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Femtosecond time-resolved dispersion relations studied with a frequency-domain interferometer
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Difference phase and transmission spectra (DPS and DTS) due to induced phase modulation of probe
pulses in CS2 were measured with a femtosecond frequency-domain interferometer. Signals that satisfy
the Kramers-Kronig (KK) relations with opposite signs were observed. At zero time delay, DTS and
DPS were both even functions with respect to the probe center frequency due to the fifth- and third-
order nonlinearities, respectively. The conditions for applying the KK relations to time-resolved data
were obtained theoretically and verified experimentally.
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The Kramers-Kronig (KK) relations [1] connect the
real and imaginary parts of the linear susceptibility y(to).
It has also been proven that the KK relations can be ex-
tended to nonlinear optics as long as the causality condi-
tion is satisfied for a response function [2]. For example,
in pump-probe spectroscopy in the steady-state regime,
they are reduced to the standard KK re1ations, which
hold to all orders in the pump field if the pump frequency
is fixed at a single mode and the probe frequency is tuned
over the whole frequency. In this case, a nonlinear
change must not be caused by the probe but only by the
pump. If the probe causes, for example, self-induced ab-
sorption saturation, the KK relations do not apply, as
shown by Yariv [1]. On the other hand, the KK relations
are usually unapplicable in time-resolved spectroscopy,
because there is a pump pulse, which causes the time-
dependent change in the state of a material before the
probe field is applied to break the causality condition.

It is important to know how dispersion relations are
described in time-resolved spectroscopy, but the study of
time-resolved dispersion relations has been dificult so far
because of experimental difhculties in measuring time-
resolved difference phase spectra (DPS) compared with
difference transmission spectra (DTS). A frequency-
domain interferometer (FDI) that we have developed re-
cently, however, enables us to study them because both
DTS and DPS can be simultaneously obtained with fem-
tosecond time resolution. In this Rapid Communication,
with the FDI we observed dispersion relations inherent in
time-resolved spectroscopy, which are substantially
different from the standard KK relations. They are
caused by the pump-induced modulation of the probe
amplitude or phase in pump-probe measurements. We
also show both theoretically and experimentally that even
in time-resolved spectroscopy the standard KK relations
are applicable under the special conditions.

The experimental procedure is described in a previous
Letter [3]. Laser pulses of 620-nm wavelength, 60-fs
duration, 2-pJ energy, and 10-kHz repetition rate were
used and divided into pump, probe, and reference pulses.

For frequency-domain interferometry, the reference and
probe were displaced temporally by 370 fs, which was
fixed throughout the measurements, and DPS were mea-
sured as a function of the time delay ~ of the probe from
the pump. By blocking the reference beam, the ordinary
pump-probe measurements were performed to obtain
DTS. The polarizations of all the pulses were parallel
and all the measurements were performed at room tem-
perature.

In order to study the time-resolved dispersion rela-
tions, we measured transparent liquid CS2, the dynamics
of which is well known [4—7]. Figure 1 shows signals for
CS2 in a 1-mm cell at a —40-fs time delay to demonstrate
how DPS are obtained by the FDI. Open circles show
DPS, which are derived from the fringe shifts between a'
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FIG. 1. Upper: interference spectra directly observed for
CS2 at ~= —40 fs with excitation (a), without excitation (b),
and their difference (c). The time displacement between the
reference and probe is 370 fs. Lower: a, b, and c are normalized
by the transmitted probe spectrum to obtain a', b', and c', re-
spectively. Open circles (DPS) are calculated from the fringe-
valley shifts between a' and b' as 2~(~; —V;")/(~;+

&

—~; ),
where A,

'" and A, ; are the ith fringe-valley wavelengths with and
without excitation, respectively.
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and b'. The systematic errors due to the amplitude
change [3] are estimated to be less than 0.01 rad, so that
they can be neglected.

Figure 2 shows both DTS (c) and DPS (open circles)
for CSz at —50-, 0-, 50-, and 190-fs delays, together with
probe spectra with (a) and without (b) excitation. The
excitation density is ca. 1.9X10 J/cm . Figure 3
shows average phase shifts in the probed region as a func-
tion of time delay, which was calculated from the Founer
transform (FT) of the interference signals in the upper
part of Fig. 1 in order to use the information on all of the
fringes [8]. The results are fit to a phenomenological ex-
pression of the femtosecond optical Kerr dynamics in CS2
[4—7] as follows:

b4(t) =aI(t)+pe(t)exp( t/T, )—[1—exp( t/T2)—] .

Here the first term represents the electronic response,
where the normalized pump pulse intensity I(t) is as-
sumed to have a squared hyperbolic-secant envelope of
60-fs full width at half maximum. The second term
represents the nuclear response due to the orientational
relaxation, where e(t) is the normalized step function,
T, = 1.6 ps, and Tz =75 fs [5,7]. a and P are appropriate
constants with a/P=2. Although the nuclear response
consists of several origins with different kinetics, the fit to
the behavior until 200 fs time delay is not much different
even if other terms are also included. The experimental
results (dots) are very well fit to the fitting function (solid
line), so that the signal shows typical dynamics in CSz.

Since the excitation is nonresonant, there should be no
change in the absorption and no appreciable dispersion of
the refractive-index change within the observed spectral
range. In fact, the spectrally integrated probe intensity is
unchanged on excitation for any time delay within exper-
imental errors. It is therefore reasonably considered that
the observed dispersion relations are caused by induced
phase modulation [9,10] of the probe pulse. At +50 fs,
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FIG. 3. Average phase shifts (dots) in the probed spectral re-
gion as a function of time delay and the fitting function (solid
curve). The conditions (C), (D), and (A) are satisfied at —50-,
50-, and 190-fs time delays, respectively (see text).

the probe pulse shows frequency shifts, which are propor-
tional to the time derivative of the phase change that is
shown in Fig. 3. At zero delay, since the probe pulse
overlaps with the electronic Kerr response, the probe
phase decreases at the leading edge and increases at the
trailing edge to cause both red and blue shifts in the
probe spectrum, resulting in spectral broadening (self-
phase-modulation [9]). In contrast, at 190 fs the DPS is
constant and the DTS is zero, because the probe phase is
modulated little at this delay due to almost steady phase
change, as shown in Fig. 3.

Since DPS and DTS are proportional to the change in
the real and imaginary parts of the susceptibility y(co),
respectively, their mutual relations can be directly com-
pared with the standard KK relations. The DTS and
DPS at —50 and 190 fs satisfy the KK relations qualita-
tively. However, the spectra at 0 fs clearly violate the
KK relations, because both DTS and DPS are even func-
tions with respect to the center frequency of the probe,
whereas the KK relations connect an even function with
an odd function. Further, the sign of the DTS at 50 fs is
opposite that at —50 fs, which is unusual, because
through the KK relations the refractive index should in-
crease on the longer-wavelength side of the absorption in-
crease. These results can be explained in the following
way.

The KK relations are derived from the complex in-
tegration of y(co)/(co —coo) in the lower half of the com-
plex co plane [1]. y(co) is obtained from the Fourier trans-
form of P (t) in the following way:

0
ooo

P(t) =y(t)o E(t) =j dt'y(t')E(t —t'),
0

P(~) =+(P (t) )=y(~)E(~),
y(co) = J dt exp(

idiot)y(t)

. —
0

50

190
600 620 640

Wavelength(nm)

0 . - ~" - --. 0
0 o p 0 0 o 0 0

Here o denotes the convolution operation, E (t) is a probe
field, P(t) is the polarization induced in a material by
E(t), and y(t)=0 when t (0 because of causality. Since
t &0 in exp( —idiot) in Eq. (1), y(co) has no poles in the
lower half co plane to satisfy the KK relations. In time-
resolved spectroscopy, however, the causality condition is
not satisfied, because there is a pump pulse, which excites
the material to cause the polarization change

FIG. 2. Transmitted probe spectra with excitation (a) and
without excitation (b), DTS (c), and DPS (open circles) for CS2
at —50-, 0-, 50-, and 190-fs time delays. where b,N(t) represents the change in the state of the ma-
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terial due to the pump, and depends on r such that
AN(t) =AN'(t+r). Equation (2) describes the level pop-
ulation term [11]in the perturbation expression, whereas
the following discussion can also be made for the
coherent coupling term. The susceptibility change is
then expressed by

Ay(to) =F(AI' (t) )E (to)

f dt exp( ic—ot)E(t)AN(t) .
E (co)

(3)

In general, Ay(co) has poles in both half planes because
the Fourier integration is over all t. Therefore the KK
relations are not satisfied. However, the KK relations are
strictly satisfied in the following special cases:

(A) When AN(t) is constant (AND),

Ag(to)= f dt exp( itot)E—(t)AND
g(~)
E (co)

=ANoy(co) .

(B) When E(t) is a 5 function [EO5(t)],

Ay(~) = f dt exp(

idiot)E05(t)A—

N(t)g(~o)

Ep

=AN (0)g(co) =AN'(r)y(co) .

(C) When AN(t) =0 over t & 0 (negative delays),

Ay(co) = f dt exp( inert)E(t)AN—(t) .
x(~)
E(co) 0

(D) When AN(t) =0 over t )0 (positive delays) and
y(co) is constant (yo),

Xp p
Ag(co)= f dt exp( ioot)E(t)A—N(t) .E (co)

Since this function has no poles in the upper half cu plane,

it obeys the KK relations with opposite signs. For (C)
and (D), additional conditions are required because
1/E(co) may generally cause singularity. First, 1/E(co)
must not have poles over 1'~ & ~ in the lower and upper
half planes for (C) and (D), respectively. Second,
Ay(co)/(co —coo) must fall off more rapidly than 1/co.
Since Ay(co) can be rewritten in the form

Ay(cu) =g(co) f dc@'AN(co')E(co co')/E—(co),

it is necessary that E(co ~')/—E(co)—+O(co ), with 5&0
as co~ ~. Both first and second conditions are satisfied
for, e.g. , a hyperbolic secant or Lorentzian envelope
E(m), but not for a Gaussian envelope E(~). The pulse
shape of a mode-locked laser is well approximated by a
hyperbolic-secant function [12], so that the additional
conditions are usually satisfied.

The coherent coupling term to second order in the
pump field and to first order in the probe field is, for ex-
ample, expressed by

AI' (t) =g(t)o [E,„(t)AN, (t)],
AN, (t) = ri(t)o [E,*„(t)P(t) ]

dt'g t —t' E,*„ t' I' t'

where E,„(t) is a pump pulse field, e denotes complex
conjugate, and q(t) is a response function that represents
energy relaxation dynamics and is zero over t &0. This
term is called the perturbed free-induction-decay term
[11].

Obviously the conditions (A) and (B) hold also for this
term, but a brief discussion is needed for (C) and (D) as
follows. If E,„(t)=0 over t &0 or t )0, the Fourier in-
tegration can be over t & 0 or t & 0, respectively. Further,
the susceptibility change is expressed by

Ag(co) =g(co) f dc''E, „(co')AN, (co co')/E(co)—
=g(co)f deed E „(co )11(co—co )f dc' E „(co )g(co —to —co )E(co—co —to )/E(to),

which requires the same additional conditions for E (to).
Therefore the conditions (C) and (D) also hold. Even for
the higher order in the pump field, one can readily see
that a similar discussion can be made as long as the probe
field is weak enough to be limited to first order. In sum-
mary, the conditions (A) to (D) are criteria for applying
the KK relations to time-resolved data in the weak-
probe-field limit.

As shown in Fig. 3, the conditions (C), (D), and (A) are
approximately satisfied at —50-, 50-, and 190-fs time de-
lays, respectively, since A@(r) is expected to be propor-
tional to AN(t). The conditions (A) and (B) are physical-
ly equivalent: the probe pulse must not experience a
time-dependent change in amplitude or phase which
causes an induced modulation eAect. These conditions
are obtained as a natural extension of the condition in the
steady-state nonlinearity, where the spectral width of the
pump must be much narrower than that of the probe for
the KK relations to be satisfied. On the other hand, the

E(t)exp[iA@(t)]=E(t)[1+iA4(t) ,'A@ (t)——
—(i/6)A@ (t)+ ] . (4)

I

conditions (C) and (D) are inherent in time-resolved spec-
troscopy. In particular, although it has been pointed out
that the KK relations with opposite signs are mathemati-
cally derived from the integration over the upper half ~
plane [1), such relations are not realistic because it means
that the causality condition is violated. The condition
(D), however, tells us that one can really observe such re-
lations in time-resolved spectroscopy, as shown in Fig. 2.

At zero delay, none of the above conditions is satisfied,
so that the KK relations do not apply. Here, both real
and imaginary parts are even functions with respect to
the probe center frequency. This shows the nonlinear
dispersion relations inherent in time-resolved spectrosco-
py, because they are caused by the instantaneous elec-
tronic response [A&(t) =aI(t) O=E (t)] as follows:
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Since b.@(t) is an even function with respect to time zero,
the FT of Eq. (4) is also an even function with respect to
zero frequency. In the lowest order, the spectral
broadening observed in the DTS is caused by the third
term —,' b,@—(t) (fifth-order nonlinearity), while the
broadening in the DPS is caused by the second term,
id'(t) (third-order nonlinearity).

We only investigate the dispersion relations that are
due to F(E(t)bN(t))/E(co) in Eq. (3), i.e., the induced
modulation effect, which differs substantially from the
standard KK relations. For absorptive materials, on the
other hand, time-resolved dispersion relations depend on
both y(co) and F(E (t)bN (t))/E (ro), as shown in Eq. (3).
Due to the factor of y(co), they are usually not much
different from the standard KK relations. This is the
reason why DTS and DPS in CdS Se& doped glass
seem to satisfy the KK relations qualitatively [3].

In conclusion, we observed generalized dispersion rela-
tions in time-resolved pump-probe spectroscopy such as
the KK relations with opposite signs at positive delays

and the even functions for both real and imaginary parts
at zero delay, which are both due to the induced modula-
tion effect of the probe pulse. The standard KK relations
are obtained as a special case of the generalized relations.
That is, the standard KK relations hold approximately, if
short enough probe pulses are used such that the modula-
tion effect is negligible or if the probe arrives earlier at
the sample than the pump, i.e., at negative delays. These
conditions are experimentally important. For example,
since an optical Stark effect in time-resolved spectroscopy
appears dominantly for negative delays [11,13], the KK
relations can be applied to the transmission change due
to the Stark shift to obtain the net change in the refrac-
tive index at the shifted absorption peak.

This work was carried out at Frontier Research Pro-
gram, RIKEN (The Institute of Physical and Chemical
Research) with the support of Professor A. F. Garito, Dr.
A. Yamada, Dr. H. Sasabe, and Dr. T. Wada.

*Permanent address: Department of Physics, Faculty of
Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tok-
yo 113,Japan.

[1] For example, L. D. Landau and E. M. Lifshitz, Electro
dynamics of Continuous Media (Addison-Wesley, Reading,
MA, 1960); A. Yariv, Quantum Electronics, 3rd ed. (Wi-
ley, New York, 1988).

[2] W. J. Caspers, Phys. Rev. 133, A1249 (1964); F. L.
Ridener, Jr. and R. H. Good, Jr., Phys. Rev. B 11, 2768
(1975); F. Bassani and S. Scandolo, ibid. 44, 8446 (1991);
and M. Sheik-Bahae, D. C. Hutchings, D. J. Hagen, and
E. W. Van Stryland, IEEE J. Quantum Electron. QE - 27,
1296 (1991).

[3] E. Tokunaga, A. Terasaki, and T. Kobayashi, Opt. Lett.
17, 1131 (1992).

[4] J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux,
and A. Orszag, Opt. Commun. 63, 329 (1987).

[5] C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A.
Kenney-Wallace, Chem. Phys. Lett. 150, 138 (1988); Com-

ment Chem. Phys. Lett. 155, 240 (1989).
[6] S. Ruhman and K. A. Nelson, J. Chem. Phys. 94, 859

(1991).
[7] T. Hattori and T. Kobayashi, J. Chem. Phys. 94, 3332

(1991).
[8] K. Minoshima, M. Taiji, and T. Kobayashi, Opt. Lett. 16,

1683 (1991).
[9] R. R. Alfano and P. P. Ho, IEEE J. Quantum Electron.

QE - 24, 351 (1988).
[10]T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Ya-

mada, and H. Sasabe, J. Chem. Phys. 95, 937 (1991).
[ll] C. H. Brito-Cruz, J. P. Gordon, P. C. Becker, R. L. Fork,

and C. V. Shank, IEEE J. Quantum Electron. QE - 24, 261
(1988).

[12] H. A. Haus, IEEE J. Quantum Electron. QK - 11, 736
(1975).

[13]M. Joffre, D. Hulin, A. Migus, and A. Antonetti, J. Mod.
Opt. 35, 1951 (1988).


