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Background level and counter efllciencies required for a loophole-free
Einstein-Podolsky-Rosen experiment
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An analysis is made of the background level and counter efticiencies actually necessary to perform
a loophole-free Einstein-Podolsky-Rosen experiment. Both requirements are correlated. Photon
counters do not absolutely have to have more than 82.8Fo efficiency if the signal-over-noise ratio is
very high.

PACS number(s): 03.65.Bz

I. INTRODUCTION

(6)
(7)a=Ay )

In this paper, limits are set for the amount of back-
ground that can be tolerated in a loophole-free Einstein-
Podolsky-Rosen (EPR) experiment [1—3), as a function
of ri, the efficiency of the counters used. The experi-
ment is assumed to be performed on entangled states of
two photons and involves polarization measurements on
them. It is possible to make a loophole-free experiment
with q ( 82.8'%%uo, but it requires the background level to
be very low.

The initial state is assumed to be prepared as a super-
position of states of two photons, a and b, with correlated
planes of polarization. One state is defined as

I
~I ), i.e. ,

photon a polarized horizontally and photon b vertically;
and another state as

I I ~), i.e. , a polarized vertically
and 6 horizontally. For both photons, the polarization
measurements are made with Nicol prisms set in such
a way that the ordinary trajectory applies to a photon
polarized in the horizontal plane and the extraordinary
trajectory to a photon polarized vertically. In front of
either Nicol prism, devices are disposed that rotate the
plane of polarization of the photons. The angle by which
the plane of polarization of a is rotated will be called n
and, for b, P.

There are demonstrations showing that a limit exists
for the amount of possible violation of a Bell inequality
by predictions of quantum mechanics for a two-particle
system [4—6]. That maximum can be reached, for exam-
ple, with the experiment that we describe in this paper,
if the initial state is given by the state vector:

A =(~l~~) (l i )+
l I )) (~)

using experimental setups with values of n:
~y ———78.75', (2)

56.25', (3)
and values of P

Pi = 11.25', (4)

Pg = —33.75' . (5)
Then, to take the example of the Clauser and Horne in-

equality, the maximum violation, (v 2 —1)/2, is reached,
in one of the inequalities (4) of Ref. [7], if the following
identifications are made:

/a =o'y)

(8)
b'=Pg . (9)

The demonstrations that a maximum exists make use
of an operator called the "Bell operator, " 8, which is
related to the expectation value Jg of a Bell inequality
and any initial state g by the relation

Ze = Ct8 0. (10)
In these demonstrations, the inequality gg and the op-

erator 8 are written for the case of a 100%%uo efficiency. It
is possible to modify the inequality to take into account
the case of a less than 100% efficiency. If this is done but
the initial state @ and the values of c).i, cr2, Pi, and P2
are kept at the values of Eqs. (1)—(5), i.e. , if the opti-
mization of gg is made before setting r) to a value less
than 100%, it can be shown [8] that Bell's inequality in
these particular conditions requires an efficiency of the
counters

g&2 2 —1 -828 0.
However, if Jg is optimized, changing Q, ai, a2, pi,

and pz after introducing the correction for rl ( 100'%%uo,

a lower requirement for the efficiency may be expected.
This is the subject of this paper. The Bell operator 8 is
first modified to take into account values of q less than
100%. Then all parameters @, ni, a.z, Pi, and Pz are
changed to optimize Jg.

II. BELL INEQUALITIES FOR rl ( 100%

Bell inequalities concern expectation values of quanti-
ties that can be measured in four difFerent experimental
setups, defined by specific values ni, a2, pi, and pz of
n and P. The setups will be referred to by the sym-
bols (ni, pi), (c).i, pz), (a.q, pi), and (a2, p2), where the
first index designates the value of c). and the second index
the value of P.

In each setup, the fate of the photon a and the fate
of photon b is referred to by an index (o) for photon de-
tected in the ordinary beam, (e) for photon detected in
the extraordinary beam, or (u) for photon undetected.
Therefore there are nine types of events: (o, o), (o, u),
(o, e), (u, o), (u, u), (u, e), (e, o), (e, u), and (e, e), where
the first index designates the fate of photon a and the
second index the fate of photon b. Table I shows a dis-
play of boxes corresponding to the nine types of event
in each setup. The value of o, and the fate of photon a
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TABLE I. Possible results expected in the four setups.

designate a row. The value of P and the fate of photon b

designate a column. Any event obtained in one of the
setups corresponds to one box in Table I.

For a given theory, we consider all the possible se-
quences of N events that can occur in each setup. N
is the same for the four setups and arbitrarily large. As
in [9) and [10], a theory is defined as being "local" if it
predicts that, among these possible sequences of events,
one can find four sequences (one for each setup) satisfying
the following conditions:

(i) The fate of photon a is independent of the value
of P, i.e. , is the same in an event of the sequence cor-
responding to setup (ni, Pi) as in the event with the
same event number k for (ni, P2); also same fate for a
in (nq, Pi) and (n2, P2); this is true for all k's for these
carefully selected sequences.

(ii) The fate of photon b is independent of the value
of n, i.e. , is the same in event k of sequences (ni, Pi) and
(n2, Pi); also same fate for b in sequences (ni, P2) and
(n2, P2)

(iii) Among all sets of four sequences that one has been
able to find with conditions (i) and (ii) satisfied, there are
some for which all averages and correlations differ from
the expectation values predicted by the theory by less
than, let us say, ten standard deviations.

These conditions are fulfilled by a deterministic Local
hidden-variable theory, i.e., one where the fate of photon
a does not depend on P and the fate of b does not depend
on n. For such a theory, these four sequences could be
just four of the most common sequences of events gen-
erated by the same values of the hidden variables in the
different setups. Conditions (i)—(iii) are also fulfilled by
probabilistic local theories, which assign probabilities to
various outcomes in each of the four setups and assume
no "inHuence" of the angle P on what happens to a and no
"infIuence" of n on b. With such theories, one can gen-
erate sequences of events having properties (i) and (ii)
by Monte Carlo, using an algorithm that decides the fate
of a without using the value of P and, for b, without us-
ing the value of n. If the same random numbers are used
for the four different setups, the sequences of events will
automatically have properties (i) and (ii), and the vast
majority of them will have property (iii).

Let us follow an argument first used in Ref. [11].When
four sequences are found satisfying conditions (i) and (ii),
the four events with the same event number k in the
four different sequences will be called "conjugate events. "
Because of condition (i), two conjugate events in setups
(ni, pi) and (ni, p2) fall into two boxes on the same row

~78 = & e(nl)oP2) + &ou(nl P2)
+n„(n2, pi) + n, (n2, pi)
+n„(n2, P2) —n„(ni, Pi) & 0 . (13)

For condition (iii) to be true no matter how large the
number of events N is, inequality (13) also has to apply
to the expectation values of these numbers. It is a form
of the Bell inequality, which Eqs. (6)—(9) make equivalent
to inequality (4) of Ref. [7]. That is the Bell inequality

in Table I. The same thing applies for conjugate events
in setups (nq, pi) and (n2, p2). Because of (ii), conjugate
events for setups (ni, Pi) and (nq, Pi) lie in boxes in the
same column; and so do conjugate events for (ni, Pq) and
(n2, p2). Let us select all the n„(ni, pi) events that fall
into the box marked with a ~ in the section of Table I
reserved for setup (a.i, Pi). None of these events falls into
any other box for setup (ni, Pi). Because of condition (i),
their conjugate events in setup (ni, P2) fall into boxes on
row o. Because of condition (ii), the conjugate events in
setup (n2, Pi) lie in boxes in column o. Therefore none
of the boxes marked with a * contains any of the events
of this sample or any of their conjugates.

Now, from that sample, let us remove events with con-
jugates falling in one of the boxes marked with a
in setup (n2, Pi). The number of events subtracted is
smaller than or equal to the total number nu, (n2, Pi) +
n„(nq, Pi) of events of all categories contained in those
two boxes. Therefore the remaining sample contains
n„(ni, pi) —n„,(nq, pi) —n„(n2, pi) events or more.
None of the events in the remaining sample has a conju-
gate falling in a box on rows u or e in setup (n2, Pi);
thus, because of condition (i), none falls in setup (nq, pq)
either. None of the conjugate events falls in a box marked
with an x .

Let us further restrict the sample by removing events
with conjugates in sequence (ni, P2) falling in boxes
marked with a Q in Table I. Using the same argument
as in the preceding paragraph, the number of events left
must be more than or equal to

(nool Pl ) &uo(n2 Pl) &eo(n2 Pl )
+ou ~1) 2 &oe 1) 2

where n,u(ni, Pq) + n«(ni, P2) is the total number of
events of all categories falling into the boxes marked with
a Q . None of the events in that restricted sample falls
in column u and e in setup (ni, P2); therefore, be-
cause of condition (ii), none falls in setup (nq, P2) either;
therefore, none falls in any box marked with a + .

All events belonging to the latter sample must have
conjugates in sequence (n2, P2) falling into the only re-
maining box for that setup, i.e. , box (o, o). That is
possible only if that most restricted sample contains a
number of events less than or equal to the total num-
ber noo(n2, Pq) of events of all categories in that box.
Thus conditions (i) and (ii) can be satisfied by our four
sequences only if

-( P)- -(., P)- ..(., p)- ..(,p)
+«(n» P2) —+oo(n2 ~ P2) i (12)

l.e. )
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that will be used in this paper.
An inequality similar to (13) can be derived where all

o 's are changed into e 's and vice versa. In principle, one
could average this new inequality with inequality (13) to
improve statistics. (By doing so, one arrives directly at
an inequality almost identical to the Bell—Clauser-Horne-
Shimony-Holt inequality [3]). However, optimizing the
averaged inequality leads to the conditions of Eqs. (1)—
(5) regardless of the efficiency rl. The minimum efficiency
required is then 82.8%. The optimizing procedure of
Sec. III actually makes an improvement on only one of
the inequalities of the average, at the expense of the other
inequality.

III. PREDICTIONS OF QUANTUM MECHANICS

The goal of a loophole-free experiment is to Bnd re-
sults in a case where the predictions of quantum theory
contradict the predictions of all local theories, i.e., where
the predictions of quantum mechanics violate a form of
the Bell inequality. If the predictions of quantum theory
are upheld, the existence of nonlocal effects in nature will
thus be proven.

To compute the predictions of quantum mechanics, let
us use a representation where the helicities of the two
photons are diagonal operators and the I+) and

I

—) he-
licity states are

I+) =('/~) (I I )+ ~
I i ™)).

0
0

r(l ) e—2i(p —pal

0

0
0
0

e—2i(P —P, )

e2i(p —pg) 0
0 e2i(p —pg)

0 0
0 0

(22)

~ ideal ideal( p ) + ideal( p )

The above computation assumes that only the N pho-
tons in the entangled state contribute to the counting
rates and that the polarization analyzers are perfect. A
correction has to be made to formula (23) to take into
account deviations from that ideal case. The sample
of events of type (o, e), (o, u), (e, o), and (u, o) actually
counted in the experiment and introduced in inequality
(13) will include not only the n'„' '(aq, P2), n',„' '(aj, P2),
n'„' '(az, P&), and n„',' '(n2, Pi) events of Eqs. (16)—(19),
but other events with a less sharp dependence on n and P.
It is a background. We will take that background into ac-
count by an a;- and P-independent term, N(, to be added
to the n'„' '(o.i, Pq) + n', "'(ni, Pz) events of Eqs. (16)
and (17), and to the n'„' (o;z, Pi) + n'„,' '(aa, )9i) events
of Eqs. (18) and (19). In principle there is also a back-
ground in samples of type (o, o) events in setup (aq, Pq)
and (n2, P2). However, since we assume no dependence
of the background on a and P, the effect of the type (o, o)
background cancels in inequality (13). After correction
for background, we write

Given an initial state @, a value for rl, and a set of an-
gles ai, nz, Pi, and Pz, predictions for the number of
events involved in inequality (13) can be computed. For
N pairs of photon emitted in the superposition state and
assuming an ideal case where there is no background,
these predictions are

gideal + 2N(

Equation (13) stipulates that local theories predict

+is ) P,
while quantum theory predicts

(24)

(25)

(26)
nideai(~ p )

nideal(~ p )

n',d"'(ni, p2)

nideal(ci p )

n„".-'(~„P,)

2 2

= N @t I + o(n—i)

= N Qt Ijcr(ni)—
4

= N[rl(1 —rl)/2]@t I

= N—Qt I —0 (o2)4
= N[q(1 —q)/2]qt I
= N Qt I + 0(n2)—

I+r(P&) @, (15)

I —r(Pz) @, (16)

+ a(ng) Q, (17)

J + r(P, ) @, (18)

+ &(~i) @ (19)

I+~ 2 . 20

cr(n) =
0

e—2i(a —ag)

0
0

e»(o' —~a)

0
0
0

0
0
0

e—2i(n —~g)

0

e2i(a —ay) ~ ( 1)
0

0

The angles a and P are counted as positive when the an-
gle of polarization of the system is rotated in the direc-
tion of a positive helicity. In our helicity representation,
the phases are chosen in such a way that the elements of
o.(a) ) and of r(Pq) are real:

where

and

2-v+0
1 —rI

1 —r/

AB —rl

1 —ri'

2 n+(-
A*B —g

1 —fl

1 —rl

AB* —q
2 —n+(

1 —9

A*B*—g
1 —rl
1 —rl'

2 —n+(
(27)

&=(9/2) (e"' ' "'—1) (28)
e2i(P~ —P~) (29)

0 = 4C/rl (3P)
To perform a loophole-free experiment, we need ex-

perirnental conditions in which the prediction for Jg of
Eq. (26) is negative. That is possible as long as the op-
erator 8 has a negative eigenvalue. That is impossible
if all eigenvalues are positive, even if one uses incoherent
mixtures of pure states. The maximum amount of back-
ground that can be tolerated corresponds to that value
of g that makes the last negative eigenvalue of 8 turn
from negative to positive, i.e., when the determinant of
8 of Eq. (27) ceases to be negative to become zero.
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TABLE II. Extreme conditions for a loophole-free exper-
iment.

100

50—

ri (Fo)
66.7
70
75
80
85
90
95
100

( (%)
0.00
0.02
0.31
1.10
2.48
4.50
7.12
10.36

r
0.001
0.136
0.311
0.465
0.608
0.741
0.871
1.000

cu (deg)
0.0
3.4
9.7
14.9
18.6
20.9
22.1
22.5

ng —n2 (deg)
2.2
21.4
32.0
37.9
41.5
43.6
44.7
45.0

20—
10

2

1

0.5

ca 0.2
CO

0.01

0.05—

~ 0

IQ
o~

1

2/1+ rz (31)

A computer program was written to compute the de-
terminant of 8 of Eq. (27), for any given value of the
efficiency rl. The program varied ni —n2, Pi —P2, and (
to find the maximum value of the background ( that kept
the determinant negative. For rl ( s, there is none. For
7f ) 3 there are negative values of the determinant for

small values of (, increasing from 0 to as rl increases
2from s to 1. The maximum value of ( as a function of rl

is gi.. en in Table II. It is plotted in Fig. 1, as well as the
maximum affordable value of ( if the conditions are not
the optimum ones, but those of Eqs. (1)—(5) instead.

The program also recorded the values of aq —o,2 and
Pi —Pq and computed the relevant eigenvector g, i.e. , the
conditions that make Jg of Eq. (26) equal to zero for the
maximum g. There were degeneracies in the solutions.
The two angles ni —n2 and Pi —P2 could always be
taken to be the same, or the opposite of one another, as
can be understood from an analytic study of Eqs. (10)
and (27). The vector @ turned out to be of the form

0.02—
I I i I I I

65 70 75 80 85 90 95 100
Efficiency q (%)

FIG. 1. Maximum a8'ordable background vs efBciency: ~,
optimized conditions; o, conditions of Eqs. (1)—(5).

pi = M/2

respectively, and using the values of r, u, and o.q
—o.2

(—:Pi —P2) given in Table II. Note that, for rl = 1, the
vector Qo reduces to the value given by Eq. (1), and the
angles ni, n2, Pi, and Pq reduce to the values given by
Eqs. (2)—(5).

In conclusion, it is possible to perform a loophole-free
experiment if the eKciency g of the photon counters is
higher than 66.7' and the background is less than the
value indicated on Fig. 1 for that value of g. For small
background levels, it is possible to perform a loophole-
free EPR experiment with a less than 82.8% counter ef-
B.ciency.

which can be reached in the two-photon experiment con-
sidered in this paper by first superposing states

I
~I &

and
I I ~& in unequal amounts,

(32)

ni = (~/2) —90', (33)

then rotating the planes of polarization of a and of b in
setup (ni, Pi) by the angles
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