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Low-energy scattering in the p+@p system via the Fadtieev approach: Virtual-state effects

Andrei A. Kvitsinsky
Department ofMathematical and Computational Physics, Institute for Physics, University of

St. Petersburg, St. Petersburg 198904, Russia

Chi-Yu Hu
Department ofPhysics, California State University at Long Beach, Long Beach, California 90840

(Received 14 July 1992)

The Faddeev approach in the total-angular-momentum representation is applied to study s-wave

p +pp scattering at very low energies. It is shown that the threshold behavior of phase shifts and cross
sections is strongly affected by a virtual state leading to a significant amplification of cross sections near
k =0.
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Low-energy scattering in mesic atomic systems is in-
volved in a broad range of problems of muon physics, in
particular in muon-catalyzed fusion. Previously, most
calculations of such processes have been done within the
framework of the adiabatic and the adiabatic representa-
tion methods (see Refs. [1—3] and references therein), and
the nonadiabatic coupled rearrangement channel method
due to Kino and Kamimura [4] was developed during the
last couple of years. Recently, a method was developed
[5,6] to treat the three-body Coulomb problem that is
based on the modified Faddeev equations [7] in the total-
angular-momentum representation [8]. In this paper, we
apply this method to study the s-wave elastic scattering

p +pe p+pv
at very low energies ( ~ 10 eV) of the incident proton.

An interesting feature of this system is that it has a vir-
tual state located very close to the elastic threshold, with
the same quantum numbers as the ppp ground state. A
tiny decrease of the mass ratio m„/m moves the virtual
state into the discrete spectrum and a new bound state
appears [1,2]. It is natural to expect that the existence of
this state can considerably affect low-energy scattering
leading to a drastic increase of the elastic cross section
near the threshold. Although this can hardly be of prac-
tical importance for the nuclear fusion in hydrogen-
isotope mixtures (for the nuclear constant of the reaction
p+p~d+e++v is very small compared to that of
d + t ~ He+ n), the phenomenon may be rather of in-
terest in other problems, among them weak transitions
pp~n+ v in hydrogen. In this case, the additional con-
tribution of the three-body channel p+pp —+p+n+v
can be important in dense mixtures [9].

The first numerical estimations of the effect have been
made in Ref. [9], where the s-wave Jost function of (1)
was calculated via an adiabatic two-state approximation.
However, the zero-energy limit is a rather difficult case
for the adiabatic method, and the two-state approxima-
tion can only provide a qualitative picture. The goal of
this work is to study the problem in a more accurate
manner on the basis of the modified Faddeev equations

(MFE's) in the total-angular-momentum representation,
which is the projection of the MFE's in the subspace with
fixed total angular momentum L,. In this approach, we
are able to do the calculation in coordinate space without
any truncation. A full description of our method is given
in Refs. [5,6, 10]. Let us outline briefly its major points.

The modified Fadd eev equations for a three-body
Coulomb system are built up along a cutoff procedure
due to Merkuriev [7]. Namely, the Coulomb potentials V
are divided into short- and long-range parts,

V"(x,y)= V(x)g(x, y),
V'"(x,y) = V(x)[1—g(x,y)],

(2)

where x,y belong to one of the three sets of standard
Jacobi coordinates for a three-body system. The cutoff
function g vanishes asymptotically within the so-called
three-body region (where x -y ~~ ) and goes to one out-
side of this region (where x ((y~~). We exploit the
form of the cutoff proposed in Ref. [11]:

g(x, y) =2 (x /xo )
]+exp

y /yo+ 1
(3)

l', = —csc(e.)a, sin(e. )a, ,
(5)

where one must take v & 2, and other parameters are arbi-
trary (see discussion in Ref. [11]). The reason for intro-
ducing the cutoff is to bring back compactness to the
Faddeev equations that are not compact in their original
form for scattering states of charged particles.

The MFE with total angular momentum L =0 takes
the form

(H„+V"—E)% = —V~' g %p, a,P=1,2, 3
P (Wa)

H„=H ++V'",
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with the total wave function 4=g 4 . Let the two pro-
tons be labeled 1 and 2 and the muon be labeled 3. The
third set of the Jacobi vectors, or the Faddeev component
f3, involves the repulsive proton pair I.t is convenient to
choose g3—=0 for the corresponding cutoff function; then
the third component of Eq. (4) becomes

(Ho+ V3+ Vi" + V2" —E)%3=0 .

It is clear that the only solution for this homogeneous
equation is g3 —=0. With this restructuring Eq. (4) be-
comes

Ho+ V +V3+ g Vp" —E
P (Xa)

= —V" g %p, a,P=1,2 .
P (&a)

Units of

k (a„')
Phase shift Cross section

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0
0.279
0.483
0.617
0.680
0.713
0.722
0.716
0.700
0.664
0.632

0
—0.0356
—0.0759
—0.121
—0.168
—0.217
—0.266
—0.314
—0.363
—0.420
—0.494

900
797
582
421
299
227
179
146
124
109
102

270
239
176
126
87.9
64.3
48.4
37.5
29.8
24. 1

20.4

TABLE I. Phase shifts (in rad), elastic and ortho-para con-
version cross sections (in units of ~a„)near threshold.

By further application of the symmetry of this system,
the number of the Faddeev components of the total wave
function 4 can be reduced to one, using the same func-
tional form for g, and g2

the ortho to the para state equals

o, = sin (5+ —5 ) .
4k 2

(10)

(Ho+ Vi+ V2" + V3 E)4= ——p V'i'PN, (7)

where 00 is the s-wave kinetic energy operator given in
Eq. (5), V, stands for the Coulomb potential of the pp
atom, V", is its short-range part (2), Vz" is the long-range
part of the potential between the incident proton and p,
and V3 denotes the repulsive potential between protons.

Equation (7) is a three-dimensional partial differential
equation in the internal space, which is parametrized by
the Jacobi coordinates x, y, and O=arccos(x, y). Below
the excitation thresholds, the following asymptotic condi-
tion fixes solution to the scattering problem:

po(x)
@(x,y, 8) I»

— [sinky+tan5(k )cosky ],
ky

where yo is the atomic wave function, 5 is the (s-wave)
phase shift and, k is the momentum, k =2m(E —so),
where m is the reduced mass of p and pp, and c.o is the
atomic ground-state energy.

In terms of the phase shifts, the s-wave elastic cross
section for each parity state (p =+1) is given by

o„(k )= sin 5 (k )

and the spin-weighted result is

0 i
——0 +—0e1 4 4 (9)

The cross-section of the conversion of the pp atom from

where @ is the Faddeev component including the in state
of (1), p =+1 is parity with respect to the proton inter-
change, and P is the operator of the proton permutation.
The Faddeev component obeys the equation [4]

To solve the problem (7),(8) numerically, we make use
of the triquintic spline expansion [5] of the Faddeev com-
ponent and a collocation procedure with three-point
Gauss-quadrature points per subinterval of each variable.
The resulting algebraic equation is solved by direct rna-
trix inversion. A typical grid providing an accuracy of a
few percent consists of 24 X 15 X 15 collocation points in

y, x, and 8, respectively.
The results of calculations in the low-energy region are

presented in Table I, where the mesic atom length unit is
used, a =Pi /e m„=2.56X10 ' cm. The zero-energy
cross sections correspond to the values of the p+pp
scattering lengths obtained in Ref. [6] by means of solv-
ing Eq. (4) at zero energy (E =ED): a+ = —29.4a„,
a =3.45a„. These results agree to within 2%%uo with an
earlier calculation by Bracci et al. using the adiabatic
method [3]. Note that a large negative value of a+ is it-
self an indication of the presence of a virtual state near
threshold. With a decrease of the mass ratio m /m, the
singlet (p = + 1) scattering length goes through
when a new bound state appears and then becomes posi-
tive.

Figure 1 shows the threshold behavior of the phase
shifts. Again, the structure of the singlet phase shift,
with a rnaximurn near origin, is typical for the case when
there is a virtual state on the negative axis of the second
sheet of energy [12]. When the virtual state moves to-
ward threshold, the position of the maximum of 5+ tends
to zero and 5+(0) reaches n. /2(mod~) just before the
e8'ective potential becomes strong enough to bind a new
bound state, in accordance with the Levinson theorem.

The inhuence of the virtual state on the elastic and
conversion cross sections (9),(10) near threshold is clearly
seen in Fig. 2. Both cross sections undergo a significant
increase by a factor of —10 when k goes from 0.1a„'
(E —so=6 eV) to zero.

Note that the cross sections are large compared to the
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FIG. 1. Threshold behavior of the singlet (p =+1) and trip-
let (p = —1) phase shifts (mod~).

FIG. 2. Elastic and ortho-para conversion cross sections near
threshold.

characteristic geometric value ma„, due to an important
contribution of the long-range polarization potential.
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