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We describe local and nonlocal Gaussian orbital-spin-polarized density-functional calculations for
clusters of two to seven niobium atoms. The most stable geometries found with geometry optimization
have a high atomic coordination. The trends in the experimental binding energies, bond dissociation en-
ergies, and ionization potentials are well reproduced with the exception of the pentamer bond dissocia-
tion energy, which is too low. The possible causes are discussed. These are the most extensive state-of-
the-art calculations to date for the clusters of a transition metal.

PACS number(s): 36.40.+d, 71.25.Pi, 61.50.Cj

The ground-state atomic and electronic structure of
small clusters poses a considerable challenge for modern
quantum chemistry. Density-functional theory and relat-
ed techniques have had considerable success for the
lighter elements. The preferred stable geometries have
been determined for lithium [1], beryllium [1], sodium
[2], aluminum [3], and silicon [4] among others. The cal-
culated binding energies, bond dissociation energies, and
ionization potentials are generally in good agreement
with the experimental values (see, for example, [5] for a
review). However, for the transition metals only the di-
mer, the trimer, and sometimes the tetramer have been
accurately studied.

In this Rapid Communication, we demonstrate that
the stable geometries of transition-metal clusters are ac-
cessible to state-of-the-art theoretical techniques. We de-
scribe extensive density-functional calculations for clus-
ters of niobium containing up to seven atoms. Stable
geometries are found and the atomic structure described.
The energetics for the most stable are compared with ex-
periment and, as we shall see, the calculations lead to a
good reproduction of the qualitative features of the ex-
perimental data, consistent with the results for lighter
elements.

The total energy and the atomic forces were calculated
with an accurate spin-polarized density-functional
method [8-10], using both local [11] and nonlocal [12]
exchange-correlation potentials and model core poten-
tials to describe the niobium atoms. The atomic cores
were described with a  15%2523524522p%3p©34 10
configuration corresponding to a valence space of 11 elec-
trons. The screened potential and the Gaussian orbital
basis for the valence electrons were optimized [13] to en-
sure accurate reproduction of the valence energies and
wave functions for the atom. Calculations with this mod-
el core potential on the dimer, the monoxide, and the
mononitride reproduced to a high degree of accuracy the
experimental equilibrium bond lengths, bond dissociation
energies, and harmonic frequencies. Additional auxiliary
bases of Gaussian orbitals were employed to describe the
charge density and the exchange-correlation potential, al-
lowing improved numerical efficiency.

The stable minima were located with repeated
geometry optimizations of both low- and high-symmetry
starting geometries [6], using a variant of the conjugate
gradient method [7]. The total energy and atomic forces
were explicitly evaluated at each updating step. Thus for
a six-atom cluster approximately 100 self-consistent cal-
culations were performed.

The dimer had a triplet ground state with spectroscop-
ic constants, in excellent agreement with other theoreti-
cal calculations [14-16] and in reasonable agreement with
the scarce experimental data [17,18]. The experimental
bond dissociation energy and ionization potential are 5.2
eV (£0.30) and 5.9 eV (£0.3), respectively. The local
theoretical values are 5.8 and 5.9 eV, respectively. The
nonlocal theoretical bond dissociation energy is 5.4 €V, in
closer agreement with the experimental value. The non-
local ionization potential was not calculated. Recent
local-spin-density calculations found an equilibrium bond
length of 2.12 A [14], while complete active-space self-
consistent-field calculations found a value of 2.10 A. Our
calculation found a value of 2.08 A, in excellent agree-
ment with the theoretical values. The nonlocal value was
somewhat larger at 2.10 A. The above calculations found
harmonic frequencies of 451 [14] and 447 cm ™}, in excel-
lent agreement with our local and nonlocal values of 472
and 447 cm ™}, respectively.

The most stable geometries located with the local po-
tential are illustrated schematically in Fig. 1. Atoms in
equivalent positions are indicated.

The trimer adopted an isoceles triangle with sides of
lengths 2.37, 2.37, and 2.26 A and a ground-state multi-
plicity of 2. Ionization led to an mcrease in the symme-
try, all bonds having a length of 2.37 A, and a ground-
state multiplicity of 3. A linear geometry was also stable
though highly unfavorable, the energy being 3.2 eV
higher than for the triangle. The ground-state multiplici-
ty was 4.

The tetramer was most stable as an ideal tetrahedron
with sides of length 2.47 A and a ground-state multiplici-
ty of 1. The tetrahedron ionized to an expanded ideal
tetrahedron with sides of length 2.49 A and a ground-
state multiplicity of 2. An ideal parallelepiped was also
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FIG. 1. The most stable geometries located. The labels indi-
cate atoms related under symmetry-group operations of the
clusters.

stable with sides of length 2.31 A and a short diagonal of
2.61 A with a ground-state multiplicity of 3. This
geometry, which was explicitly optimized from a high-
symmetry starting geometry, was less stable by 1.2 eV.
The linear chain was not considered.

The pentamer was most stable in a trigonal bypyramid
geometry with a ground-state multiplicity of 2. The
geometry was highly symmetric with equatorial bonds of
length 2.71 A and polar-equatorial bonds of length 2.43
A. Ionization led to a Jahn-Teller distortion, breaking
the symmetry of the equatorial plane such that only two
bonds were of the same length. The equatorial bond
lengths were 2.79, 2.79, and 2.52 A. The polar-equatorial
bond lengths were 2.52, 2.52, and 2.79 A. The ionization
thus led to a slight expansion of the cluster. The
ground-state multiplicity of the ion was 2. The pentamer
was also stable as a face-capped square geometry with a
ground-state multiplicity of 2. This geometry was less
stable by 1.4 eV. The bonds were all of length 2.52 A.

The hexamer was most stable in a geometry formed
from a planar parallelepiped capped with a dimer, which
lay parallel to the plane of the parallelepiped and aligned
along the long diagonal (see Fig. 1). The parallelepiped
had sides of length 2.44 A and a short diagonal of 2.71 A.
The capping dimer atoms each lay 2.22 A from the plane
of the paralleleplped and were separated from each other
by 2.31 A. The ion had a multiplicity of 2. Also stable,
though less energetically favorable by 0.26 eV, was a
distorted form of the above geometry. The parallelepiped
was no longer planar, having buckled about the short di-
agonal. The buckling brought the two atoms forming the
short diagonal closer to the capping dimer, which itself
had also rotated by a small angle about an axis normal to
the original plane of the parallelepiped. This geometry
can also be seen as a distorted octahedron in which the
equatorial bond lengths are 2.44, 2.61, 2.61 and 3.55 A;
the polar-equatorial bond lengths are 2.44, 2.46, 2.49, and
2.83 A for each polar atom; and the polar-polar bond
length is 3.07 A. Thus the octahedron has deformed so
as to bring the polar atoms closer together, at the expense
of the equatorlal bonds, one of which has a length of 3.55
A and is thus weak. The ground state had a multiplicity
of 3. A third stable geometry, lying 0.43 eV higher in en-
ergy than the dimer capped parallelepiped, resembled a
highly distorted octahedron, with the equatorial atoms
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defining an irregular polygon with sides of lengths
2.63, 2.63, 3.02, and 4.00 A. the polar-equatorial bond
lengths were in all cases equal to 2.49 A while the polar-
polar bond length was 2.98 A, suggesting a high degree of
bonding between the polar atoms. This geometry is simi-
lar to the preceding one, with the notable difference that
it has only two strong equatorial bonds (as opposed to
three) and thus might be expected to be less favorable, as
is the case. The ground-state multiplicity was 3.

The heptamer was most stable in a distorted pentago-
nal bipyramid geometry. The principal distortion from
the ideal geometry was the displacement of one of the
atoms in the equatorial pentagon along a direction per-
pendicular to the equatorial plane. The equatorial bond
lengths were 2.51, 2.51, 2.52, 2.52, and 2.53 A, while for
the polar-equatorial bonds the values ranged from 2.43 to
2.84 A. The polar-polar bond length was 3.12 A and thus
reasonably strong. The ground-state multiplicity was 2.
The ion had a multiplicity of 3. Two other geometries
were also stable. Both resembled distorted doubly face-
capped trigonal bipyramid geometries and lay consider-
ably higher in energy (0.8 and 1.2 eV). Both had ground-
state multiplicities of 2.

The most stable trimer, tetramer, and pentamer
geometries were reoptimized with the nonlocal potential,
which led to a breaking of the symmetry and changes in
the bond lengths of several hundredths of an angstrom.
The isosceles triangle lost all symmetry, the bond lengths
being 2.32, 2.43, 2.28 A. The ideal tetrahedron expanded
and distorted, the side lengths being 2.49, 2.51, 2.51, 2.52,
2.53, and 2.58 A (cf. 2.47 A at the local level). The trigo-
nal bipyramid also lost all symmetry, with the equatorial
bonds being of lengths 2.65, 2.72, and 2.74 A and the
polar-equatorial bonds being of lengths 2.41 to 2.46 A.
In each case the ground-state multiplicity was not
affected by the use of the nonlocal potential. The binding
energies were reduced by many tenths of an electron volt,
bringing them closer to the experimental values. The
nonlocal calculations were considerably more expensive
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FIG. 2. Local (solid circles), nonlocal (open circles), and ex-
perimental [18] (open triangles) binding energies per atom (eV)
for the most stable isomers. Experimental and nonlocal values
for the tetramer coincide.
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FIG. 3. Local (solid circles), nonlocal (open circles), and ex-
perimental [18] (solid circles with error bars) bond dissociation
energies (eV) for the most stable isomers.

than the local ones. Thus we did not reoptimize the hex-
amer and the heptamer, although the trends are clear
from the trimer, tetramer, and pentamer results. The cal-
culated binding energies for the most stable geometries
reproduce well experimental values [17,18], as shown in
Fig. 2.

The binding energies of the most stable geometries, cal-
culated with both local and nonlocal potentials, are seen
to reproduce well the trends in the experimental data
[17,18] (see Fig. 2). In this figure the binding energies are
calculated with respect to free atoms. The overbinding of
the local-density approximation is clear from the figure,
with the nonlocal potential giving a marked improve-
ment.

The bond dissociation energies are also in reasonable
agreement with the experimental data [17,18] (see Fig. 3),
although the experimental error bars are rather large.
The bond dissociation energy was defined as the binding
energy relative to the most stable cluster, with one atom
less, and is thus the energy for loss of one atom. Loss of
larger fragments was always more costly. The poor
agreement for the pentamer suggests that we did not lo-
cate the lowest-energy geometry, or that our model in-
correctly describes dissociation (for example, an inter-
mediate energy barrier would account for the discrepan-
cy).

The adiabatic ionization potentials for the most stable
geometries are in reasonable agreement with experiment
[17-21] (see Fig. 4), with the vertical potentials demon-
strating the importance of relaxation that can account for
changes in the energy of up to half an electron volt and
changes in the bond lengths of several hundredths of an
angstrom. Overall, the calculations overestimate the
binding of the electron.

In summary we have used a state-of-the-art theoretical
technique and extensive geometry optimizations to locate
the preferred stable geometries for niobium clusters ex-
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FIG. 4. Vertical (solid circles), adiabatic (open circles), and
experimental [18] (solid circles with error bars) ionization po-
tentials (eV) for the most stable isomers.

tending up to the heptamer. In general, the most stable
geometries are compact and highly coordinated. An ex-
ample is the pentagonal bipyramidal geometry favored by
the heptamer. The less favorable geometries lie typically
1 eV higher in energy. Experiments have analyzed cold
clusters that correspond to the most energetically favor-
able geometries. The experimental trends in the binding
energies, the bond dissociation energies, and the ioniza-
tion potentials are well reproduced by our calculations.
However, the pentamer bond dissociation energy is small-
er than expected, which leads us to suggest the presence
of a more stable geometry or an intermediate energy bar-
rier to dissociation. The ionic calculations demonstrate
the importance of relaxation, with energy changes of half
an electron volt in one case and bond length changes of
several hundredths of an angstrom. The calculations
with the nonlocal potential for the dimer to the pentamer
led to no qualitative changes apart from a marked correc-
tion for the overbinding of the local potential.

These calculations demonstrate that transition-metal
clusters can be studied with accurate theoretical
methods, with a level of agreement with experiment com-
parable to that seen for the lighter elements. The stable
structures should be useful to the development of semi-
empirical models for niobium and other transition ele-
ments.
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