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I. INTRODUCTION

Over the past 30 years much work has been done
on coherent states [1-9] especially in the field of quan-
tum optics. Beyond the harmonic-oscillator system,
coherent states have also been developed for quantum
(Schrodinger) systems with general potentials and for
general Lie symmetries. These states are called (general)
minimum-uncertainty coherent states [9] and (general)
displacement-operator coherent states [3, 6-8].

There is also a different generalization of the coherent
states of the harmonic-oscillator system. This is the con-
cept of “squeezed” states [10,11]. Most notably, squeezed
states have been used in the context of quantum optics
and in the context of gravitational wave detection. In
quantum optics they describe the cases of “antibunched”
and “bunched” light [12]. In gravitational wave detec-
tion they are used to describe “quantum nondemolition”
or “action-back-evading” measurements [13].

Recently, we generalized [14] the concept of co-
herent states to supersymmetric systems, using the
displacement-operator method for supergroups. We call
the resulting states supercoherent states. For other
approaches to this problem, see Refs. [15-20]. Our
calculations require the use of a general technique for
constructing Baker-Campbell-Hausdorff (BCH) relations
[21-25] for supergroups, which had recently been de-
veloped [26—29]. Throughout our work, we have em-
ployed Rogers’s definition [30] of supermanifolds and su-
pergroups.

In Ref. [14], we discussed three systems: (i) the super
Heisenberg-Weyl algebra, which defines the supersym-
metric harmonic oscillator; (ii) an electron in a constant
magnetic field, which is a supersymmetric quantum-
mechanical system with a Heisenberg-Weyl algebra plus
another bosonic degree of freedom; and (iii) the electron-
monopole system, which has an OSP(1/2) supersymme-
try. An obvious follow-up question was whether our su-
percoherent states for the harmonic oscillator could be
generalized to supersqueezed states. It is the purpose
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of this paper to demonstrate the positive answer to this
question.

In Sec. II we review the coherent and squeezed states
of the harmonic oscillator from the minimum-uncertainty
point of view. In Sec. III we do the same from the
displacement-operator point of view, pointing out the
equivalence of the two formulations [10]. In Sec. IV we
review our harmonic-oscillator supercoherent states.

Our main objective is to obtain a supersqueeze op-
erator and supersqueezed states incorporating bosonic
and fermionic sectors of the OSP(2/2) supergroup. We
start our derivation in Sec. V by obtaining the differ-
ential equations whose solutions enable us to write the
supersqueeze operator as a product of the exponentials
of single algebra elements. This is done using BCH re-
lations for the supergroup OSP(2/2). We give the solu-
tion of the equations in Sec. VI. Section VII focuses on
the case where only odd operators are involved in the
squeeze. This yields fermionic squeezed states. The gen-
eral supersqueezed states are obtained in Sec. VIII. We
conclude with a discussion in Sec. IX.

II. MINIMUM-UNCERTAINTY COHERENT
AND SQUEEZED STATES

The harmonic-oscillator Hamiltonian

1 1
H=—0%1 Zmw?s?
2P + 5 W T (1)
is quadratic in the operators z and p, which classically
vary as sin(wt) and cos(wt). The commutation relation
of the associated quantum operators (h = 1)

[ZL‘,p] =1 (2)
defines an uncertainty relation
(Az)*(Ap)? 2 1/4. (3)

The minimum-uncertainty coherent states for the
harmonic-oscillator potential can be defined as those
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states that minimize the uncertainty relation (3), subject
to the added constraint that the ground state is a member
of the set.

The states that minimize the uncertainty relation (3)
are

r — X

2
2 ) +ipoa:}, (4)

o = sog = s/[2mw] /2. (5)

Y(x) = [2ro?] /2 exp [— (

When s = 1, these Gaussian functions have the width of
the ground state, so they are the coherent states. The
states are labeled by two parameters zo = (z) and py =
(p)-

The squeezed states of the harmonic oscillator can
also be found from the minimum-uncertainty point of
view [10]. In Egs. (4) and (5) simply let s # 1. The
squeezed states of the harmonic oscillator are minimum-
uncertainty Gaussian functions whose widths are not nec-
essarily that of the ground state. These states form a con-
tinuous three-parameter set. Their uncertainty product
evolves with time as

2
BaOPApO) = 1 [1 P11 sin2<2wt)] |

(6)

III. DISPLACEMENT-OPERATOR COHERENT
AND SQUEEZED STATES

Consider the displacement-operator approach using
the oscillator algebra defined by a,at,ata, and I. The

displacement-operator is the unitary exponentiation of
the elements of the factor algebra, spanned by a and at:

D(a) =explaa! — a*a)

= exp [—%|a|2] explaa'] exp[—a*a), (N

where the last equality comes from using a BCH rela-
tion. The displacement-operator coherent states of the
harmonic oscillator are obtained by applying the displace-
ment operator D(a) on an extremal state, i.e., the ground
state. Specifically, this yields

D(a)|0) = explaat — a*a]|0)

—ew [-3lel| D S =), ®)

where |n) are the number states. With the identifications

Re(@) = [mw/2]*%z9, Im(a) = po/[2mw)'/?, 9)

these are the same as the minimum-uncertainty coherent
states, up to an irrelevant phase factor.

Obtaining the displacement-operator squeezed states
for the harmonic oscillator from the coherent states is
more complicated than with the minimum-uncertainty
method. One starts with the “unitary squeeze operator”

[ atal
S(z) =exp -Zaza - *az_a] (10)
F atat ta+ 1
=exp G+a_g; exp G’g(a—a—+_i)- exp . (11)
) 2 2
r t.1 (1/2+ata)
_ id a'a 1 e aa
exp -e (tanhr) 3 ] (coshr) expli e "(tanhr) 3 }, (12)
f
where Eq. (12) is obtained from a BCH relation [31, 32] T(a, 2)|0) = D(a)S(2)|0) = |(ev, 2)), (14)
and z = re*®. A normal-ordered form for the second term _
in Eq. (12) is [10] z=re"?, r=Ins (15)

1 (1/2+ata)
(coshr>
1 12 [ (sechr — 1)
= E RSl % A n
(coshr> L:o n! (@')™(@)™| . (13)

The squeezed states equivalent to the ¢ of Egs. (4)
and (5) are obtained by operating on the ground state

by

Here ¢ is a phase which defines the starting time ty =
(¢/2w) and s is the wave-function squeeze of Eq. (5).
Note that S(z) by itself can be considered to be the dis-
placement operator for the group SU(1,1) defined by

1 1 1 1
= ~atal == ==(af fut
K+—2aa, K_ 2aa, Ky 2<a a+2>,

(16)

so that the S(z)|0) by themselves form SU(1,1) coherent
states.



48 SUPERSQUEEZED STATES 1047

IV. SUPERCOHERENT STATES

The displacement-operator supercoherent states of
the harmonic oscillator are obtained from the super
Heisenberg-Weyl algebra, defined by

[a,a'1=1, {b,bl}=1. (17)

Using lemma 1 of Ref. [26], one obtains that the su-
perdisplacement operator is [14]

D(A, ) = exp[Aa’ — Aa + 6b' + b (18)
= Dp(A) Dr(0), (19)
where
Dp(A) = (exp[—3|A%] exp[Aa'] exp|—Aal) (20)
and

Dp(8) = (exp[—166] exp[6b'] exp[6b]) . (21)

The B and F subscripts denote the fact that our su-
persymmetric displacement operator can be written as
a product of “bosonic” and “fermionic” (more properly,
even and odd) displacement operators.

The variables 6 and 6 are Grassmann odd. They are
nilpotent (they only contain a “soul”) and satisfy anti-
commutation relations among themselves and with the
fermion operators b and b'. The variables A and A are
Grassmann even. Explicit calculation yields

D(4,6)[0,0) = (1 — 166)|A,0) + 64, 1). (22)

The two labels A and v, with v =0, 1, in Eq. (22) repre-
sent the even (bosonic) and odd (fermionic) sectors. The
bosonic state |A) is a superposition of the the number
states |n) with the form of an ordinary coherent state
given in Eq. (8). The fermionic displacement acting
alone produces a Grassmann-valued linear combination
of the states |0,0) and |0,1). We refer the reader to Ref.
[14] for further details of this construction.

V. DIFFERENTIAL EQUATIONS
FOR THE SUPERSQUEEZE OPERATOR

The preceding sections show that we desire the super-
symmetric generalization of the SU(1,1) squeeze opera-
tor of Eqs. (10)—(12). The symmetry involved is the
supergroup OSP(2/2). In addition to the su(1,1) algebra

[ZKy —ZK_ +61Q1 + 6:1Q2 + 02Q3 + 62Q4]

elements of Eq. (16), it has five more:

1 1
— L
Mo 2(bb 2),

1 1
Q1= Eafbta Q2 = '2"aby (23)
1 1
=gl — —abl
Q3 20, ba Q4 2ab

The graded commutation relations among the eight el-
ements follow from Eq. (17). (See the Appendix.) There-
fore, by using BCH relations for this supergroup, the su-
persqueeze operator can in principle be written as

6 8
S(g) = exp [Z az’ﬁi:| = [ [ explBig:, (24)
i=1 i=1

where § is the factor algebra.

We next obtain the differential equations needed to
solve Eq. (24), using the general method developed in
Ref. [26]. Consider the following parametrization of the
supersqueeze operator:

S(Z> ej,t,g)

= exp[t(ZKy — ZK_ + 61Q1 + 0:1Q2 + 02Q3 + 62Q4))]
= e+ K+ g10Koov- K- 81Q1 gtMo o4 Q4 oP3Q3 o B2Q2

ESI(#:’Yi?ﬁkat!g)‘ (25)

Here, the Grassmann-valued variable Z and its complex
conjugate Z are even, while the Grassmann-valued vari-
ables {6,} = {61, 62,01, 62} are odd. In writing the prod-
uct form of Eq. (25), we chose an ordering that yields
relative ease of calculation as well as approximate normal
ordering. Since the fermionic operators are nilpotent, we
ordered them to the right of the purely bosonic operators.
The position of My was also chosen for calculational con-
venience.

Since p, the v;, and the §x are functions of ¢, by taking
the derivative of Eq. (25) with respect to ¢t and then
multiplying on the right by S~1, one has

[dits] s 1= [%81] st (26)

This can explicitly be written as (a dot over a quantity
signifies Edt')

= 4. K, + [e”’+K+]'70K0[e_7+K+] + [e”’+K+e"°K"]"y_K_ [e—"roKoe—‘Y+K+] + SBﬁ'llegl

+Sg [eﬁlQl]ﬂMo [e—ﬂle]Sgl + Sp [eﬁlQIC“MO]B4Q4[€_“M06_B1QI]Sgl

+Sp [eﬂlQl 6“M°€B4Q4],83Q3 [e—ﬁ4Q4€—uMoe_ﬂ1Q1]SEI

+Sg [eﬁlQle“M"eB‘Q‘*e’Bst]ﬂzQz [e—ﬂste“ﬁ“Q“e_”Moe_BlQl]Sgl, (27)
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where
Sp = [eV+K+egroKogr-K-] (28)

Note that Sp has a structure analogous to the ordinary
squeeze operator defined in Eq. (10).

All the terms on the right-hand side of Eq. (27) can be
written in nonexponential form by using BCH formulas
and the graded commutation relations. One has

[ZK+ —-ZK_ + 61Q1 +§1Q2 + —éng + 92Q4]

=Y+ K+ + [oKo — Yov+ K4+ + -+ . (29)

The terms left out of the above Eq. (29) become longer
and longer, but can be calculated. When this is done,
eight equations for the eight variables emerge by extract-
ing the coefficients of each of the eight generators of
osp(2/2), i.e., one equation for each factor multiplying
K, Ky, etc. The coefficients yield the following equa-
tions:

0=+ 3 fsfa — 3fabre™/?, (50)
Z=4%4y —Aov+ +¥-71ie ™
+83 {%,816_”/2F3 - %ﬁ4[’y+e‘7°/2]p_}
+he {—%ﬁle'”/ Hype ™/ F + %ﬁdue‘w 2]2} ,
(31)
0="90 — 2¥-v+e" " + ﬁs{ﬂle_“/z[’Y—e”W/z]F_

Ba

+5 - 27-7+e“”°]}

+82 {%ﬁle_“/z[l —2y_v4e7 ) - ﬁ4[’7+€_7°]} ,
(32)
—Z=4_e " +f3 {%ﬁle-mh&e-%] + %g4[7_e—~°]}
L R |

0= [ﬂl - ';‘11)61 + ';'53[31[34] F_

. 1. ~

- [ﬂz;e"/z + §ﬂ2ﬁ1ﬂ4] [yre~ 772, (34)

0, = ﬂ'ge'llf/2[7_e—’)’o/2] + Bze—u/z[e—%/z]’ (35)

92 = 636_#/217’_ _ 626—11/2 [,.Y+e—‘yo/2]’ (36)
Hnr—l’b 1"‘ 1:‘—~1- - o

+ [646“"/2 -+ %18.261,34] 6—70/2’ (37)

where

Fy = [/ F y_ype~/?) (38)

Each of the equations (30)—(37) is linear in time deriva-
tives, so with some algebra an equation can be found for
each of the eight t derivatives:

1. .
fp=501F- —y-e /%856

1 _ — —
—56“/26 70/2[')’4_91 + 02],347 (39)
Vo =+Z — T — 2e/2y, B, + B 40
Yy = T+ T 5e [v+61 + 62]01, (40)
. = J —v0/2%
Yo = ~2Z74 — 5[F. 01 +7-e7/ 8],
1 - -
—56“/26_%/2[’74-01 + 62)8s, (41)
— 1 —
y_=—TZew 5e‘*‘)/z(i'l[v—ﬁl + eH/2By), (42)
Br=e""/2[0; + v,6]
1 _ _ _
+Ze"/2e ¥0/2[—ry,8; — 82]B1 B4, (43)
Bo = e“/Z[F_?l - ’y_e_""/zaz], (44)
BB — e#/2e—‘70/2[§17+ + 52], (45)
By =e M2 —~_e"7/20, + F_65)
1 - —
+§[—F_01 + y—e~7°/26,]8: 4. (46)

These are the differential equations whose solutions yield
the group parameters for the supersqueezed states. Note
that the boundary conditions needed for these equations
are that the solutions must all be zero when ¢ = 0. Then,
the supersqueeze operator will be obtained when we set
t=1.

VI. SOLUTION FOR THE SUPERSQUEEZE
OPERATOR

Equations (39)—(46) can be separated into twenty cou-
pled differential equations. This can be seen by expand-
ing the group parameters in powers of the odd vari-
ables 6;, substituting into the eight equations, and col-
lecting coefficients. First, the four even group parame-
ters {4, Y+, Yo, Y-} can each be written as having three
terms, containing products of zero, two, or four of the
0;, respectively. Second, the four odd group parame-
ters {0k} can be written as having two terms, containing
products of one or three of the 8;, respectively. We use
a presubscript to denote this, e.g.,

w=(op) + (2p) + (apr), Br = (161) + (361)- (47)

One takes the eight equations (39)—(46) and expands all
of the expressions in powers of the §;. The order-zero,
-two, and -four pieces of the even equations are separated
and, similarly, the order-one and -three pieces of the odd
equations are separated. Note that the lower-order solu-
tions are placed into the higher-order equations.

To solve the equations, one first observes that (ou) = 0.
The equation for (o4 ) is a Ricatti equation that is solved
by the usual procedure, e.g., as is done to obtain the
left-hand term of the normal squeeze operator s in Eq.
(12) [31]. This solution is substituted into the equation
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for (oy0), whose solution is in turn put into the equa-
tion for (oy-). Except as noted, e.g., for (o7v4+) above,
the differential equations are all simple in the sense that
there is a t derivative of a group parameter on the left
and only powers and hyperbolic functions of ¢t on the
right. Proceeding, and substituting all previous solu-
tions into subsequent equations, one directly solves for
(161), (182), (183), (184), and (2p1).

The equation for (24 ) is an inhomogeneous first-order
equation of the form

4(t) = k(t)q(t) + £(2). (48)

Its solution is obtained in a standard way:

t
f(v)
q(t) = ¢f (¢ / dv, 49
®=0"0) | s (49)
where ¢ is the solution to the homogeneous equation
(f=0).

One can then proceed to solve directly for (27), (27-),
(3B1), (3B2), (3B3), (3Ba), and (sp). The equations be-
come more complicated, but obtaining the solutions re-
mains mainly a question of careful Grassmann-valued al-
gebra. With (47v4+) one has another first-order inhomoge-
J

nous differential equation, whose solution is obtained as
above. Finally, the solutions are completed with (470)
and (477-).

In presenting the solutions, we introduce the suggestive
notation

r=[2Z)Y?, €% =[z/Z])Y?, (50)
where r and e*® are now understood to represent
Grassmann-valued quantities. Then, one can make the
replacements

Z —re’t, Z —re ', (51)
Some care is needed because the quantity e is strictly
defined only for |Z| # 0 and Z # 0, where Z is the body
of Z. However, the solutions given below are not affected
by this. We also define

¢ = coshy,

s=sinhy, y=rt, (52)

o= '0—202§I6H = 02610,0,. (53)

Then, the complete solutions for the group parameters
are

1 - — — ) - . [ 1
p=0+ o5{[6161 — 6262)(c — 1) + (02617 — B1626')(s — y)} + r—4 [C —1-— 534 ; (54)
i S et i7 2 —i¢7 2.7
V4= [e E] oy [0161(sc — y) + €*®0102(c — 1)* + e7*%03015° + 202(sc + y — 25)]
et 2 11 5 o 1 4
— - —y— -2 = 55
53 [(2y+sy s)+c(8y 2s)+( g5 t15¢ )| (55)

115 —ys T s —idS s - 2+ ys
70:[—2lnc]+-2-r—2|:0101 (-CL+C—1)+6¢0102 (-C-—s)+e *4’0201 (—E+3)+0292( Cy —C—l)]

o 2 }_1_ 2 e _ 1,
+W|:(y —1—2y3)—c(4ys+4>+c (21nc+80 3 —4ys 18 , (56)
—ie 2 “\g i$7. 0,62 — =197 2.3
Y- = [—6 ¢ Z] + (Z;rz—cz [6101(sc — y) — €*®01628° — e7*?020:1(c — 1)* + 0202(sc + y — 23)]
Pe—1 2 11 2 (15 9,
T 83 [(2y+sy “S)+C(§y—2s)+sc —é—+2lnc el (57)
) 1 - o
B = '11:[391 + (c—1)e**6,] + 21—73[020102(11 — 2cs + yc) + €9916102(2¢(1 — ¢) + ys), (58)
1 —i¢g L 13 1 3 3 —i 1,
B2 = ;[391 +(c—1)e™"%8] + Py 020102 | yc— s + E(sc —y) ) +020:6,e ys—3(c—1) — 35 , (59)
1 o _ 1 -
B3 = ;[(c —1)€'¥8; + s6,) + Zr—a{e’¢9201012[ys —2(c— 1)] + 0201612(yc — s)a}, (60)
Ba= %[(C —1)e™0; + s8] + 4—715[t'f_id’pzl91¢92(—4c2 + 4c + 2ys) + 616162(—4sc + 25 + 2yc)]. (61)

Setting t = 1 yields the general supersqueeze group
parameters. In zero and first order, one notices a sym-
metry among the parameters. Compare, for example,
(0v+) with (07-) and (of1) with (184). The symmetry
remains partial all the way up to fourth order; e.g., two
of the three components of (4v4+) and (47—) are identi-
cal. It is even more evident in the Z — 0 limit discussed

[

in the next section. The symmetry would be modified
if the position of group element exp[uMy] were different,
say one place to the right or left in Eq. (25).

VII. FERMIONIC SQUEEZED STATES

As with the superdisplacement operator, the super-
squeeze operator can be separated into a product of
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bosonic and fermionic pieces:

S(g9) = SB(g) Sr(9)-

Therefore, the supersqueezed states are, in general, of the
form

T (g)]0,0) = DS|0, 0)
= Dp(A)Dr(0)SB(9)Sr(9)]0,0)
= [Ds(A)SE(9)][Dr(8)Sr(9)]]0,0)
=Tgs(9)Tr(9)/0,0).

(62)

(63)

The general operator produces a linear combination of
states |n, v) with arbitrary n =0,1,2,... and v =0or 1.
There is an interesting distinction between the su-

perdisplacement and the supersqueeze operators. The
superdisplacement operator can be written as
D(A,8) = Dg(A)Dr(9). (64)

Thus, the bosonic displacement operator Dg depends
only on the even Grassmann variables A and A4, and the
fermionic displacement operator Dr depends only on the
odd Grassmann variables 8§ and 8. However, the same
is not true of the bosonic and fermionic squeeze opera-
tors. There both operators depend on both even and odd
Grassmann variables:

8(Z,68;) = Sp(Z,0;)Sr(Z,6;). (65)
This is because the nonzero graded commutation rela-
tions of the supersqueeze algebra mix the even and odd
elements of the algebra, something which does not hap-
pen in the case of the superdisplacement operator for the
coherent states.

The distinction can be seen more clearly by taking lim-
its. In the limit ; — 0, one is left with a bosonic squeeze
that has form analogous to that of the ordinary squeeze
operator in Eq. (12):

S(2,0) = Sp(2,0) = 5(2). (66)

However, when Z goes to zero the situation is quite dif-
ferent. For present purposes, this is equivalent to taking
the limit r = |ZZ|/2 — 0 in Egs. (54)—(61). One finds

_ 1. — o 1 _ 4
u=0+ 1 [9191 0202]t 24(Dt , (67)
1-
vy =0— Zagelﬁ +0, (68)
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— 1 3 2 14
Yo =0 1 [9191 + 9292]t 16 e, (69)
1-
y_=0-— Zoleztz +0, (70)
,3—0t—3§90t3 71)
1= 01t — 57020105t7, (
- 1- -
B2 =61t + 6020192t3’ (72)
— 1- -
Bs = 62t + 6929191153, (73)
B4 =065t — %?19192t3. (74)
Setting t = 1, one sees that
S5(0,6;) = SB(0,6;)Sr(0,6;). (75)

Therefore, a fermionic squeeze (6; # 0) is not defined
only in terms of the fermionic squeeze operator Sp.
Rather, as shown in Eq. (75), in addition it has a soul
part from the bosonic squeeze operator Sg. A fermionic
squeeze on |0,0) produces a Grassmann-valued linear
combination of the states |0,0),|1,1), and |2,0). Specifi-
cally, from Eqs. (67)—(74) one finds

5(0,6:)[0,0) = [1 - % (5—%‘?1) - 115 (%)] 10,0)
3

- % (9—"%) 12,0). (76)

Note that we have associated a factor % with each 6;.
This is due to the % in the bivariant elements of the
osp(2/2) algebra.

This result suggests the possibility of an extension of
the above states in the context of field theory, just as
the ordinary squeezed states can be extended and then
interpreted as “two-photon” coherent states [33]. The
squeezing operation involves products of two operators.
Therefore, with the bosonic squeeze turned off (Z = 0)
one expects to excite only two-particle states in the field
theory, which, for example, might perhaps be either two
photons or one photon and one photino [34].

Therefore, the general fermionic squeezed states, which
are defined in the two limits Z — 0 and A — 0, are

D(0,6)S(0,6,)|0,0) = —1 - % (—14?1) - %2- (%)] [(1 - %59) |0,0) + 6|0, 1)]

|2,0) + a|2,1>] .

:? -1 (9298192” [(1 + %@o) I1,1) +5|1,0>]
FaEe-

(77)
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VIII. GENERAL SUPERSQUEEZED STATES

The general supersqueezed states are given by
T(A,6;2,65)(0,0)

= Dg(A)Dr(8)SB(Z,6;)Sr(Z,6;)|0,0)

=|A,6; Z,6;). (78)

The structure of these states can be seen as follows.
From the definition of Sp, its action can be split into the
action of five separate elements. Counting from the right,
the first three group elements act as unity, the fourth just
multiplies |0, 0) by a constant, and the fifth yields a linear
combination of the states |0,0) and |1,1). Similarly, Sg
can be written as the product of three elements. The first
element exp[y_ K_] acts as unity and the second element
exp[v0Ko] yields a new linear combination of |0,0) and
|1,1). Next, one comes to

exp[v+ K] = exp{[(27+) + (a7+)| K+ } exp[(ov+) K +].
(79)
|
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Expand exp{[(27+) + (47+)]K+} and commute it until it
is to the left of Dg(A), using the relation

D(@)f(a',a) = f(a' — a*,a — @) D(a). (80)
Write |1,1) as a'|0,1) and similarly commute a! through
exp[(ov+)K+] and further until it also is to the left of
Dp(A). Next, commute Dr(0) to the right, expand, and
apply it to the linear combination of states |0,0) and
|0,1). The result is a new linear combination of the states
|0,0) and |0, 1).

The remaining operator, which multiplies both these
states, is Dp(A) exp[(o7+)K+]. This operator act-
ing on a bosonic ground state has the same effect as
Dp(A)Sp(Z). That is, it produces a squeezed state, de-
noted by |(A4,Z)), of the form of Eq. (14), but with
a — A and z — Z. This state, combined with a ket in
the fermion space, yields |(4, Z),v). Therefore, in this
supersymmetric system we have produced a linear com-
bination of the states |(A, Z),0) and |(4, Z),1).

Combining all the above together one finds

T(A,6,2,6;)|0,0) = |A,6; Z,6,) = AT _hy(a}) [(1 - %59) (4, Z),0) + 8 |(4, Z), 1)]

40 B hy(at) [9|<A, 2),0)+ (1 +37) (4, 2), 1>] ,

where

f=1= 7l + ()] + 55 n),

Pa =1+ L3 60) + (o)) + EEL (0,

hi(a) =1+ 3[674) + (r)(at =B + 2 om)2(al - D),

ha(at) = @ [1 + %(27+)(GT - Z)z] :

(81)

(82)
(83)
(84)

(85)

The products in Eq. (81) can be expanded and then, from Grassmann multiplication, reduced to

AT_ha(@h) = 1= F(6n) + @] + 35m)” + 1170) + (430)] + 55 (70)?

+ %[(274') + (a7)l(a! —A)% + %(2')’+)2(aT —A)

~ 15 GH)E0) + 5[670) — (il — A,

— T4 _
AL G ha(a®) = [1= Ga) + Foo) + Ja) (e - 27 (S W (o1 - )

The supersqueezed state of Eq. (81) shows one major
similarity to the supercoherent state of Eq. (22) and one
major difference. It is the same in that it can be writ-
ten as a linear combination of factors times a squeezed
or coherent state in the bosonic sector with occupation
number zero or one in the fermionic sector. It is different
in that for the supersqueezed state the factors multiply-
ing these states are polynomials in up to four bosonic
creation operators on the |(A, Z),v) states. Further, in
the limit of no fermionic displacement, § — 0, |(4, Z), 0)

(86)

(87)

[

is multiplied only by the polynomial h; of order four,
while |(A, Z),1) is multiplied only by the polynomial h,
of order three. In the limits A — 0 and Z — 0, the
supersqueezed states of Eq. (81) reduce to the fermionic
squeezed states of Eq. (77), as expected.

IX. DISCUSSION

Other approaches to coherent states exist, both
for specific and for more general supersymmetric sys-
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tems. There has even been a discussion of a type of
squeezed state for the supersymmetric oscillator. One
can identify at least three classes of ordinary coherent
states: displacement-operator states, annihilation oper-
ator states, and minimum-uncertainty states. In this
section, we use similar notions to discuss coherent and
squeezed states for supersymmetric systems.

A. Displacement-operator states

In our earlier work on supercoherent states [14], we
described the construction of a generalized unitary su-
perdisplacement operator. The action of this operator
on an extremal state creates supercoherent states with
several attractive features. For example, in the special
case of the supersymmetric oscillator these supercoher-
ent states exhibit natural extensions of properties of the
usual coherent states for the ordinary oscillator. The ap-
proach employs Rogers’s definition [30] of supermanifolds
and supergroups and provides a natural generalization of
the group-theoretic approach to ordinary coherent states.
We ask the reader to recall that the harmonic-oscillator
supersqueezed states introduced in the present paper are
defined by the product of the superdisplacement operator
and the supersqueeze operator. The discussion in Secs.
II and VIII shows that this definition provides a natural
generalization of the corresponding construction for the
ordinary oscillator. The unitary supersqueeze operator
(24), by itself, defines osp(2/2) supercoherent states, just
as the normal squeeze operator defines su(1,1) coherent
states.

Another program that uses superunitary operators act-
ing on an extremal state was introduced in [15] and sub-
sequently applied in detail to a number of specific super-
groups [16-19]. Note that Refs. [18] and [19] have also
discussed the role of path integrals in this approach.

In the definition that is the first equality of Eq. (24),
it is important to recognize that the coefficients a; mul-
tiplying the bosonic generators of OSP(2/2) are even
Grassmann-valued parameters while the coefficients «;
multiplying the fermionic generators are odd Grassmann-
valued parameters. In the second equality of Eq. (24),
the (3; are all Grassmann-valued: the even ones multi-
plying bosonic generators and the odd ones multiplying
fermionic generators. However, all the 3; are superfunc-
tions of both the odd and even ¢;. This is analogous to
the Baker-Campbell-Hausdorff relations for Lie groups
where complex or real canonical coordinates of the sec-
ond kind are analytic functions of the complex or real
canonical coordinates of the first kind. The operators in
Eq. (24) are therefore the most general ones within the
context of Rogers’s theory of supergroups. One might
instead use displacement operators or supersqueeze op-
erators that are products of supergroup operators not
leaving the extremal state fixed and then obtain a nor-
malization afterwards. Another possibility is to choose
to omit the souls of the even Grassmann parameters. In
either case, the general Grassmann structure is lost.

B. Annihilation-operator states

Among the interesting properties of the supercoherent
states of Ref. [14] for the special case of the supersym-
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metric oscillator is that they are eigenstates of the super-
symmetric annihilation operator. This is a generalization
of the corresponding statement that the usual coherent
states for the ordinary oscillator are eigenstates of the
ordinary annihilation operator.

We are aware of one previous attempt to construct
squeezed states for supersymmetric systems [35]. This
work is based on the formulation of coherent states for
supersymmetric systems presented in Ref. [20]. The
method of Ref. [20] generates coherent states that are
eigenstates of the supersymmetric annihilation operator,
without using Grassmann-valued variables. Instead, co-
herent states are constructed as linear combinations with
complex-number coefficients. Reference [35] presented
squeezed states for supersymmetric systems constructed
by applying the ordinary squeeze operator of Eq. (10) to
the two towers of Ref. [20]. This represents an su(1,1)
squeeze.

C. Minimum-uncertainty states

For the ordinary harmonic oscillator, coherent states
minimize the physical uncertainty product and preserve
it in time. Reference [14] shows that our supercoherent
states also do this.

The situation in the general case remains a subject for
research at the present time. A number of years ago, Ref.
[36] proved the following result for compact Lie groups
with algebras obeying the commutation relations

[T, Jo) = iGE, J. (88)
The quadratic Casimir Cy = g"*J,.Js, constructed as
usual from the positive-definite Cartan-Killing metric
Grs = %Gngfl’s, can be used to define an uncertainty
(AJ)? by

(AT)? ={g"* (Jr = (Ir))(Js = (J5))) (89)

=(C2) — g7 (Jr}(Js). (90)

Then, (AJ)? is minimized by a maximum weight vector
and vectors that are unitarily equivalent.

One can speculate that a generalization of this result
holds for superalgebras in that one has a minimum un-
certainty for an extremal state and states that are uni-
tarily equivalent to it. This has been shown for some
supersymmetric systems [14, 17, 19]. The connection to
the annihilation operator method is that the associated
operator

P =g"(Jr = (Jr)) (91)

can be considered the annihilation operator for these co-
herent states. That is, the supercoherent states, which
minimize the Casimir operator quantity (AJ)?, are also
eigenstates of the operator P.

D. Physical interpretation

Obtaining a complete physical interpretation of super-
coherent and supersqueezed states requires understand-
ing in detail the role of Grassmann-valued quantities. In
Ref. [14], two physical models were examined: an elec-
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tron moving in a constant magnetic field and the electron-
monopole system. It was shown that the supercoherent
states involved superpositions of the number eigenstates
with Grassmann-valued coefficients. Some insight into
the physical content of these states was acquired by ex-
amining the expectation values of various operators. As
shown in Eq. (81), the supersqueezed states presented
in the present paper are also linear combinations of the
eigenstates with Grassmann-valued coefficients. They
are the product of a squeezed state in the bosonic sec-
tor labeled by the Grassmann-valued parameters A and
Z with a linear combination of the kets in the fermionic
space.

For both supercoherent and supersqueezed states and
in more general contexts, a possible physical interpreta-
tion of Grassmann-valued variables remains a topic of
speculation and investigation [34, 37-39].
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APPENDIX: SUPERALGEBRAS
FOR SUPERCOHERENT
AND SUPERSQUEEZED STATES

The super Heisenberg-Weyl algebra contains the odd
generators b and b' and the even generators a, al, and I.
They satisfy the nonzero graded commutation relations:

[a,af]=1, {b,bl}=1. (A1)

From these operators, we will be able to define the su-
persymmetric generalization of the squeeze algebra.
The usual squeeze algebra contains the operators

1 1 1 1
K, = EaTaJr , K_= 590 Ko = 3 (aTa+ 5) .
(A2)
That these operators comprise an su(1,1) Lie algebra can
be seen by calculating their commutation relations. They
are

(Ko, K] = +Ky , [Ky K_]=—2Ko. (A3)

These are even elements of the supersqueeze algebra.
There is another even operator and it is defined as

1 1
My==(blb-2) .
=3 (-3)
The operator My commutes with the operators K, and
K.

In addition to the even operators, there are four odd
operators which are defined as follows:

(A4)

1 1
Q= EaTbT ) Q2 = '2‘ab ’ (A5)

1 1
Qs = —2-aTb ) Q4 = §abT . (A6)

These odd operators satisfy a set of anticommutation re-
lations, namely

{Q;,Q5}=0,
{Q1,Q2} = %Ko - %Mo , {Q1,Qs3} = %K+ )

j=1,...,4,

(A7)
{@1,Qa} = {@2,@s} =0, {@:,Qu}= K-,
{Qs3,Q4} = %Ko + %Mo .

The remaining commutation relations, between the
even and odd elements, are

[K+,Q1) =0, [K4+,Q2]=-Qs,
[K+,Q3] =0, [K4,Q4=-Q1,
[K—1Q1]=Q47 [K—,Q2]=O’
[K—7Q3]=Q2 ) [K—7Q4]=O’

[Ko.Q1) = Q1 [Ko,@2) = —5Qz (48)
(Ko, Q3] = £@s » 1Ko, Qu] = 5@,
(Mo, Q1] = %Ql y [Mo, Q2] = —-;—Qz ,

[Mo, Qs3] = —’;‘Qs y [Mo, Q4] = %Q«; .

From the above graded commutation relations we
see that our supersqueeze algebra is the superalgebra

osp(2/2).

To complete the formulation of the symmetry algebra
for the supersymmetric oscillator, we take the semidi-
rect sum of the super Heisenberg-Weyl algebra with the
osp(2/2) superalgebra. The additional graded commuta-
tion relations among these elements are

[Ky,af]=0, [K.,.,a]:—a*,
[K_,al]=a, [K_,a]=0,

[Ko,a'] = 3o , [Ko,a] =0,
[Mo,b] = %b* , [Mo,b] = —%b ,
Qua1=0, [@ua =3,
{Qub'} =0, {Q1,b) = 3a'
Q2] = 35, [@z0] =0,
(@4} =30, {Qab}=0,
(Qs,a1 =0, [@s.al = —3b,
{@s, b1} =34, {Qub}=0,

1

[Q47aT] = _Z'b)r ) [Q4)a] =0 3

{Qa,b'} =0, {Qa,b} = %a.

(A9)
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