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The operations of many detection devices are usually explained in terms of the ionization tracks
produced by classical charged particles. A wave-mechanical analysis does not seem to be available.
Mott [Proc. R. Soc. London Ser. A 126, 79 (1929)] has shown that an incident o wave emitted by
a radioactive nucleus would be scattered by atoms primarily in directions almost forward. However,
these scattered waves would appear over the entire sensitive region of the detector. The mechanism
that produces a collapse of the wave function to a single track is analyzed here. The incident o
wave is written as a superposition of minimum-sized packets. Since it is linear, the Schrodinger
equation for the system including an observer can be solved for each packet individually. After the
minimum packets interact with the electrons in the detector, they cannot be recombined to form a
plane wave. However, they can be combined in groups to form larger coherent packets interacting
with the detector to form tracks. The size and shape of each coherent packet are determined by the
properties of the medium that is ionized to produce its track. The track from each packet is seen
by the observer and is associated with a state of his memory, recording only one track. Each such
packet replaces the particle in the usual explanation. These are the packets required to predict the
quantum jumps seen in the scattering of laser light from an isolated atom as I have discussed [Phys.
Rev. A 45, 4925 (1992)]. The relation of the probability distribution of these tracks to the wave
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function is explained.

PACS number(s): 03.65.Bz, 06.70.Dn, 29.40.Cs, 29.40.Gx

I. INTRODUCTION

The operation of a detection device such as a cloud
chamber, Geiger counter, bubble chamber, drift cham-
ber, or photographic plate is often explained in terms
of an incident classical particle that produces a wake of
ionized atoms in a sensitive medium. On this wake is
formed droplets, bubbles, or exposed grains that are vis-
ible to the naked eye in a cloud chamber, bubble cham-
ber, or photographic plate. On the other hand, quantum
mechanics usually calls for an incident wave function ex-
tending over the entire sensitive region of the detector.
Mott [1] has shown that this incident wave will scatter off
of the atoms largely in almost forward directions. How-
ever, since the scattering atoms are present in the en-
tire volume, these scattered waves will cover the entire
sensitive volume of the detector. The questions still re-
main how a wave function with a broad extent collapses
to a track, and what causes the probability distribution
of observed tracks to be proportional to the magnitude
squared of the incident wave.

Some physicists [2] have cited this success of classical-
particle theory and the lack of a wave-mechanical ex-
planation as evidence for a dual wave-particle nature of
the elementary constituents of quantum mechanics. This
kind of ambiguity at the foundations increases the dif-
ficulty of teaching quantum mechanics and leaves stu-
dents with the feeling that physics is based on imprecise
concepts. In addition it causes many physicists to have
doubts about when to use the particle approach and when
to think of a wave in their research. We shall see here
how a uniform incident wave can result in a single, well
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defined, ionization track thus removing this argument for
the introduction of the particle concept into quantum me-
chanics. Since no use will be made of particles, we shall
refer to a waves rather than to o “particles.”

A previous paper [3] has presented an explanation of
the jumps in the observed intensity of laser light scattered
off of a trapped isolated atom. That analysis assumed
that a detector would associate each recorded state with a
packet of the laser light. The manner in which a detector
produces this association is discussed in Sec. V.

In Fig. 1 is shown the tracks produced by the o waves
(of roughly 5 MeV energy) from radioactive decays at
the center of a cloud chamber. Although each a wave
produces a single track, the fact that these tracks can be
clearly seen shows that visible light passes through the
medium coherently. This means that, after a portion of
the visible light has passed out of the cloud chamber, the
atoms that were excited to produce the scattered wave
have returned to their original state. As a consequence,
the wave function for the cloud chamber plus these light
waves can be written as a product of this initial cloud-
chamber state multiplied by the light wave amplitudes at
times both before and after the scattering. See Heitler’s
book [4]. This is obviously not the case for a waves since
the final state of the cloud chamber has the ions and
droplets that make up the track while the initial state
does not.

In Sec. II, we consider, as a specific example, the de-
tection of an & wave from a radioactive nucleus in a cloud
chamber. This wave is emitted in a single transition of
a nucleus. The analysis of this emission in terms of the
leakage of an a wave through a nuclear barrier was made
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FIG. 1. Photograph of a tracks in a cloud chamber from
a radioactive source in the center. The tracks do not cover
the sensitive area of the cloud chamber although the wave
function does. This is Fig. 41-44 from Physics Demonstration
Ezperiments, edited by H. F. Meiners, (©1970 by the Ameri-
can Association of Physics Teachers. Reprinted by permission
of John Wiley & Sons, Inc.

by Gamow and by Gurney and Condon [5] (see Fig. 2),
but we shall be concerned only with the fact that such a
wave interacts with a cloud chamber. To simplify the dis-
cussion, we shall take a rectangular cloud chamber with
an essentially plane a wave incident normal to one of the
surfaces as shown in Fig. 3. The walls of the chamber
will be assumed to be completely transparent.

A cloud chamber involves many atoms so that the ex-
act solution of the Schrodinger equation for such a system
would be prohibitively complicated. However, a sufficient
understanding of the form of this solution to reveal how
an incident o wave produces a single track can be ob-
tained by means of the analysis presented in this paper.
The techniques used will be similar to those developed
by von Neumann [6,7] for his measurement theory. We

nuclear
barriers

.

FIG. 2.

The wave function for an o “particle” leaks
through the nuclear barriers according to the analysis of
Gamow and Gurney and Condon.
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FIG. 3. The o wave is approximately plane and propagates
normal to one face of the cloud chamber. This wave can be
written as a superposition of packets ;.

shall add another simplification to these considerations
by restricting ourselves to a waves with energies equal to
or greater than 5 meV. This allows us to approach the
problem in a manner similar to that used by Bohr [8] in
his consideration of the stopping power of materials for
heavy particles.

The approach used here to determine the wave func-
tion of the a wave and the detector is to first write the o
wave as a superposition of packets of the minimum size
that allows them to remain small as they move in the
cloud chamber. Since the Schrédinger equation is linear,
the wave function for the & wave plus the detector can be
found for each of these packets, and then these compo-
nents can be recombined to form the entire wave function.
Before they enter the cloud chamber, these packets can
be recombined into the incident plane wave multiplying
the wave function for the detector. After they enter the
sensitive medium, however, each packet interacts with
the medium to form a track that is finally seen as tiny
droplets. Since the tracks for different minimum packets
involve different excitations of the medium, they cannot
be recombined into a plane wave. However, each portion
of the wave function representing a track can be written
as the sum of a term proportional to the wave function
of a particular selected track and a remainder. Those
components proportional to a single track wave function
can be combined so that their minimum « packets add
to form a larger coherent packet. The wave function
after the interaction can take the form of a superposi-
tion of these larger coherent packets with their wakes.
Since their wakes are different, these larger packets can-
not be combined after they have entered the medium.
Their dimensions are determined by the properties of the
medium.

To understand why an observer sees only one track, in
Sec. III we consider a system that includes, not only the a
wave and the cloud chamber, but also the observer. Since
the wave function is linear, its form can be determined,
as before, by solving the Schrodinger equation for each
coherent packet at a time and then summing over these
solutions. The solution for each such packet will result in
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an observer state with the memory of only one track. As
noted in the last paragraph, the terms of the wave func-
tion constructed from different coherent packets cannot
be combined. As a result, the final wave function takes
the form of the sum of these terms, each term involv-
ing one coherent packet and an observer state with the
memory of only one track.

A very similar analysis can be applied to any detector
whose operation involves an ionized track. For example,
a scintillation screen, such as that used by Rutherford [9]
to detect a waves or like that at the end of a cathode
ray tube that responds to electrons, produces ionized re-
gions that emit visible light. Photographic plates exhibit
tracks of exposed grains. These ionized regions are pro-
duced by the Coulomb fields of coherent packets formed
in the same way as we have described for an « wave in
a cloud chamber. We consider in Sec. IV the answer to
the question, “How does the probability density per unit
area of seeing one of these tracks become related to the
square of the magnitude of the incident wave function?”

A spherical wave, emitted from a point source and im-
pinging on a spherical scintillation screen centered on the
source, will produce coherent packets all having the same
values for [ |4|?d®z. This is because the dimensions of
the packets are determined by the sensitive medium. Be-
cause of the spherical symmetry of the screen, repeated
identical waves arising at the screen will produce a uni-
form distribution of scintillations. The value of |4|? must
also be uniform at this surface for the same reason. Thus,
for this simple example, the proportionality of the prob-
ability distribution and [t|? certainly holds.

It is also true that |i|? decreases with the inverse
square of the distance from the source. A comparison
of the scintillation density on one spherical screen with
that on another of a different radius shows that this den-
sity also decreases with the inverse square of the distance
from the source because the scintillations are distributed
over areas that increase with the square of the distance.
Thus, again, the probability distribution is proportional
to the magnitude squared of the wave function. If the
screen has portions at different distances from the source,
it is necessary to resort to a proof developed indepen-
dently by Graham and Hartle [10]. A variant of this
proof is presented in Appendix A.

The Stern-Gerlach measurement of a spin component
has frequently been used as an example of the application
of measurement theory. In Appendix B, this experiment
is employed to illustrate some properties of wave func-
tions that are used in this analysis of detectors.

II. TRACKS IN A CLOUD CHAMBER

Since we anticipate that o waves will look like par-
ticles in a cloud chamber, we begin by breaking the «
wave into a superposition of small packets v; as shown
in Fig. 3. Each of these packets can then behave very
much like a particle. These @ wave packets remain rela-
tively intact during the interaction with the cloud cham-
ber (whose state is represented by x) because the effect
of each atom on a packet is quite small (except for a very

few close approaches to atomic nuclei that we shall not
consider). This is clear from the study of the passage
of heavy particles through various media conducted by
Bohr [8], Bethe and Ashkin [11], and others. This is why
the wave function for a system composed of an a wave
interacting with a cloud chamber can be written at some
instant of time, to a good approximation, as the sum of

products,
U= dixo+ Yy ix; -
i J

The wave function ¥ is for a system composed of the
a wave and the cloud chamber. The first sum (over %)
is over terms involving the packets ; that have not yet
reached the cloud chamber, and the second one (over
j) is over terms with packets 1; that have passed into
the cloud chamber. The wave function x; includes the
ionization track in some stage of formation by ; as it
moves along in the cloud chamber.

The packets in the first sum are coherent since all of the
1;’s are multiplied by the same function xo representing
the undisturbed state of the cloud chamber. The o can
be factored out and the packets combined to produce an
incident plane wave 1o so that the first sum reduces to
$oXo-

It is necessary to decide on the size of these packets.
A minimum size is set by the uncertainty principle since
a packet that is too small when it enters the sensitive
medium will have large momentum components and will
expand to too large a size before it comes to rest or de-
parts from the chamber. One rather arbitrary way to
define the size of a minimum packet is to choose a packet
radius (at packet half maximum) as it enters the cloud
chamber in the following way. See Fig. 4. By solving the
Schrodinger equation, the dimensions of the packet can
be determined after it has traveled some distance into
the chamber. We can choose this distance to be from

(2.1)

cloud
chamber

FIG. 4. The packets enter the cloud chamber and each
forms a track. A minimum size of a packet is chosen by mini-
mizing (r2 +1‘g.9)1/2 where 7. is the radius of the packet when
it enters the sensitive medium, and r¢.9 is its radius at 0.9 of
the distance to the end of its path.
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the place where it enters the cloud chamber either to the
point where it leaves the medium, or to the point nine-
tenths of the way to the end of the track. We choose the
entering thickness to be the one that minimizes the sum
of the squares of these two radii. This procedure produces
packets whose sizes, while they are in the cloud chamber,
are of the order of an a wave length. Any similar pro-
cedure would, of course, be satisfactory. For a 5 MeV «
wave, the de Broglie wavelength is about 6.4 x 105 A.
Although this sets a minimum size to a packet, we shall
see that portions of a number of them are coherent and
can be combined to form larger packets whose sizes are
determined by properties of the medium containing the
ionization track.

The a wave can be expressed as a superposition of
narrow bands parallel to the face of the cloud chamber,
and each of these bands can be expanded in terms of
these minimum packets just as it approaches the cloud
chamber. See Fig. 3. The expansion can be written ap-
proximately in terms of Gaussians [12], or more precisely
in terms of functions similar to the Wannier functions
[13] of solid-state theory. Since the Schrédinger equation
for the system is linear, it can be solved either backwards
or forward for each term in Eq. (2.1) individually. The
final wave function for the system at any time can then
be reconstituted as a sum of the components produced
by the wave packets.

An o packet, moving through the sensitive medium of
the cloud chamber, will be accompanied by its electric
field much like that of a charged particle. See Fig. 5.
This electric field will sweep over neighboring atoms as
the packet passes by [8]. This imparts impulses to the
electrons in these atoms if vacant states are available to
them. This will ionize some of the atoms and excite oth-
ers. The electrons from the ionized atoms may then, in
turn, ionize and excite other atoms until their energies
are degraded below a critical value. In this way, each
packet in the cloud chamber will be surrounded by ex-

__ cloud chamber

secondary
electrons
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FIG. 5. As a packet moves through the cloud chamber, its
electric field sweeps over the atoms, imparting an impulse to
each electron. This excites some of the atoms and ionizes
others.

cited atoms and ions for a small distance in the direction
of its motion and to the sides with a long wake trailing
out behind as shown in Fig. 6. Droplets condense on the
ions to form a visible track whose width is the order of a
tenth of a millimeter like those shown in Fig. 1.

The wave function of the cloud chamber x; can be
approximated by a product of the wave functions of its
atoms where x;, represents the wave function of the ath
atom in the state associated with the jth packet. In ad-
dition, each atomic wave function can be written as the
sum of an undisturbed (ground) state xJ, and excited
states x5,. Of course those atoms outside the wake will
have a negligible excited component. In addition, the ex-
cited component for each atom will be small relative to
its ground state because of the weakness of the electro-
magnetic interaction and the rapidity of the passage of a
5-MeV packet. Thus a cloud chamber wave function can
be written approximately in the form

xi = [ xia = JJOSa + X5a)

a

IS+ D x5 I x5
a b

o (%b)
(H X?a) (1 + Z X;b/X?b)
a b

The atomic wave function for an atom xj, is a function
of the coordinates of the atomic nucleus and electrons.

The wake w; produced by the jth packet is composed
of all of the excited states so that it is the excited part
of the last expression, namely,

wj = H X?a Z X;b/X?b .
a b

Substituting this into Eq. (2.2) and that, in turn, into
Eq. (2.1) then gives, at some instant of time, a wave
function for the a-wave plus cloud-chamber system of

¥ =toxo + Y %;(xJ + w;),
J

Q

(2.2)

Q

(2.3)

(2.4)

where

(2.5)

X3 =[] x5
a

is the undisturbed component of the cloud chamber wave
function left by the jth packet.

w, \ q’j\D

FIG. 6. A wake w; of excited and ionized atoms is produced
by each packet ;. Droplets condense on the ions to form a
visible track.
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The packets appearing in the last equation are of the
minimum size allowed by the uncertainty principle. As
we have noted, since the packets in the first term of
Eq. (2.1) were all multiplied by the same factor, they
could be combined to form the incident plane wave ).
The question now arises whether the a packets in the
second term on the right-hand side of Eq. (2.4) can be
combined in a like manner. Since the atoms in the cloud
chamber are excited in different ways by different pack-
ets, it appears that the wakes w; (and, therefore, x?) will
all be different. This suggests that the packets multiply-
ing these wakes cannot be combined. However, this is
not entirely true as we shall see.

In order to combine packets represented by ;’s mul-
tiplying w; in Eq. (2.4), it is necessary to find w;’s that
are identical. Although the w;’s are all different, we can
find components of some of them that are the same as
follows. Select one w; and call it w;. Since the w;’s are
wave functions involving the coordinates of the atoms of
the cloud chamber, each w; can be written as the sum
of its w;» component and the remainder orthogonal to it.
Thus,

wj = ajjwy + Xjjs (2.6)
where a;; is the scalar product of w; and wj, and x;j
is orthogonal to wj:. This expression can be substituted
into Eq. (2.4). Then all of the v;’s multiplying w;; can
be combined to form the larger packet,

i = Pias . (2.7)
J

See Fig. 7.

We have been employing an expansion of the a wave
in terms of minimum packets +;. It now appears pos-
sible to combine these minimum packets into the larger
packets 9} defined in Eq. (2.7) and shown in Fig. 8. The
size of these larger coherent packets is considered in Ap-
pendix C. An approximate expansion of the a wave in
terms of them can be obtained by the same procedure
used above for minimum packets. Of course this new ex-
pansion will space these larger packets a greater distance
apart. This expansion replaces Eq. (2.4) by

U =oxo + Y_ x5 + D b, (2.8)
J J

FIG. 7. The wake w; of the packet 1; has a component
ajjrw;r. This component multiplied by %, can be combined
with the term v w;: to form (v; + ¢;a;; )w; in the wave
function for the a-wave plus cloud chamber system.

__cloud chamber

FIG. 8. Components of the minimum packets %; can be
combined with ;s in the manner shown in Fig. 7. This forms
a larger packet 1/);,. The Schrodinger equation can be solved
forwards and backwards in time to determine the path of this
larger packet together with its disturbances of the medium.

where x?' is the undisturbed part of the cloud chamber
wave function, and w; is the wake produced by the packet
1/); The first term on the right-hand side represents that
part of the wave function produced by packets that have
not yet arrived at the cloud chamber, the second term
is generated by the unscattered part of the a wave for
packets in or past the cloud chamber, and the last term
includes the scattered o waves and the concurrent excited
atomic states (the wakes).

III. THE COLLAPSE TO ONE TRACK

It is clear from Appendix C that the mechanisms in the
cloud chamber that produce the tracks of cloud droplets
determine the size of the largest a packet 1/1;- that can be
associated with a track. These packets, in some sense,
replace the classical particles employed in the published
explanations of these tracks. The last equation shows,
however, that a large number of tracks are produced by
the a wave from a single nuclear transition, one for each
zﬁ; Nevertheless, we see only a small number (see Fig. 1),
actually, no more than one per nuclear transition. In
order to understand what happens to all but one track
produced by an a wave, it is necessary to include the
observation mechanism (e.g., a camera) in the system.
This entire system will be represented by a wave function
that we shall call ¥’.

The observer interacts with the cloud chamber by see-
ing the light from an outside source that it reflects. If
no track is seen, the observer’s state can be represented
by ¢o. As before, because of the linearity of the equa-
tions, we solve the Schrodinger equation for the term in
the wave function involving each packet individually as
it generates its wake in the cloud chamber which finally
interacts with the observer. Then we can combine the
terms to form the wave function ¥’. Since the observer
interacts with the cloud chamber by seeing the droplets
associated with each track, only the term in Eq. (2.8) con-
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taining the wakes can interact with the observer’s wave
function. Each wake w; produces a state of the observer
represented by a wave function ¢; having the record of a
track. Each factor 'w} will be multiplied by a ¢; while the
other terms are multiplied by ¢g. Thus the wave function
for the whole system will take the form

U = oxodo + D Uixy do + 3 Piwid;  (3.1)
i ;

after observation.

Since this wave function can be constructed by follow-
ing the effects of one packet at a time with the other
packets not present, each ¢; represents the recording of
only one track, the one generated by ;. Because of the
linearity of the Schrodinger equation, there is no evidence
available in the record represented by ¢; to indicate the
existence of the other tracks. Thus the observer sees only
one track for each a wave and is unaware of all the oth-
ers. More than one track appears in Fig. 1 because a
large number of different a waves are being emitted by
many nuclei.

IV. THE PROBABILITY DISTRIBUTION

The above analysis can be applied to other devices
that involve ionized wakes produced by electrons, pho-
tons, and other kinds of waves. For example, fluorescent
screens were used by Rutherford [9] to detect @ waves. He
observed the scintillation on a screen created by the wake
of excited atoms generated by each a wave packet 1/1; pen-
etrating the fluorescent materials. In a similar manner, a
large number of electron waves produce scintillations on
a screen that merge into a picture in an electron micro-
scope. The densities in space of these scintillations and
of tracks appearing in a cloud chamber are observed to
be proportional to the square of the magnitudes of the
incident waves. The explanation of this connection be-
tween the wave function and the probability distribution
is as follows.

Consider the electron waves scattered from a bright
point on an object being viewed in an electron micro-
scope. See Fig. 9. Because it is a point, the waves scat-
tered from the object will be emitted spherically symmet-
rically. They can impinge on a photographic plate that
records the image. We shall select a photographic plate
in the form of a complete sphere centered on the point
object. The above analysis implies that the interaction
of the electron waves with the plate will produce small
packets 1 that couple with wakes of excited atoms w)
that remain in the “exposed” photograph. In the case of
a single electron wave emitted by a single atom, a state
of the plate ¢; is generated by the packet 1/); and con-
tains no evidence of the other packets produced by the
same atomic transition because of the linearity of the
Schrédinger equation.

The first term on the right-hand side of Eq. (3.1) repre-
sents the part of the wave function that has not reached
the sensitive medium as shown in Fig. 3. If we have an
incident wave that has a finite radial extent, and we write
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exposed

packet path

photographic
plate

FIG. 9. The centers of electron packets 1/); generated in
the photographic plate have followed straight paths from the
point source.

the wave function after all of it has passed into the pho-
tosensitive medium and has stopped, the first term will
vanish. If the medium absorbs all of the incident wave,
none of the unscattered a wave will remain, and the sec-
ond term in Eq. (3.1) will not appear. In this case, we
can label each component of the last term with the coor-
dinates of the point on the inner surface of the medium
and the time of entrance x of the center of the packet
and write the wave function as

=YL, (4.1)

where we have used a discrete set of x’s.

This is the wave function for the system after one elec-
tron wave has come to rest in the photographic plate.
If a second identical electron wave is emitted from the
source, it will find the system in the state represented by
the above wave function and will finally produce

WO S D (42
1}2 1

where the superscripts on the right-hand side indicate
which of the two electrons is represented. Each ¢,2,1 rep-
resents a state of the photographic plate with two strings
of exposed grains.

After a large number n of these electron wave functions
have reached the plate, the wave function of the system
will have the form

PO =3 SN gDl

z? gzl

Xoeen wg)'w:(:l)'¢mn_..zzz1 . (4.3)
Each sequence of coordinates appearing as the subscript
of Pgn...z2,1 locates the positions of strings of exposed
grains recorded in a state of the photographic plate. They
are the sequences that would result if the string coordi-
nates for each state were drawn at random from an en-
semble where the coordinates of each string are assigned
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equal probability. Since the plate is spherically symmet-
ric with respect to the scattering center, the strings must
be uniformly distributed over its surface so that the prob-
ability distribution is uniform. Since the photographic
material interacting with each packet is the same, each
packet has an equal volume. The spherical symmetry
guarantees that the amplitude of the incident o wave at
the plate is uniform over the surface. Thus the value of
J 1|2 d®z for all the packets is the same. As a result
the probability distribution of a string of exposed grains
occurring at z is proportional to f |1|? dt where the in-
tegration is over the time required for the wave to pass
into the plate.

If we make the same measurements with a second piece
of apparatus differing only in the distance from the scat-
tering center to the plate, the probability distributions
for the two cases must be spread evenly over the two
spherical plates and have magnitudes in inverse propor-
tion to their areas or inverse proportion to the square
of their distances from the source. Since the magnitude
squared of the wave amplitude must also fall off as the
inverse square of the distance, the probability distribu-
tion per unit area must be proportional to the magnitude
squared of the wave amplitude in these cases.

If a magnetic lens is placed in the path of the electron
waves, they can be focused to the vicinity of some point
on the photographic plate as shown in Fig. 10. If the
Schrédinger equation is solved backwards in time, the
packets and wakes formed in the plate will be diverging
as we proceed backwards toward the source. The centers
of the packets will diverge out of the surface of the plate
and proceed along curved paths to form a uniform spheri-
cal distribution near the point scatterer. When no lens is
present as in Fig. 9, the volume of the packets 1/,'; will be
determined by the medium through which they proceed
in the photographic plate. When the lens is present, the
packets at the plate will be moving in the same medium
but along paths at different angles with the surface. Since
it is the bulk properties of the medium that determine
the volumes of the packets, the packets will all have the
same volume. Since their distances from the scattering

exposed
grains
packet path /
photographic
plate

FIG. 10. A lens will bend packet paths that diverge radially
from the source so that they almost focus on a point. Since
each packet has the same volume at the plate and has traveled
approximately the same distance from the source, it will have
the same value of f ||?d*z as any other.

source is essentially the same, they will each carry the
same quantity of [ |4|?d3z. Thus the density of pack-
ets entering the surface of the sensitive medium will be
proportional to |1|? and is, of course, proportional to the
probability of recording a string.

The cases that we have just considered have been easy
to analyze because each packet has the same value of
J |#|? d*z. In general, the considerations are more com-
plicated. Graham and Hartle [10] have made the more
general analysis possible by determining the dependence
of the wave function in Eq. (4.3) on the frequency of oc-
currence of a given value x as the number n of identical
electron states 1), increases to a large value. A variant of
their derivation is found in Appendix A. If the w,’s and
the ¢ are normalized to unity, they find that the mag-
nitude squared of the wave function can be expressed in
the form

1
Wiw) ~ [5(f - W) & (4.4)
0

where f, is the number of times that « occurs in a term in
Eq. (4.3), divided by n. It is clear from this result that
only those terms in Eq. (4.3) that have the frequency
of occurrence of any particular value of = infinitesimally
close to |¢(z)|? will contribute appreciably to ¥’ in this
limit. This is equivalent to saying that the distribution
of the frequencies of occurrence of scintillations at x is a
§ function centered on |¢(x)|2. This is, of course, equiva-
lent to the probability distribution of the occurrence of a
scintillation at z if one wave function v strikes the scin-
tillation screen.

V. DISCUSSION

In Sec. II, it was noted that a wave incident on the sen-
sitive medium of a detector can be written as a superpo-
sition of coherent packets @b;, each of which is associated
with a state of the observer. By solving the Schrodinger
equation backwards, the previous course of each of these
packets, whose size is determined by the detector, can
be determined. These are the packets that are essen-
tial for the explanation of the “quantum jumps” in the
intensity of laser light scattered off of a single trapped
atom [3]. In those experiments, the scattered light was
detected by a photomultiplier tube. In that case, this
light penetrated the plate of the photomultiplier and ex-
cited atoms, some of whose electrons left the plate. The
wavelength of the incident light was large compared to
the interatomic spacing so that the minimum packets v;
that we would form would extend over many atoms. The
electrons leaving the ionized atoms had relatively little
energy so that they could not be expected to ionize many
additional atoms. Thus the packets of light 1/1; could not
have been much larger than the minimum packets formed
in the photomultiplier plate, that is, much larger than the
wavelength of the incident light.

The problem of explaining how waves can have the ap-
pearance of classical particles has been studied for many
years by many researchers with a number of approaches.
Two recent review articles on this subject have been writ-
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ten by Omneés [14] and by Schulman [15] and contain
references to a number of papers.

Green [16] has considered the effect of the interaction
of a system with an environment made up of harmonic
oscillators. He finds that off-diagonal elements of the
density matrix of the system in the proper representation
are destroyed by the interaction with the environment.
This is necessary if the system is to have the appearance
of a classical one. However, his conclusions are contested
by Furry [17]. Zurek [18] and others have also found
that the off-diagonal elements disappear as a result of
decoherence as a consequence of the interaction with the
environment. A brief summary is presented in a Letter
by Zeh [19]. This effect of the environment on the density
matrix of a system is similar to the finding made here that
the environment composed of the sensitive medium of a
detector, by forming coherent packets, causes an incident
wave to appear like a particle. Gell-Mann and Hartle
[20] have studied the conditions under which histories
can be identified as having decohered, especially for use
in cosmology.

This work suggests that the particle concept is unnec-
essary in quantum mechanics since particlelike phenom-
ena appear to be explainable in terms of waves (fields).
This is in line with Everett’s [21] proposal that there is
no need for a “collapse of the wave function” and that
the universe is represented by a single super wave func-
tion. It, therefore, eliminates a number of the paradoxes
that appear in the standard interpretation of quantum
mechanics such as, for example, “Schrodinger’s cat” [22].

Still, physicists have been trained in the wave-particle
concept and may resist strongly giving it up. They may
ask if the particle analysis is not equivalent to the above
wave explanation of ionization tracks. Are there any ex-
perimental differences in the predictions of the two the-
ories? There should be a difference in the density of
the inner parts of a track in a cloud chamber or a pho-
tographic plate since wave mechanics calls for a packet
of some extent which would be approximated by an ex-
tended charge. The particle concept calls for a point
charge. Thus the electric fields originating from the de-
tected entity would be different near the center of a track
in the two cases. The strong field near a particle should
produce a more dense track in its vicinity than that pro-
duced by a packet.

If, indeed, there is no need for the particle concept
in quantum mechanics, then the universe must be con-
structed entirely of fields. Fundamental entities such as
electrons become identified with fields or waves.
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APPENDIX A: FREQUENCY DISTRIBUTION
FOR LARGE n

Graham and Hartle [10] have found the magnitude of
the wave function in Eq. (4.3) in the limit of large n in
terms of the frequency of occurrence of a particular value
z. Their analysis is similar to the following.

If the w’s and ¢’s in Eq. (4.3) are normalized to unity,
then the magnitude of the amplitude squared is given by

(W) = Y (t|zt)(2®|z?) - (a"]a"),

o™

(A1)

where (z¢|z?) is the magnitude squared of 1,:. The terms
in the sums on the right-hand side of the last equation
can be sorted according to the number of times j that
a scalar product with a particular value = occurs, that
is, according to the number of scintillations that occur in
the infinitesimal area at x. The result is

(') = Zn:Tj =1, (A2)

=0

7; = (7) teley Z (2t (@2 ), (A3)

zl...gn—J

and the prime on the sum indicates that z is excluded.

Since
Z(xﬂxl) =1, (A4)
we can write
;= n T\ J Iad I $£ iUl
T;= (j)< = 1 <Z< | >)
- ( j)<w|w>f(1 (el (A5)

The series in Eq. (A2) has most of its contributions
concentrated around a maximum term (labeled by j,,) in
the limit as n increases. This allows us to approximate
the terms using Stirling’s approximation which gives

nn+%
7? ~ 1 S 1 . (A6)
J Fte(n—j)niti/2n
This can be substituted into Eq. (A5) and the logarithm
taken. Differentiating the result with respect to j and
setting it to zero gives an expression solved by

Jm = n(z|z) (A7)

for the value of j that maximizes T;. Differentiating In
T; twice and substituting this value of j,, gives

d2 In Tj

e G ICECE) R

at the maximum term. These expressions allow us to
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expand In T} around the maximum to second order in j
and to obtain

T; ~ (2mn(z|e)) V2~ G—nile)?/@niels) 1—(zlz)
(A9)

Instead of the number of times j that a scalar product
with  appears in a term in Eq. (Al), we can use the
frequency of occurrence of z, namely,

Then, according to Eq. (A7), the maximum value of T}
occurs at f, equal to (z|z). The expression in Eq. (A9) is
such that the limit of n T} as n increases is a é function.
As a result,

(A10)

1

() ~ / 5(f» — (zlz)) dfs - (A11)
0

This shows the limiting frequency distribution for the

occurrence of z in the terms in Eq. (A1).

APPENDIX B: A STERN-GERLACH EXAMPLE

Consider the use of a Stern-Gerlach (SG) device to
measure the spin component of a neutral packet with a
large total spin oriented perpendicular to the axis of the
magnetic field as shown in Fig. 11. The packet is col-
limated by a slit, and then an inhomogeneous magnetic
field splits it into subpackets, each corresponding to a
spin component. (The coils are omitted for the moment.)
The paths of these packets are finally focused so that they
pass through a common intersection region marked A. If
the magnetic lens system is designed to pass this com-
bined packet from region A through a second SG device
rotated to the direction of the spin of ¥;, the spin com-
ponent will be shown to be the same as the initial packet.
This demonstrates that the subpackets were “coherent”
when they reached region A.

As noted in Ref. [3], the form of the wave function at
any time during its passage through the apparatus can
be determined by first finding the course of each sub-

incident
packet

FIG. 11. A Stern-Gerlach experiment to measure the spin
component of a packet and a magnetic lens that converges all
subpackets to overlap in region A. The coils are connected to
recorders.

packet by solving the Schrédinger equation forward or
backwards in time. Since the equation is linear, the so-
lution for the entire wave function is given by the sum of
all of the packets at the desired time.

The initial wave function of the first SG device (shown
in Fig. 11) plus the packet will have the form

U =Pixi , (B1)

where ¥, is the initial wave function for the system com-
posed of the SG device and the packet. The state of the
initial packet alone is represented by ; while the ini-
tial state of the SG device is x;. In terms of the wave
functions of the individual subpackets, the wave function
looks like

\I!,g :XiZ"pma (B2)

where m represents the spin component of the subpacket.
The SG device returns to its initial state when the packets
have passed on. When the subpackets have merged again
in region A, the wave function is finally

Uy =1axi, (B3)

where

A= tm- (B4)

This is, of course, a spin function with the spin oriented
in the same direction as in ;. The fact that the appa-
ratus returns to its initial state x; allows the addition
of the component packets v, just as this fact allows for
the coherent scattering of visible light passing through a
cloud chamber.

On the other hand, we can arrange to measure the spin
component by placing a coil around each path followed by
a subpacket (as shown) and connecting each coil to a dif-
ferent amplifying and recording device (not shown). The
dipole magnetic moments of the packets induce currents
in the coils that are amplified and recorded. In this case,
x represents the state of the SG device together with the
recorders. In the initial state x;, the recorders have reg-
istered no signals and the wave function is that in Eq.
(B1). Similarly, Eq. (B2) represents the wave function
before the subpackets have reached the coils.

Now, however, in the wave function after the subpack-
ets have reached the path intersection region A of Fig. 11,
the packets cannot be combined as they were in Eq. (B3).
To see this, we solve the Schrodinger equation for the
system with each subpacket separately and derive the
final wave function by adding the final wave functions
together. The result is

Uy = thmXm, (B5)

where x,, is the state of the SG device, the amplifiers,
and the recorders when the subpacket 1, has passed
through. These states x.,, are orthogonal to each other
since they represent the rearrangement of entirely differ-
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ent atoms in the recorders into new states. This prevents
the summation of the wave functions 1,, with a x; fac-
tored out as was done in Eq. (B3), and we say that the
Ym’s are “incoherent.” This inability to add the v,,’s
into a single wave function in region A of Fig. 11 means
that a measurement of the spin component in that region
by an SG device oriented along the direction of the initial
packet will not show a single spin component as it did be-
fore the coils were included in the apparatus. Each sub-
packet will remain with its spin orientation. This shows
that the subpackets are “incoherent” in region A. The
sensitive medium in a cloud chamber behaves like the
coils and attached recorders in preventing the separate
tracks associated with pieces of the a wave from being
merged into a continuous clouded region.

Suppose now that an observer, whose wave function is
represented by ¢, looks at the recorders to see what spin
component has been indicated by the meters on their
fronts. As before, we can determine the final state of the
entire system including the observer by following, with
the aid of the Schrodinger equation, each one of the sub-
packets as it moves through the system producing the fi-
nal interaction with the observer. Then we can add these
wave functions together to form the entire wave function.
The final wave function will then have the form

‘I’f = Z"/f'med)m ) (BG)

where ¢,, represents the state of the observer that in-
volves a memory of the reading of one measurement re-
sult, namely, m. This is why the observer sees only one
meter reading its spin component, and, for similar rea-
sons, he sees only one track in a cloud chamber.

Now it could be true that the apparatus is not as pow-
erful as the one pictured in Fig. 11, that is, it can deter-
mine only if the spin component lies within a range of
values rather than its specific value. This would be the
case if a single coil were wrapped around several packet
paths rather than just one as shown. We label each coil
by a value of r. Then Eq. (B5) would be replaced by

=" Ymxr,
T m

where ). represents the sum over the values of m in
the range r, and X, indicates a state where a recorder
has indicated a registered signal in the range r.

If the observer is watching the meter indicating these
ranges, the final state of the system including the ob-
server is given by

v = Z Z Y Xr Prs

where ¢, indicates a state of the observer with the mem-
ory of a meter reading in the range r. This corresponds
to a cloud chamber being seen through defocused eyes.
If the observer wants a more precise measurement of
the spin component of the packet, he can use an ap-
paratus that will make finer distinctions by using coils

(B7)

(B8)

that are wrapped around smaller numbers of subpacket
paths. There is, however, an ultimate measurement us-
ing apparatus with coils around single paths as shown in
Fig. 11. Any further refinement yields no more detail to
the spin component structure. This is analogous to the
observer of a cloud chamber who improves the focus of
his eyes. If this is not sufficient to bring the image of the
track down to its ultimates size, magnifying lenses can be
used to diminish the image to its minimum size. We are
accustomed to assigning this minimum size to the true
dimensions of the track.

APPENDIX C: PACKET DIMENSIONS

Equation (2.7) shows how a coherent packet ¢ can
be constructed from minimum packets. The dimensions
of this packet depend upon the distances apart of the
jth and j'th packets for which a;js is significant, that is,
where the scalar product of two wakes produced by min-
imum packets is not negligible. This, in turn, depends
upon the scalar products of the excited wave functions
of the atoms composing the sensitive medium in the re-
spective wakes. From the form of the wave function for
the wake in Eq. (2.3),

aj5=> [I OFalxFa) XGslx518)

b a (#b)

(X5lx5s)
= H(X?alx_(i)’a) Z P R
a b

C1
AR ()
where (X5,|x5:5) is the scalar product of the excited por-
tion of the wave function of the bth atom in the jth wake
and the excited portion of the same atom in the j'th
wake.

The ranges of a;;; in various directions relative to
the direction of packet propagation is determined by the
magnitudes of the excited portions of the atomic wave
functions. In Fig. 12 is sketched a plot of the ratios of
the squares of the magnitudes of the excited portions to
the square of the magnitudes of the unexcited portions

("?b|"jb) (x‘]?,b|xje,b)

CRIxo) s el )

cegti‘:er ce(r’lfper
packet j packet j’
(=5l x55)

FIG. 12. Plots of the ratios of scalar products of atomic
wave functions for atoms along a line perpendicular to the
directions of packet motion to indicate the wakes of packets
labeled j and j' and the extent of contributions to a;;; as b
is summed over these atoms in Eq. (C1).
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for the atoms along a line perpendicular to the direc-
tion of packet propagation passing through the centers
of the minimum packets labeled j and j. The mag-
nitudes of the unexcited components are almost unity
because of the smallness of the scattered waves. These
sketches indicate the forms for the wakes of the two
minimum packets. The scalar products between these
states (x5|x5s)/(X361X5) are also shown by the solid
line. This last ratio must vanish when the magnitudes of
the excited states vanish. As a result, the solid line is on
the horizontal axis when either of the other two (dashed)
curves is on that axis.

As we have previously noted, the wake for a minimum
packet has a transverse half-width equal to the maximum
distance from the packet for which the energies imparted
to the atomic electrons is sufficient to ionize the atoms. It
is clear from the last equation, and from the figure, that
ajj» will become small when the distance between the
two packets exceeds twice this half-width, that is, twice
the electron ionization range. Thus the transverse half-
width of 1/); is, according to Eq. (2.7), equal to twice the

electron ionization range. Since the large packet ionizes
atoms out beyond its boundary a distance equal to the
electron ionization length, the half-width of the visible
track should be of the order of four times the electron
ionization range.

Ahead of a minimum packet progressing through the
medium, atoms will be excited in much the same manner
as for the transverse directions. Behind the packets, the
atomic states will decay and the molecules of the medium
will change positions with time. Thus the extent of the
a;;’s ahead of and behind the packet must also depend
upon the medium.

When these larger packets are used to expand the in-
cident wave, their spacing will be some fixed multiple of
the electron ionization range. This is, of course, deter-
mined by the sensitive medium and is independent of the
amplitude of the incident wave. The above analysis is
roughly correct for a particles with energies of 5 MeV or
greater. For energies sufficiently low for o particles and
electrons, the incident packet will not follow a straight
path in the medium and may even break up.
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FIG. 1. Photograph of « tracks in a cloud chamber from
a radioactive source in the center. The tracks do not cover
the sensitive area of the cloud chamber although the wave
function does. This is Fig. 41-44 from Physics Demonstration
Ezxperiments, edited by H. F. Meiners, (©1970 by the Ameri-
can Association of Physics Teachers. Reprinted by permission

of John Wiley & Sons, Inc.



