formal expedient
in order to get rid of the Q states. Here, we just calcu-
late the value of the physically interesting quantities in
the following way: From Eq. (3.4) we get

S(„) = exp —i~a(") u

N

pth = —) .exp [ i P ] jl)NN (j l. — (3.12)
where we have written m = V06'/hc. [Notice that if we
assume a small spin-flip probability q (of order N 1), we
get q = sin m m .] It is then easy to compute
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S(n) 03 S( )
0 3 cos 2~(n) t (n)

(3.16)
so that

+ 0 l sin —x —02 cos —2: sin 207
C c

(")co 2

+i u+ e ' * —0 e' sin2m

*(n}03 )

It is then straightforward, if lenghty, to prove that

(s )P = T (s i~) = T (Hosi"ip„si i')

= T. S I~a S["~p,h

= cos 2m(Hri)1 + —Aced(l —cos 2m),
2

(3.18)

S[NjII S[N]t - 1+~*(")
2 n=l

(3.17)
where F stands for the final state.

Analogously, we get

2

(6Ha)~ =
l ~

(4cos 2tv —2sin 2m) 2p& + pi —(N + 1)(N + 1+2pi)pN+i42)

+ 4N cos 2m(l —cos 2m) + 2N sin 2m [pi —(N + 1)pN+i]

- 1/2

+iii (1 —cos 2m) + s sin~ 2m) —((FI~)P~) (3.19)

where p = exp( —mp~)/[1 —exp( —mp~)].
The calculation for the visibility is more involved and is explained in Appendix A. The final result is

eP~ cosN+2 f
[N) e cos G7 1

g (t )i ) gN+1 N+1 (3.20)

cos m (1 + e~ ) + cos4 m (1 + ei ~) —4 cos2 me~~

Obviously, we recover the results of the previous subsec-
tion for 0 = 0 (P = oo).

Once again, we realize the advantage of keeping the
free Hamiltonian HD. If one started from the origi-
nal Hamiltonian (2.2), one would not be able to discuss
the temperature dependence of the physically interesting
quantities [see Eqs. (3.14), (3.18), (3.19), and (3.20)]: In-
deed, if there are no energy differences between different
spin configurations, the D system, if it is to be repre-
sented by a mixture, is always described by the density
matrix of a completely random ensemble [15], irrespec-
tively of the temperature, and any discussion about the
temperature dependence would be meaningless.

model, introduced in the previous section. This will be
done by keeping the quantity qN always finite. The phys-
ical meaning of this limit is appealing: It corresponds
to admitting that the number of dissociated molecules
n = qN is Finite. Alternatively, one can say that the en-

ergy nfl = qNLu exchanged between the particle and
the detector is kept finite, even though the number of
elementary constituents of D becomes very large. It is
also worth stressing the link with the A2t limit originally
considered by Van Hove [16].

A. Interesting physical quantities

IV. THE WEAK COUPLING (N -+ oo) LIMIT

One of the main purposes of the present investigation is
to study the therrnodynamical limit of the modified AgBr

Let us now evaluate the physical quantities calculated
in the previous section in the N ~ oo, n = qN = finite
limit.

If the initial D state is the ground state ~0) N we obtain,
from (3.8), (3.9), (3.10), and (3.7), respectively,
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(HD)F ~ nba,

(bHD)F ~ un',
(SHE�)F 1

(HD)F
n/2-

(4.1)

state we get, from Eq. (3.14),

(H~)tlh ~ ruunth,

(bH~)tlh ~ nthe~~~',

(bH )'"
)th

(4.2)

Notice that the N ~ oo limit, with finite q g 0, yields
only divergent or vanishing quantities.

On the other hand, if we start from the thermal D

where nth = e ~~/(1 —e i ~) is the number of ex-
cited (up) spins in the initial thermal state, and from
Eqs. (3.18)—(3.20),

(Hrl)F" ~ hu (n,h+ n),

(b'HD) F ~ hu nth 1 + (2n + 1) (e~~ —1) + n (ei ~ —1),

)th

)th

1 + (2n + 1) (e~~ —1) + n (e~~ —1)
1+n (e~~ —1)

v'" —+ exp —(nth + 2l) n

Obviously, we recover the results of Eq. (4.1) for 0 = 0 (p = oo). In particulsr,

(4 3)

)th

(H~)tFh: 1/~n. (4 4)

B. The scattering matrix

Let us now turn our attention to the N —+ oo limit of the scattering matrix S( j [Eq. (3.5)]. Observe that the S
matrix can be rewritten as

N

S( j =exp i ) ~&") u—N

= exp

= exp

~

~

N
. Vpb . ( ) .~ ( )o exp —i —x + o. exp +i—x

hc - + c cn=1

~ ~ ~

~

N

i v N—~ exp i x) o+ +—e—xp +i,—x ) o
VQb Ld 1 (n) . td 1 (n) (4 5)

Consider now that the condition qN = finite, with ~q
VQb/hc, implies that the quantity (VQb/he) v N = uQb'/Lc
behaves "well" in the N —+ oo limit, i.e. , it does nei-
ther diverge, nor vanish. (We assume, for simplicity
and without loss of generality, that b is the same quan-
tity used in Sec. II.) On the other hand, the opera-
rora irr rrr p„r oai aad'(1/2) p„r (i +oai"i) [rririoh

is nothing but the free Hamiltonian of the detector in
Eq. (3.2)] obey, in the N ~ oo limit, the standard boson
commutation relations for a, at and JV = ata [17]. This is
shown in Appendix B for the reader's convenience. Sum-
ming up, we can identify

N

n=1

N

) o" =vNZ: a,
n=l

(4 6)

so that the S matrix becomes

N

—,
') (i+a,'"') = —, (ii"i+a™):A'—= a

=1
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[~l .uof ( t . idS' ' —+S=exp i — ~a exp i —x-
hc( c

+aexp i x-
c (4 7)

A. Initial ground state

Let us first assume the initial state to be ~p, 0) = ~p) ~0),
where ~0) is the ground state of the maser cavity. The
evolution is

The connection with a "maser" system is obvious, and
will be made more precise in the next section.

—„g,) ( aWic)—' . M .

)3=0 j (5.4)

V. THE MASER SYSTEM

Let us clarify the connection between the modified
AgBr and the maser systems. First we consider the case
in which the D system is an electromagnetic field in a
cavity (maser) We. keep the free Hamiltonian Hq = cP
for the Q system, so that the total Hamiltonian is given
by

in(a +a) a&
—in(a +a)

we easily obtain

(5.5)

(uo~l '
(hc)

with ~p~, j) = ~p~) ~j), ~j) being the number state of the
cavity. By observing that

where

HJe = HJc+ H]Ja
p

Hp ——Hg + HD,JC JC (5 1)
(H )

(~H~ )~ = v-h,

Hg =cp,

H =~JV=~a a,

(6H )F 1

(H~&)
(5.6)

gJC .Cd
H = u(x) a exp i 2:—+—aexp i x-

c c (5 2)

. XLp6 t . (d .Cd

S = exp —i at exp —i—x + a exp i —x
hc c c

(5.3)

where f u(x) dx = uob, b being the same quantity used in
Eq. (4.5). Notice that the S-matrix obtained here is ex-
actly the same as that derived in the N —+ oc limit for the
modified AgBr model (4.7). We will see below that the
results obtained in Secs. III A and III B can be extended
to the "JC" case in a fully consistent way. The anal-
ogy between the two cases will be pushed much further
in Sec. VII. We first calculate the physically interest-
ing quantities for the JC case in this section, and then
we put forward a correspondence between the modified
AgBr and JC Hamiltonians in Sec. VI.

Here, we wrote JC in order to stress the resemblance with
the so-called Jaynes-Cummings [9] Hamiltonian that de-
scribes the interaction between a two-level system and
the electromagnetic field in a cavity. The JC Hamilto-
nian difFers from the present one only because it contains
terms of the type w~, instead of exp (+i—x), r~ being
the raising or lowering operator for a two-level system.
In the case we are considering, the Q particle has a con-
tinuous spectrum, and can exchange an arbitrary number
of quanta of energy Ku. Clearly, this difFerence is not im-

portant for our analysis, one of the purposes of which
is to understand the behavior of the spin array in the
N —+ oo limit.

We solve the interaction between the Q particle and
the D system (maser). The S matrix is

yJc —x/2=e
where F denotes the final state and the matrix elements
of the Q-particle states are trivially computed. As was to
be expected, the above equations allow us to interpret K

as the average number of boson excitations in the cavity.
We can see the perfect correspondence between Eqs. (4.1)
and (5.6), if we identify

nMR. (5.7)

B. Initial thermal state

The thermal state of the cavity can be written

p, h
———exp —Phcuata (5.8)

where Z is the partition function and P = 1/kO, 0 being
the temperature. In the Fock space '8 the identity is
1 = g o (j)(j), so that

(5.9)

Incidentally, notice that, if we neglect altogether the Q-
particle states, the generalized coherent state of Eq. (3.6)
becomes, in the N ~ oo, qN ( oo limit, the Glauber
coherent state of Eq. (5.4). We shall come back to this
point in Sec. VII.

The analogy between the two cases, i.e. , between the
X ~ oo limit of the ¹ pin system and the maser sys-
tem, has thus been estabilished when the ground state is
chosen as the initial D state. What happens if we choose
a thermal state as the initial state? We shall analyze this
case in the next subsection.
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and the co~dition Trp, „=1 yields

] ~—Phu
' (5.10)

Notice the correspondence with the N —+ oo limit of
Eqs. (3.11)—(3.13), and remember the importance of
choosing the symmetrized space 'M~ for the spin case: As
already stressed, the unsymmetrized space 7f&ivl would
have given different expressions in Eqs. (3.12) and (3.13).

The initial maser state is characterized by the quanti-
ties

(II~J )tlh =r ~th.

(b~JC) th h phpp/2

(p~ JC) th
D I P~/2 (5.11)(HJC)th

where rth = e i / (1 —e ~~) is the number of boson
excitations in the initial thermal state. This is identical
to Eq. (4.2). It is not difficult to prove that

(HDJC)Fh = ~(~ ht+ r.),

H' = ) V(x —x )a~" exp i—ae" x) .
c

n.=1
(6.1)

One possibility to take the N —+ oo limit is to consider
the case in which the spins are all placed at the same
position, say

x~—:2:p ——0, Vn = 1, . . . , ¹ (6.2)

'Riv of the total space 'R&ivl, so that we are mainly in-
terested in "global" quantities like the total number of
spin flips, and information like which spins are flipped
and which are not is of no importance, in particular in
the macroscopic limit to be considered. Therefore, we
can try to neglect the 2:~ dependence of the potential
U(x —x„) from the beginning, in order to establish a
link between the two Hamiltonians (3.2) and (5.2).

Here we shall consider two of the possible limiting pro-
cedures for the modified AgBr Hamiltonian. Since we
have already established the N ~ oo limit for the free
Hamiltonian Hr) [see Eq. (4.6)], let us concentrate our
attention on the interaction Hamiltonian

(pH JC)th

(p~JC) th

(~JC) th

1 + (2K + 1) (e~~ —1) + E (e~~ —1)

1+ (2R+ 1) (ei ~ —1) + R (ei ~ —1)
1+r (e~~ —1)

Another possibility is to consider a kind of average po-
tential over the positions of the scatterers x„, and replace
V(x —x„) with its average [say U(x)]. In the latter case,
we are implicitly assuming that all spins are distributed
in a rather small region [8].

In either case we obtain (writing U for V in the latter
case)

(5.12)

Once again, the correspondence with Eq. (4.3) is perfect.
Of course, the values of Eq. (5.6) are recovered for 0 = 0
(P = oo).

Observe also that, in agreement with Eq. (4.4),

(p~ JC) th

(H JC) th 1/~&

The calculation for the visibility of the interference
pattern is somewhat more involved, and is given in Ap-
pendix C. The result is

Vt'hC = exp —(rth + —,') Tl, , (5.14)

and is identical to the value given in Eq. (4.3).

VI. IDENTIFYING THE HAMILTONIANS

Prom the complete correspondence between the phys-
ically interesting quantities calculated in the JC ease
and in the weak-coupling (N ~ oo) limit of the mod-
ified AgBr case, we may expect that there exists a
weak-coupling macroscopic limit of the modified AgBr
Hamiltonian (3.2), which reproduces the JC Hamiltonian
(5.2). We have already seen that as far as the 8 ma-
trix is concerned, the detailed structure of the potential
V does not play any role: Only the integrated quantityj V(x)dx = Vp6 has relevance. Notice also that we
have restricted our attention to the 'P~-invariant sector

N

V(x) JN exp (
—i—x) ) .ae"

m=1
N

+ exp +t—x
=i

(6.3)

Once again, the condition qN = finite, with ~q
Up//~ f V(y)dy/hc, implies that the quantity

V(x)~N = u(x) behaves well in the N ~ oo limit.
Therefore, in this limit, we can see that the modi-
fied AgBr Hamiltonian (3.2) is transformed into the JC
Hamiltonian (5.2). In conclusion, the ¹pin system be-
haves, in the N —+ oo limit, as a "cavity, " in which boson-
like excitations (collective modes) can be created, as a
consequence of the interaction with the Q particle.

We close this section with a remark: The AgBr and
JC Hamiltonians have been identifled when the de-
tailed internal structure of the particle-spin interaction
and/or the spin locations are neglected [see, for instance,
Eq. (6.2)]. However, this assumption is not fundamen-
tal because, as we have seen in Sec. V, all the physi-
cally interesting quantities, such as energy, energy fluc-
tuation, visibility of the interference pattern, and so on,
can be calculated by making use only of the 8 matrix,

H'= V(P) ) a( exp (i—ae" e)
n=1

N
(n) (n)= V(x) ) o exp i x+ cr exp—+—i x-+ C cn=1
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whose limit can be computed in full generality, as seen
in Sec. IVB.

VII. AN INTERPRETATION

oo, qN = n = r limit of the right-hand side of Eq. (7.1)
yields the coherent state of Eq. (7.3). Once again, the
action of the S matrix on the vacuum IO) has the effect of
generating a new vacuum. In the same spirit, by making
use of Eq. (2.12), we define

In the previous sections we have seen that there is a
nice correspondence between the weak-coupling, N ~ oo
limit of the AgBr model and the JC model. We have
proven the correspondence of the S matrices and the
Hamiltonians in Secs. IV B and VI, respectively, and have
shown the identity of the final results when the D system
is initially in the ground state and in a thermal state in
Secs. VA and VB, respectively.

In the present section, we wish to push further the cor-
respondence between the two cases. In order to do this,
we shall introduce a suitable notation to denote gener-
alized and Glauber coherent states, and shall explicitly
compute the relevant evolutions. It turns out to be conve-
nient, in the following, to suppress the Q-particle states.
Needless to say, these could be explicitly taken into ac-
count, but at the price of making the notation cumber-
some and the formulas more involved. Therefore, in this
section, we shall exclusively consider the D states. This
can be accomplished via the following expedient: Let us
consider the extreme situation in which the energy of the
Q system is so large that the loss of energy due to the
interaction with the spin system can safely be neglected.
That is, we assume that cp )) hu. Notice that we still
keep HD g 0.

Under the above-mentioned condition, if we take an
initial ground state, the evolution of the total system
may be written as

N (N) 1/2 N —j~'"'lp, P)e = lp) &: I l (—V~)' (v'~ —e)
, ; &j)

~g( )

„ lo)N
Qm! Q„' 1 ——"

~+*(N)

„ lo*)N = Im*)N (74)
vm QA 0 1 —

N

~~~*(N) S[N]~~g(N) S[N]t

s["]Im& = s["]

and, in the JC case,

Slm) = S
'

IO)
(')

a*tom

a*—:Sast = a+iv r.

(7.5)

In the thermal case, the evolution is given by

F S[N] S[N]t
W N

= —exp —P S[ ] ) 1+.o(") S[
Z 2 3

n=1

N
= —exp —)) ) (1+ee )

n=1
(7.6)

where the notation is the same as in Eq. (3.16). Analo-
gously, one gets

= lp) I

—iA)N (7.1) 1
Sp~q~st = —exp —P~a*ta* (7.7)

s[N] I0&N =
I

—i~q) N -=I0*&N, (7 2)

where IO*)N is the usual outgoing state of scattering the-
ory, and represents here a new vacuum, " in a sense to
be clarified later. Analogously, for the JC case, from
Eq. (5.4) we get

I j& =—
I

—i~~& =—Io*& (7 3)
i~is &—

where the coherent state
I

—itic) has been written in
the z representation (alz) = zlz)). Obviously, the N -+

because the state lp —j ,j ) N lp,j )—N for small j, and
the probability of losing a large amount of energy (for
large j) is very small ( q ) for small q O(N ~). Here
the state

I

—i~q&N is a generalized coherent state [6], and
the Q-particle state, being factorized, can be neglected.
Incidentally, we stress the correspondence between this
case and the original Coleman-Hepp model reviewed in
Sec. II. We can write

It is easy to prove that this is the same quantity obtained
in the N —+ oo limit from Eq. (7.6).

Summarizing, if the energy change of Q is neglected,
we understand the following correspondence in the N —+

oo, qN = n ( oo limit:

~ivz' '

~NZ(

l(N) + z(N)

s~"j

Im&N

:a,
: JV=ata,

:S,

: Im),
JC

(7 8)

and analogously for the * states and operators. We are
now ready to put forward an interpretation of the results
obtained in the previous sections. First, notice that in
this paper we have not considered "decoherence" (loss
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0.

Most of the analyses previously performed on the AgBr
Hamiltonian have dealt with this situation.

Moreover, it is very interesting to rewrite the visibility
in the thermal case (4.3) and (5.14) as

V'" = Tr(pghS)
e—gP~=). ~ Ul-'~'+'l~)

.e-&i'~ a& (a*i)'=). ~ «I, ,
10*)

3
—jPhcu

= ) (~l~*) = e ("'"+')"
3

0. (7.10)

One clearly sees that interference disappears as the two
basis (lj)) and (lj*)) become orthogonal to each other.
In this sense, we may say that the N —+ oo, qN = n =
K = finite limit considered in this paper 'foreruns" the
appearance of a superselection-rule space.

The visibility is often considered as a physical quan-
tity able to characterize the loss of coherence between the
two interfering branch waves ("collapse of the wave func-
tion"). This is not always correct: Indeed, even though a
loss of quantum coherence implies a loss of interference,
the opposite is not necessarily true, because the interfer-
ence pattern may vanish even though the total Q + D
system is still in a pure state [18]. In the case described
in the present paper, all evolutions are described by S
matrices and are therefore strictly unitary. If the initial
state is a pure state, the final state remains pure, and in
this sense quantum coherence is always preserved.

Nevertheless, one may safely regard the above result as
a first step towards the loss of quantum coherence ("col-
lapse" ), because the D system, being macroscopic, under-
goes internal motions that tend to destroy the delicate
coherence between its elementary constituents. In the

of coherence) effects [8,11], namely we have not tried
to understand why and how the density matrix of the
Q+ D systems evolves from a pure to a mixed state: We
have simply introduced a solvable dynamical model de-
scribing the interaction between a particle and a "detec-
tor, " without fully addressing the problem of the loss of
quantum coherence. From the measurement-theoretical
point of view, the interest of the present model lies
in the appearance of a superselection-rule space in the
qN = n = K ~ oo limit. The phenomenon is well known
in the many-Hilbert-space theory [11],where the macro-
scopic apparatus (detector) is described by means of a
unitary inequivalent representation.

In order to understand the above-mentioned point,
start from the general expression given in Eq. (3.7) and
Appendix A, and observe that the visibility of the inter-
ference pattern (4.1) and (5.6) disappears in the n = r. —+

oo limit as the two "vacua" become orthogonal:

V = (OlSl0) = (Ol0*) = e "~

AgBr model considered, for example, we have neglected
the presence of interactions between the molecules, as
well as their positions (the x„'s play the role of simple
parameters, and not of dynamical variables). All these
additional effects, if taken into account, would have ran-
dornized the process and provoked decoherence, so that
statistically, after many repetitions of the "experiment, "
phase-correlation effects would have been washed out. In
this statistical sense one can state that if all additional
randomization processes had been taken into account the
"collapse of the wave function" would have occurred.

VIII. ADDITIONAL REMARKS

We have studied the interaction between an ultrarel-
ativistic particle Q and a "detector" D, schematized as
a linear array of two-level systems ("AgBr molecules"),
that can be excited (dissociated) as a consequence of
the interaction. We have seen that if the original AgBr
model is suitably modified, it is possible to take into ac-
count energy-exchange processes between Q and D: This
is physically appealing, because the state of a detector
should show trace of the passage of the particle, also from
an energetic viewpoint. We have computed the weak-
coupling, macroscopic limit of this system and stressed a
correspondence with the 3aynes-Cummings model.

As mentioned in the previous section, the examples
considered in this paper are particularly interesting from
the point of view of quantum measurements. We have
seen that the visibility has a remarkable behavior in all
the cases considered, and in particular in the N —+ oo
limit. Notice, that while n = K represents the strength of
the interaction between Q and D, noh and K&h express the
presence of (thermal) noise. Obviously, from Eqs. (4.1)
and (4.3) [or alternatively, from Eqs. (5.6) and (5.14)],
the visibility disappears in both cases as n = K —+ oo:
This means, in a certain sense, that the macrosystem
"works better" as a "measuring system, " as the strength
of the interaction between Q and D increases. On the
other hand, as was to be expected, as soon as the Q
and D systems are dynamically coupled (n = R g 0),
the visibility tends to vanish more quickly if the detector
is initially in a thermal state rather than in the ground
state.

Notice also that the visibility vanishes quickly (expo-
nentially) as the temperature increases. If we consider,
within the limits stressed at the end of the last section,
the visibility as a physical quantity able to characterize
the loss of coherence between the two interfering branch
waves of the object system ("collapse of the wave func-
tion"), we realize that the Q system decoheres more as
the temperature of the D system increases. In the above-
mentioned sense, one could speak of imperfect measure
ments: The visibility plays the role of a parameter that
controls how "effective" a measurement of the Q-particle
trajectory is. The value V = 1 (n = r = 0) signifies
absence of interaction between Q and D: The Q system
is not affected by the detector and behaves as a "wave. "
Interference between the two branch waves is complete.
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On the other hand, the value V = 0 represents a "par-
ticle" behavior, and a total loss of interference. Notice
that the latter situation can be achieved if n = Z ~ oo
or, alternatively, when D is initially in a thermal state,
if n = R g 0 and nth = Kqh ~ oo: The latter case sim-

ply means a nonvanishing interaction between Q and a
D system that is initially at infin&te temperature. The
intermediate cases 0 ( V ( 1 represent imperfect mea-
surements, after which the branch waves of the Q system
are still able to interfere, at least to a partial extent.

We stress that the problem of decoherence and imper-
fect measurements is certainly much more delicate than
implied by the above discussion. In particular, notice
that the off-diagonal terms (with respect to Q) of the
total (Q + D) density matrix have not been shown to
vanish, in the cases considered in the present paper, so
that, strictly speaking, the problem of decoherence has
not been addressed in its full generality. More careful
investigation is required on this point.

It is also interesting to comment on a remark put for-
ward by Busch, Lahti, and Mittelstaedt [19] about the
occurrence of nonseparable Hilbert spaces when (contin-
uous) superselection rules appear in the description of
macroscopic apparatuses. It seems to us that there are
cases (and the model discussed in this paper provides an
example) in which physics itself "suggests" which limit
and space are more suitable to describe the situation
investigated: In the AgBr system, one could have con-
sidered other possible situations, such as, for instance,
the space 'HI~I or the N ~ oo limit without keep-
ing the quantity qN finite. We have already observed
that dim'N&ivl = 2, so that in the N ~ oo limit
the space 'H~~~ is nonseparable. On the other hand,
dim'Niv = N + 1, and 'Riv tends to a separable Hilbert
space: In ~act, the qN-finite case investigated in this pa-
per turns out to be equivalent to a maser system, that is
describable in Fock space. It seems therefore that the re-
quirement of physically reasonable conditions (such as fi
nite energy exchange between Q and D and restriction to
symmetrized D states) lead, in the weak-coupling macro-
scopic limit, to a separable Hilbert space, and there-
fore the emergence of nonseparability is not necessarily a
problem that must be faced.

The model discussed in this paper has proven to be a
very fertile example for discussions on quantum measure-
ments. Even though the argument remains open, in par-
ticular on the problem of decoherence, we hope to have
convincingly shown that a quantum-mechanical measure-

~ent process can be treated within quantum mechanics,
and one need not postulate a "classical" behavior for the
measuring apparatus.

ACKNOWLEDGMENTS

The authors acknowledge interesting remarks and sug-
gestions by Professor S. Kudaka, Professor S. Mat-
sumoto, Professor M. Namiki, Professor K. Niizeki, Pro-
fessor H. Rauch, Professor J. Summhammer, Profes-
sor S. Takagi, Professor M. Villani, Professor N. Ya-
mada, and in particular by Professor K. Kakazu. They
thank the University of the Ryukyus Foundation and the
Italian National Institute for Nuclear Physics (INFN)
for the financial support. This work was also par-
tially supported by the Grant-in-Aid for Scientific Re-
search of the Ministry of Education, Science and Culture,
Japan (No. 03854017) and by Italian Research National
Council (CNR) under the bilateral projects Italy —Japan
No. 91.00184.CT02 and No. 92.00956.CT02.

APPENDIX A

Let us first derive a general formula for the visibility
V. We consider a typical Young-type experiment display-
ing the interference pattern (the treatment of a neutron-
interferometric-type experiment is analogous). Let

I Qi)
and I/2) be the two branch waves of the initial Q system
and

Ij) a complete orthonormal set of the D system and
assume that the evolution of the total system is described
by the S matrix whose action is given by

sly &li& = I@ &li&,

~1@2&l» = ).C'~kl@~k&lt & (Al)

We assumed that only l@2) interacts with the detector
D.

Let, without loss of generality, the D system be ini-
tially in one of the above Ij) states, say In). The final

state of the total system is described by the density ma-
trix

F I

= S (IOi)(@il+ 102)(421+ IVi)(PI+He) ln)(nl S'

= l@i&&Oil ln&&nl+ ) .c: &c'wkly~, ) &O~kl li) &&I+ ).c'.*,I@i&&A', I ln) &il+ H c.
j,k

(A2)
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Therefore the probability of observing the particle after
the interaction, say at yo, is given by

P(yo) = T Iyo)(»ICt. t

= IA(yo)l'+ IAbo)l'
+2 R«'„Qi (yo) tt '2 (yo),

as

P(yo) = T Iyo)(yolpt. t

= 10~(yo) I'+ l0"b') I'

+2Re ) 7 + (('1(yo)4'2. (yo) (A8)

@max + +min
(A4)

where the indices max and min are relative to the screen
coordinate yo. Notice that C„„can also be written as

where the trace is taken over both the Q and D states,
gq(yo) = (yoIgq) is the branch-wave function of the par-
ticle, and so on. (Notice that the S matrix, which is
responsible only for the interaction between the Q and
D systems, does not contain yo as a dynamical vari-
able. ) The position yo corresponds to the location of
the particle's spot on the screen. To simplify the dis-
cussion, we assume that the wave functions after the in-
teraction with the D system can be well approximated
by plane waves. Then we understand that the erst two
terms in (A3) no longer depend on yo and the interfer-
ence pattern is produced by the last term. By assuming
10~ I' = 14212 = I@2nl', the»sibility V is given by

which yields

(A9)

Thus we find that the visibility V is simply given by

T Iyo)(yolCL S

or, if we suppress the Q state, by

(A10)

Tr pDS. (A11)

This is the formula used in Eqs. (3.20) and (5.14).
Let us proceed to the explicit calculation of V'" when

the initial D state pD and the 8 matrix are given by pth
(3.12) and S[ ] (3.5), respectively.

First observe that the S matrix in Eq. (3.5) is expressed
as

= Tr Iyo) (yo I
CR

I n) (n
I
S,

or, if we suppress the Q states,

C„„=Tr In)(nI S = (nISIn).

(A5)

(A6)

Sk I = exp —ia NZ( w + NZ(

N

Z~ (u)):——) cr~ exp pi —z(N) & - (n)
N C

(A12)

aL =).& In)(nl (A7)

This is the formula used in Eqs. (2.18), (3.7), and (5.6).
Similarly, if the initial D system is described by a den-

sity matrix
NE ( ), NZ ( ) = NE—

NEP (w), —NEs( ) ——+2NZP (ur). (A13)

where n = Vobjhc. Moreover, NZ+ (cu) and NZs(N) (N)

which is defined in Eq. (2.8), satisfy the algebra (2.11):

the probability of ending the particle at yo is calculated This allows us to rewrite S[N] as [12]

S[N] i tan(n)NZ+ (cu) —1n[co—s(n)]NZ3 i tan(n)NZ (cu)—
It is straightforward to obtain 18,6]

(A14)

(~) Ip, ) n=N"/(N —n)(n + 1) p —,n + 1(N)
c N

(~) I p, n) N = g(N —n + 1)n p +,n —1
c N

(A15)

so that
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—i tan(a)Nz (u)!

k=0
n=).

k=o

( i ta—n o.)"
A:!

(N —n+ k)!n!
(N —n)!(n —k)! c ' (A16)

and similarly

k
i tan(n)—NZ (u) ( 1 tan A)+

ki
k=o

(N —n+ k)!n!
(N —n)!(n —k)!

p+k, n —k. (A17)

Therefore

k ) )k)N(p, nlS ~p, n)N = ) (—1)"tan "o.
~ ~ ~

(cosa)
N —n+k) r'nl

( 1 )n 1 dN n-
= cos A "1+ " =- ~

g COS2O ) (N n) i dXN n — x=—sins n ' (A18)

Since p„, in Eq. (A9), is given by exp( —nPRu)/Z, the problem is reduced to evaluating [g—:exp( —P~)/cos a, ]

N n dN n
g

& - (N — )i d*N--* (A19)

which can be expressed as a complex z integration around z = r

. g" zN "(1+z)" 1 zN . C(l+ z)(z —x)gdz= dz
2vri f (z —z)~ +~ 2rri (z —z)~+~ q zn=o n=o

1 z~ 1
dz.

(z x)N+1 1 (1+z)(z—x)g
z

(A20)

1 dt
, () (A21)

where

(t) =
1 —t(1+ (1+x)g) + gt' (A22)

and the integration contour includes t = 0. By writing

f(t) =
g(t+ —t ) i,t —t+

(A23)

In the last equality, an analytic term around z = x has
been omitted because its contribution vanishes. Chang-
ing the integration variable from z to t = (z —x)/z, the
last expression becomes

(
g(t t ) (tN+1 tN+1 )

By taking into account the proper normalization fac-
tor, given by the inverse of Eq. (3.13), and evaluating
Eq. (A25) at x = —sin o., we finally arrive at the de-
sired result Eq. (3.20).

APPENDIX 8

We shall prove, following Ref. [17], that the opera-
tors N '~ P, o.~" = N'~ Z and (1/2) g„,(l
+cr&" ) = (N/2)(l( ) +Zs ) obey, in the N ~ oo limit,
the commutation relations for a, at and JV = ata.

We start from the generators of SU(2) given in
Eq. (2.11), and perform the following change of basis:

where ty are the two roots of the denominator of f(t) (h+)

(A24)

the integral in Eq. (A21) is readily evaluated to yield

1+ (1+x)g + V'(1+ (1+x)gl' 4g-
t~ ——

2g

( N-1/2
~—1/2 NZ(")

1 N/2

(B1)
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The commutation properties for h, j. are

[hs, h~] = +h~,
2[h, h+] = 1 ——hs,

[h, 1] =0, (B2)

JC
V~p

d'P
(& P[g[p P),-lel /~.

vr Kgg

= exp( —r/2)
d~P

(p] exp i ~r—cP* exp i —x-
vr Kgg C

x exp i v r—P exp i x —Ip)e
C

and yield, in the N ~ oo limit, the standard boson com-
mutation relations. In conclusion,

Observe that

(C4)

N

n=1
N

) a" =VXZ: a,
n=1

N

a,.= -' ) (i + ~,'"')
=1

~ 1( i+g( &

2 3 N

(B3)

exp —i~icP exp i x—Ip)
C

(—~P)", ;y.
I )n.

( i y r/3)" — nba
n. P+

C

and similarly

(C5)

APPENDIX C

.Cd

(p] exp i y'rP*—exp i x——
C

Here we compute the visibility of the interference pat-
tern when the cavity is initially in a thermal state.

The S matrix for the maser case is given by Eq. (5.3)
and can be rewritten as Therefore Eq. (C4) becomes

(C6)

8 = exp( —r/2) exp i ~ rat exp i—x——
C Vt'~c ——exp( —Z/2)

~'& ) - (&IPI')", (P( y... (C7)
sr Kg - n~

x exp —ig Ka exp i —x
C

(C1)

vr Kgb
(C2)

where a[p) = p]p) and r&h was defined after Eq. (5.11).
By the same reasoning explained at the beginning of Ap-
pendix A, we understand that the visibility is given by

= T ~(&la~V~I&) (C3)

where K was defined in Eq. (5.4). The initial thermal
state pt& [Eq. (5.8)] has the following P representation
[20] in terms of coherent states

Vt'~c ——exp( —K/2)
- (—KIPI')",

~p~ g.,„
nJn=o

= exp( —r/2)), K,„+ I'(n+1)
Kgg n.

= exp( —r/2) )
n=o

The integration over P is easily performed in two-
dimensional polar coordinates, and yields

and is explicitly computed as =exp —(K„+-,') ~ . (C8)
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