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Space localization and bound-state population
in short-pulse resonant multiphoton ionization
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A numerical analysis using the resolvent-operator method shows that the space and time local-
ization of ionization is in fact the key needed to understand the residual population that is left in
the excited state in Stark-induced resonant multiphoton ionization. The two viewpoints recently
opposed in the literature [G. N. Gibson, R. R. Freeman, and T. J. Mclllrath, Optics and Photonics
News 3, 22 (1992)] are therefore compatible. However, the excited-state population can easily be
destroyed if the resonance intensity or the pulse duration is increased.

PACS number(s): 32.80.Rm

Picosecond and subpicosecond pulses have revealed [1]
the resonant nature of multiphoton ionization (MPI). In
short, the optical Field required to observe MPI is usu-
ally strong enough to induce Stark resonances, which
temporarily increases the ionization rate and dominates,
in general, the nonresonant process. Due to averaging
over the pulse space-time intensity distribution, the res-
onances are normally unobservable in the total ioniza-
tion yield, but easily appear as sharp structures (typi-
cally 30 to 50 rnev wide) in the photoelectron energy
spectrum produced by short pulses. Due to a pondero-
motive shift of the ionization limit, the energy at which
the structure appears is uniquely determined by the cor-
responding state's binding energy and the photon energy
[1]. From the uncertainty principle, it may be argued
that the sharp structures indicate that the atomic state
remains in resonance for a time comparable to the inverse
of its width (100 fs). It was therefore asserted [2] that
the resonant structures originate only from the region of
the interaction volume where the intensity (I„)needed to
bring the state into resonance is reached at the top of the
pulse's temporal envelop where the shift rate is close to
zero. This scenario results in a long-enough time scale for
adiabatic passage to occur from the ground state to the
excited state, which is then immediately ionized at a con-
stant intensity, namely I„.This model, which is based
on a generalized Landau-Zener (LZ) level-crossing the-
ory, led to the "shell" model of ionization, owing to the
spatial shape of such a region in a Gaussian pulse. While
the model was consistent with the photoelectron results,
de Boer and Muller made the most interesting discovery
that a population may survive in the Stark-shifted ex-
cited state after the end of the strong pulse [3]. From this
observation, it was alternatively proposed that the ex-
cited state may indeed be populated when the resonance
occurs during the rise of the pulse and subsequently ion-
ized at various intensities during the rest of the pulse.
The resulting photoelectron energy remains unchanged
provided that the state has the same rate of shift as the

ionization limit, i.e. , the ponderomotive shift. An obvi-
ous characteristic of this scenario is that it contradicts
the shell model, since now the resonance intensity may
be reached at any time during the pulse and therefore
anywhere in the interaction volume. However, a recent
experiment provided reconfirmation of the "shell" model
by observing ionization through a state that has a shift
rate different from the ponderomotive shifted threshold.
The resulting photoelectron spectrum showed a sharp
resonance [4], which apparently refutes the de Boer and
Muller scenario and raises questions about the origin of
the observed excited-state population [5].

The key result to be asserted in this Rapid Commu-
nication is that the shell model is perfectly compatible
with a residual excited-state population. This assertion
results from a calculation using realistic atomic param-
eters to describe the physics of the aforementioned ex-
periments. To make the demonstration, it is sufficient
to consider a model that uses an isolated resonance. To
compute the residual population on the excited state, as
well as the ionization probability or the electron-energy
spectra, it is convenient to use the well-known resolvent-
operator technique. When applied to a two-level atom,
it has proved extremely successful in accounting for all
the low-intensity resonant MPI experiments [6]. While
it cannot compete with a Floquet calculation in dealing
with a large basis [7], it does provide some advantages in
the present discussion, since it is completely analytical
and therefore is not computer intensive. A general ob-
jection would be that it is basically a time-independent
model and therefore inadequate to describe the situation
at hand. However, this limitation is the same for the
Floquet theory, which has nevertheless proven effective
in treating the case of even very short pulses [8]. The
single excited state involved in this calculation should be
adequate to describe the situation in which the resonant
state is sufBciently isolated from adjacent states. The
specific case studied here is the (7+1)-photon ionization
of H atoms having a seven-photon dynamical resonance
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with the 4f state. The photon energy used is 0.0738 a.u.
(618 nm), and is chosen to closely match the experiment
[31.

In our two-state model, the ground state at zero en-
ergy has a Stark coefficient ct~ and the resonant state has
energy E„andStark coeKcient o.„.The relevant parame-
ters of the problem in atomic units are the static detuning
from the resonance Ao = mes& —E„(where uz is the pho-
ton energy and m the number of photons coupling the two
states); the resonance intensity I„=AII/(ct„+n~); the
generalized Rabi frequency Rs,I~~z; and the ionization
width of the excited state p, I, where I is the laser in-
tensity and a one-photon coupling p„ofthe excited state
to the continuum is assumed. The probabilities that the
system is ionized (P,) or left in the excited state (P„)at
time t, are given by {for a complete derivation see, for
example [6])
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Here Z+ and Z denote the two poles of the resolvent
operator:

Z„+ = Z+ —E„+zp„I, (4)

with E„,z —— E„,z + o.„,g I. The direct coupling of
the ground state to the continuum can normally be ne-
glected and, in the present case, o.g &( o.„.The values
of the atomic Parameters are [9]: Rs, ——0.65 x 10s, P =
1.1, n„=184.421, o,~ = 4.62552, E„=0.46875 a.u. ,
and the intensity unit is 1.4038 x 10 W cm

Figure 1(a) shows the real part of the poles as a func-
tion of intensity in the region of the level crossing (ac-
tually a small avoided crossing) at this photon energy.
All of the physics of the resonance is contained in this
crossing diagram and in the pulse duration. Figure 1(b)
displays P, and P„in the same intensity range for a time

2500 a.u. , which is long enough for the resonance to
build up (see below). Note that the ionization and resid-
ual bound-state population are localized at the resonant
intensity defined by the crossing point.

Figure 2 shows the probabilities for the system to end
up in the continuun, excited state, and ground state af-
ter a square pulse of intensity I„.It is clear that, if the
pulse is not too long, some population may subsist in the
excited state (up to 17.5' for a 120-fs pulse). However,

Z+ = —(Z„+Eg —ip, I
2
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the amount that is left strongly depends on the static de-
tuning (through the resonance intensity), the ionization
rate (p„I)of the excited state, and the pulse duration
(r). The space localization of the probabilities (basis of
the shell model) has obviously its origin in their sharp
dependences on intensity, shown above. For a Gaussian
beam, the intensity is given by

I' r2

1+ z~ p
t' (t —z/c)2I r, z, t exp1+ z2 (5)

As I(r, z, t) evolves in time along the pulse, the resonance
intensity is reached in diKerent regions of the beam. How-
ever, the effective time ~,g it remains on resonance also
varies along the pulse. It will stay on resonance longer,
if I„is reached at the top rather than during the rise
or fall of the pulse. One can easily evaluate r, tr from
the width of the curves in Fig. 1(b) and the profile of

t 2
the Gaussian pulse e &'~ ~ . It can be shown that ~,g
is divided by 6 from the top of the pulse to r/2. Con-
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FIG. 2. Time dependence of the ground state (dashed

line), excited-state (solid circles), and ion (solid line) pop-
ulations for a square pulse of intensity I„.
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FIG. 1. (a) Real parts of Z+ and Z and (b) P, (solid

line) and P„(dashed line) as a function of intensity (1 a.u.
—=1.4038 x 10 W cm ).
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tour plots of P„(I(r,z, t), r,fr) (where r and z are the
space coordinates) for a pulse with a peak intensity 2I,
illustrate this point in Fig. 3. They provide snapshots
of the populations as the pulse evolves in time. In the
rising edge of the pulse, some of the population is non-
resonantly driven at the center of the beam, but at a
virtually undetectable level. When the pulse reaches its
maximum at t = 0, most of the population transfer oc-
curs in the spatial regions of the beam where the intensity
is I„,in full agreement with the LZ analysis [4]. Note that

we observe identical localization and time dependence of
the ionization probability P;. The significant addition of
this calculation is that it allows evaluation of the residual
excited-state population, which is observed to be appre-
ciable ond localized after the pulse. The basic reason
for this occurrence is that, even at the top of the pulse,
r,p may be too short to saturate the transition, since
7.,g & r. However, an increase of the resonance intensity
results in both an increase of the peak population and a
rapid decrease of its lifetime. For instance, a 2' increase
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FIG. 3. Contour plots of the excited-state
population as a function of r and z, the coor-
dinates in the Gaussian beam at (a) t = r/2
(r s = 456 a.u. ) and (b) t=O (r,ir = 2680
a.u. ). The peak intensity is twice I„and
~ = 10000 a.u. The excited-state population
in the highlighted shell in (b) is 9% and (a)
is magnified by a factor of 20.
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in the photon energy results in a maximum excited-state
population of 30% (to be compared to the 17.5% in Fig.
2), but it is reduced to zero after a time of only 10 a.u.
For a 5% photon-energy increase, this time is reduced to
5000 a.u. If approximately 10%%uo of the total population
is left in the 4f state at 618 nm, the model predicts that
this value would be reduced to zero for 590 nm photons,
in agreement with the experiment [10].

Finally, we have examined the photoelectron spectrum
that arises when a resonant state has a shift diferent
from the continuum limit. First, it must be realized that
ionization always occurs over some intensity range, albeit
small. Therefore, the question of the structure broaden-
ing is always present, but our analysis demonstrates that
the energy shift is not expected to play a major role. This
is confirmed in Fig. 4, where the electron-energy spectra
(the ionization probability as a function of the energy
mapping of the intensity) are simulated for three values
(1.5, 1, 0.5) of the ratio o;&/o„(n& ponderomotive shift
coefficient) by linearly mapping the energy K to inten-
sity as K = 8~„—El —a„I,where El is the ionization
potential. In spite of an obvious broadening and a trivial
shift, the structures remain narrow. At the same time,
the amount of population left in the excited state remains
constant and spatially localized.

In conclusion, both the LZ and the present calculation
predict a sharp dependence of the ionization probability
around the resonance intensity. Both time and space lo-
calizations of ionization follow. However, the LZ level
crossing theory implies that all the ground-state popula-
tion is transferred to the excited state (most efficiently
in the regions of the interaction volume where the res-
onance intensity is reached at the top of the pulse) and
that any residual excited population will be returned to
the ground state during the fall of the pulse. This may
be a very good approximation for high Rydberg states
with very low ionizing rates, but it does not seem to
be adequate for realistic couplings in the case of the 4f
state. The dynamics of the system is more accurately de-
scribed by the present calculation in which the amount
of population left in the excited-state clearly depends on
the excited-state ionization rate and the effective interac
tion time. Furthermore, this localization produces sharp
photoelectron energy structures, even in the case of a
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state that shifts very difFerently from the continuum limit
(ponderomotive). However, the above calculation clearly
shows that the de Boer and Muller result is rather atypi-
cal and fragile, since a small increase in I„orin the pulse
duration will in general be sufhcient to remove all of the
excited-state population. Finally, it should be stressed
that the present calculation is only a first approxirna-
tion to describe situations where such large shifts are
observed. In particular, all the couplings are described
to lowest order. The agreement between the experiment
and the present prediction must be ascribed to the fact
that the 4f state is very weakly coupled to other states.
More complete treatments using a larger basis or time-
dependent solution of the Schrodinger equation are re-
quired to make accurate predictions in the general case.
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FIG. 4. Simulated electron kinetic-energy spectra for
three di8'erent value of the Stark coefBcient relative to the
ponderomotive coefficient. (See text. )
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