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Logical reversibility in quantum-nondemolition measurements
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%e show that it is possible to make a logically reversible quantum-nondemolition measurement of an
optical-field photon number, where the measurement preserves all the information contained in the
premeasurement wave function. The nonunitary dynamics of the proposed scheme is analyzed using a
Monte Carlo wave-function approach.
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It is generally believed that irreversibility is an inherent
property of quantum measurements. An implication of
this property is that the premeasurement density opera-
tor cannot be reproduced from that of the postmeasure-
ment, as some information about the system is lost during
the measurement process itself. In a recent paper, how-
ever, Ueda and Kitagawa [1]have shown that the nonun-
itary evolution during a quantum measurement does not
necessarily imply "logical irreversibility, " i.e., a loss of in-
formation about the system that is being measured. A
measurement can be logically reversible if it is unsharp
and sensitive to the vacuum field fluctuations. The first
requirement implies that the measurement should leave
some (arbitrarily small) uncertainty in the quantity that is
being measured. Ueda and Kitagawa [1] have analyzed a
quantum counter and shown that the information of the
initial density matrix is preserved during the counting
and, in principle, can be extracted. Such a counter, how-
ever, does not measure a conserved quantity. It is there-
fore not clear from their work whether a quantum mea-
surement that does not alter the measured observable
could be reversible.

In this paper, we show that it is possible to make a log-
ically reversible quantum-nondemolition (QND) measure-
ment of an optical- (coupling) field photon number using
a nonunitary atom-field interaction. The proposed mea-
surement system is based on an electromagnetically in-
duced transparency [2—4], where the absorption (scatter-
ing) rate of a probe field is a function of the applied cou-
pling electromagnetic field intensity. The system is sensi-
tive to vacuum field fluctuations [5] and performs an
unsharp QND measurement of this coupling field.

We analyze the QND measurement scheme using the
wave-function approach to dissipative quantum systems
[6,7], and show that each atomic scattering event (and ab-
sence of it) results in a "partial collapse" of the coupling-
field wave function. If the scattered photons are actually
detected, then the QND measurement is logically reversi-
ble. The measurement gives us photon-number informa-
tion, without destroying the coherence terms (off-
diagonal elements of the initial density matrix in the
photon-number basis). Unlike Ref. [1], the scheme
presented here measures a photon-number operator,
which in this case, is a conserved quantity. %"e therefore
show that it is possible to make repetitive (logically rever-

sible) measurements of this observable.
Figure 1 shows a three-state closed A system that ex-

hibits coherent population trapping [2] at the two-photon
resonance (co&+co, =co, +co ). The metastable state ~2)
is coupled to an upper state ~3) by the coupling field at
co, . We will assume that the interaction takes place in-
side a lossless optical ring cavity, which is tuned to co,
( =cos —co2). In the absence of the probe field, the upper
states

~
2 ) and

~
3 ) are not populated. It is assumed that

only the spontaneous decay on the ~3)-~1) transition
(I'») is significant in the time scale of the measurement.
In the interaction region, the atomic beam is perpendicu-
lar to the coupling and probe fields. To the extent that
the incoherent rates in and out of state ~2) and the cavity
decay rate for the coupling-field mode co, are zero, the
coupling-field photon number does not experience gain or
loss. The probe-field intensity, however, is not a constant
of motion, as the atomic medium scatters the probe pho-
tons. The scattering rate, or equivalently, the (weakly
coupled) probe-field transmission coefficient through the
medium, is a (different) function of n, for (almost) any
given probe frequency.

The basic idea behind the quantum-non demolition
measurements is to be able to monitor an observable
without perturbing it; that is, to eliminate the back-
action noise usually associated with a quantum measure-

l2%

co&, n

FIG. 1. Prototype energy-level diagram for the three-state A
system. The absorption profile of the probe field at frequency
~~ is modified by the coupling field at co, . In the absence of in-
coherent rates in and out of state I2), the coupling field does not
experience gain or loss.
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We assume that a probe field in a photon-number state
~ np ) is turned on in a time that is short compared to the
radiative decay time, i.e., no scattering takes place during
the turn-on. We note again that this assumption is intro-
duced for simplicity, and is not a requirement for the
properties to be obtained. The combined atom-field-
reservoir (AFR& wave function at time t is then

(0'pF„(t) ) = g c„[a,„(t)(l, n„np ) +a2„(t))2,n, + l, np
—1)

n
C

+ (at)~3, n„n —1&]~0& . (2b)

Following Dalibard, Castin, and Molmer [7],we evolve
the system in time until t +dt, where we check whether a
spontaneous-emission (or scattering) event has occurred.

ment [8]. Several QND schemes have been proposed
[8—10] and demonstrated [11]. The proposals for QND
measurements in the optical domain are generally based
on a unitary nonresonant nonlinear interaction [9] and
can only be used to measure a large number of photons.
The system described in this Rapid Communication is
ideally lossless for the field to be measured and allows one
to use resonant interactions: Optical photon numbers
down to (and including) n, =0 can be measured with the
proposed scheme [10]. To the best of our knowledge, this
is the first example of a QND scheme that utilizes dissi-
pative atom-field coupling.

Our physical model is based on the recently developed
treatment of the system-reservoir interactions using
Monte Carlo wave functions (MCWF's) [6]. In a recent
paper, Dalibard, Castin, and Molmer [7] have shown that
a non-Hermitian evolution for an atomic wave function
combined with the "gedanken measurements" of the
photon-emission events is equivalent to the density-
matrix approach that is commonly used to describe the
dissipative processes. We will use a simple extension of
the model presented in Ref. [7], where the "system" con-
sists of the coupling field, the atom(s), and the probe field.
We will in addition assume that the scattered photons are
actually measured by a fast detector.

The e6'ective Hamiltonian for the coupling-
field —atom(s) —probe-field system of Fig. 1 in the interac-
tion picture is

jef= lkgp(&p&13 &31&p )+lkge(&e 823 &32&c )

—(i/2)Al 3]o 33 (1)

Here, &„(0)=~n )(m~ (rn, n=1,2,3&. g, and gp denote
the (real) coupling coefficients of the coupling and probe
modes, respectively [12]. This efFective, non-Hermitian
interaction Hamiltonian neglects the coupling-
field —reservoir coupling (i.e., lossless cavity) and assumes
that the radiation field reservoir is in the vacuum state
~0). In the analysis, we also assume that the probe field
is in a number state, as this assumption simplifies the ex-
pressions.

We consider the time evolution of the system in the in-
teraction picture when the coupling field is initially in a
superposition of photon-number states

~q, &= gc„~n, & .
n

C

n
C

+a2„(t +dt) ~2, n, + l, np
—1)

+a3„(t+dt)~3,n„np —1&]@~0&,

(3b)

~%""(t+dt) ) = g c„pl,„(t+dt)
~
1,n„np —1 &

~ 1„& .
C

(3c)

Here, Pi,„(t+dt) denotes the probability amplitude of
C

the state
~ 1,n„np —1 )

~ li, ) and k denotes the wave vec-
tor and the polarization of the reservoir mode. The time
evolution of the probability amplitudes a;„(i=1,2,3) is

C

given by the A', a. of Eq. (1).
Before proceeding with the general scheme, we first

consider the case where the coupling field is initially in a
photon-number state, i.e., c„=5„„.At time t +dt, the

C C' Ci

measurement of the emitted photons is introduced: The
probability dp of a spontaneous emission occurring in the
time interval (t, t +dt) is compared to a random number
e that is uniformly distributed between 0 and 1. Here,
dp=(q'"'~q'"')=I »dt~a3(t)~ . If e)dp, then we as-
sume that a spontaneous photon is not emitted, and the
state of the system reservoir is projected into

~11lp,„„(t+dt+1)=(1/1 1 —dp )[a,(t+dt)~l, n„,np)

+a, (t +dt) ~2, n„+ l, np
—1)

+a3(t+dt)~3, n„,np
—1&]@~0& . (4a)

If e (dp, then a photon is assumed to be emitted (and jor
detected) at t +dt, and we get

~%lAFii(t +dt+) &
= ~1 n; np 1&@~0& (4b)

The physical implication of Eq. (4) is that spontaneous
emission (scattering) of a photon always collapses the
wave function of the coupling field into the original
photon-number state ~n„). Failure to emit a spontane-
ous photon preserves the superposition created by the
resonant atom-field interactions. Although this superpo-
sition has a nonzero amplitude in the ~2, n„.+ l, np

—1)
state, the coupling field is never projected into a state
other than ~n„. ). This is another way of saying that the
changes in the coupling-field photon number are virtual;
that is, they do not imply a loss or gain to the coupling
field. Provided that the interactions with the probe field
are turned on and o6'adiabatically, all the atomic popula-
tion is returned to state

~
1 ), and the state of the coupling

field before and after the measurement is unchanged.
Moreover, as we shall see, the scattering events carry in-
formation about the state ~n, ), as the rate at which they
occur is in general a unique function of (n, +1). We
therefore claim that the system performs a QND mea-
surement as (i) the coupling-field wave function is always
projected into the initial photon-number state, and (ii& the

Here, dt is taken to be much smaller than all the relevant
time scales and reciprocal detunings. Just before the
measurement, the state of the combined system-reservoir
unit is [7]

~V„„„{t+dt) &
= ~111"'(t+dt) ) + ~111"'(t+dt) &, (3a)

where

~%" '(t +dt) ) = g c„[a,„(t+dt)
~ l, n„np )
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scattering rate carries information about n, .
We now consider the evolution of the system when the

coupling field is in an arbitrary superposition state [Eq.
(2a)]. First, we assume that the result of the measure-
ment at t +dt is that no scattering took place. The post-
measurement wave function in this case is given by

I+~,R(t+dt+)&=(1/&1 dp )—I%"'(t+dt)&,
where

dp=(%'"IV'"& =I 3,dt g lc„ I Ia3„(t)l
n

C

(5)

and lqt( I(t +dt) & is as given in Eq. (3b).
There are two implications of Eq. (5): (i) The system

remains in a pure state following the measurement; (ii)
the "no scattering" result of the measurement leads to a
redistribution of the probability amplitudes for each
atom-field state that constitutes the superposition. In or-
der to see how the result of the measurement modifies the
state of the coupling field, we could hypothetically as-
sume that the probe field is turned off adiabatically right
after the measurement. In this limit, all the amplitude in
the upper states

I
2 & and

I
3 & is returned to lower state

I
1 & and the magnitudes of the postmeasurement proba-

bility amplitudes c„' are given by
C

[lai. (t+«)I'+ la2. (t+dt)l'+ la3. (t+«)I']'"
Ic,

' I=le, I

C C &1—dp

(6)

Equation (6) implies that the amplitudes of the coupling-
field states

I n, & corresponding to low-loss (i.e., low
scattering rate) atom-field states are enhanced at the ex-
pense of the states that create high loss to the probe field.
This can be considered as a redistribution or partial col-
lapse of the coupling-field wave function. This redistribu-
tion, however, is reversible and no information is lost, as
the coherence terms are preserved [Eq. (5)].

We now consider the case when a scattering or spon-
taneous emission takes place in the time interval
(t, t +dt). The state immediately after the measurement
is

le„„(t+dt+) & =(1/&dp )le"'(t +dt) &,

where IV'"(t +dt) & is as given in Eq. (3c). The state of
the system after the detection could be found by tracing
the density operator over the reservoir states and by as-
suming that the scattered photon is destroyed during the
measurement. The wave function of the (uncoupled) cou-
pling field after the measurement is given by

Itp, (t+dt") &= g c„[a,„(t+dt)QI 3 dt /&dp ]ln, & .
n

C

Therefore, the coupling field remains in a pure skate and
the measurement modiPes the probability amplitudes so as
to favor the high-loss states without destroying the coher-
ence terms. %"e keep track of all the relevant informa-
tion, and as a result the system performs a logically reUer-

sible QND measurement. This is the principal result of
this Rapid Communication. In Eq. (8), the postmeasure-
ment state vector (in the photon-number basis) of the
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FIG. 2. Numerical simulation of the measurement process.
The parameters used are I » =g, =co» —co~, co» =co„and
g~Q(n~ &=0.32I ». Initially, the distribution is Poissonian
with (n, & =4. After 170 scattering events, the probability for
the state n, =3 state is lc3I'=0.999.

coupling field is obtained from the initial one by a diago-
nal matrix, whose entries [a3„(t+dt)QI 3,dt I&dp ]

C

are nonzero and uniquely determined by system parame-
ters for each n, . By inverting this matrix, we can obtain
the premeasurement state vector from that of the post-
measurement. The unsharp photon-number measure-
ment described here gives information about the magni-
tude of the initial probability amplitudes, without des-
troying the information on their relative phase.

We have so far described the short-time dynamics of
the measurement scheme, using the formalism developed
by Dalibard, Castin, and Molmer [7]. We have seen that
each scattering event, or the absence of it, redistributes
the probability amplitudes of the coupling field in the
photon-number basis [13]. The property that causes the
distinction between different photon-number states is
given by how much loss they create to the probe field, or
equivalently the scattering rate that they determine. In-
dividual photoemission events, when considered alone,
perform a (very) unsharp measurement of the coupling-
field photon number. The interplay of a large number of
scattering and/or no-scattering events, however, eventu-
ally "collapses" the wave function into a certain number
state [14]. Figure 2 shows the result of a sample comput-
er simulation that verifies this result: In this run with
I 3I g co3$ cop c032 co, and g 1/ ( n & =0.32I 3i, we
observed that after 170 scattering events (occuring in
2500 I 3, ), the initially Poissonian distribution (with
(n, & =4) of the coupling field collapsed into the n, =3
state with lc3l =0.999 [14].

The extension of the analysis for a probe field in a su-
perposition of photon-number states (i.e., coherent state)
is lengthy but straightforward. In the assumed traveling
probe-field geometry, the reversible measurement is com-
plete when the transmitted probe photon number is also
measured along with the scattered photons [14].

Although the actual collapse is caused by the scatter-
ing events, (partial) information on the photon-number
distribution can be gathered by measuring the absorption

0
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(transmission} of the probe field through the medium, in a
given time interval. As the information on the photon
emission times is lost, this measurement alone is not
sufhcient to obtain logical reversibility. After tracing
over the reservoir parameters, we obtain the following
equation for the time evolution of the reservoir averaged
probe-field number operator R' (t) in the weak-probe-
coupli~g limit (( & ii }= ~ ct'ii+o z2+&33 }}'

de /dt 0'
b (cop 8' )&I]8'p

k,„,{co,h, }=g~Re[[l+g,a, ct, ] '[2ibcoz&I]I,

(9a)

(9b)

where 5 =(I 3i/2)+ [i hco3i][i Acorn, ], b co2, =co&, +co,—co, and b.co»=co» —co . Equation (9) states that the
probe field experiences single-photon loss, which is
modified by the presence of a coherence between the
(bare) states

~
1,n, ) and

~
2, n, + 1 ), induced by the cou-

pling field [2]. The eigenstates of the (scattering) operator
@co,R', ) are the same as those of &,d, ( ~ n, ) ), with eigen-
values tc(co~, n, )= (n, ~@co~,R, }~n, ) [14]. Therefore, by
detecting @co~,R', ) we measure the operator R, +1. The
fact that the atom-field system is in a superposition of

~ n, ) and
~ n, + 1) states does not cause any error in mea-

surement, provided that the upper atomic-state popula-
tion (in states ~2 ) and

~
3 ) combined) does not exceed uni-

ty. Moreover, the operator @co,R', ) is sensitive to the
vacuum field, as a result of the vacuum Rabi splitting
[5,12].

The photon-number operator R', under assumed reso-
nant excitation conditions (Fig. 1) does not satisfy
[R,(t),8(t)]=0. The entangled atom-field system, as we
have seen, evolves into a superposition of

~ l, n, ) and
~ 2, n, + 1 ) states. As each scattering event reprojects the
entangled state into

~
1,n, ), the photon-number operator

R', ( t) is not a constant of motion. The changes in R', ( t ),
however, are virtual and the coupling-field mode does not
experience real loss or gain.

The measurement error An, "' in this QND scheme is
predominantly determined by the random deletion noise
arising from the stochastic nature of the atomic scatter-
ing process. In the limit of detection times that are much
longer than the mean scattering time I „,«, the efFect of
the random deletion noise can become arbitrarily small.
The error due to the probe-field photon-number Auctua-
tions can be efFectively eliminated by measuring the num-
ber of scattered photons, along with the transmitted
probe photon number, in the weak atom-probe interac-
tion limit. A detailed analysis of the QND measurement

scheme will be published elsewhere [14].
In the presence of the neglected nonideal efFects, such

as I „,&0 or I 32) 0, the coupling field will experience
gain or loss. In this case, the measurement should be
completed in a time scale determined by I",,„' and I 32',
i.e., if the (unsharp) photon-number measurement re-
quires N scattering events, then (N/I „,«)((I,,„',I 32'.
The cooperative effects between the atoms [12] are also
neglected in this work.

The experimental demonstration of a QND measure-
ment using the scheme analyzed here presents no concep-
tual difficultie and should be technically feasible [14].
This paper demonstrates that such a measurement would
be logically reversible if the scattered photons are actual-
ly detected by a fast (compared to the relevant atomic
time scales) detector. It was not our aim here to
prescribe a method by which reversibility can be experi-
mentally demonstrated.

The measurement scheme described here gives us in-
formation about the magnitude of the probability ampli-
tudes. The information about the (relative) phase of the
probability amplitudes could in principle be obtained by a
logically reversible "coherence-QND measurement, "
which follows the photon-number measurement de-
scribed here. In fact, a sequence of logically reversible
(unsharp) QND measurements of noncommuting opera-
tors may be used to "measure" the initial wave function
of a single quantum system. If possible, such a measure-
ment will contribute to our understanding of the
significance of a wave function.

We have proposed a method for making quantum-
nondemolition measurements that is based on the elec-
tromagnetically induced transparency. Provided that the
scattered photons are detected, the measurement scheme
performs a logically reversible quantum-nondemolition
measurement, where one obtains photon-number infor-
mation without destroying any information contained in
the premeasurement wave function. A QND measure-
ment that is logically reversible raises the question of
whether physical reversibility in quantum measurements
could be possible as well.
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