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fi expansion for the periodic-orbit quantization of hyperbolic systems
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Using Feynman path integrals and the stationary-phase method, we develop a semiclassical theory for
quantum trace formulas in classically hyperbolic systems. In this way, we obtain corrections to the
Gutzwiller-Selberg trace formula as an asymptotic series in powers of the Planck constant. The first
coefficient of this series is given explicitly. We illustrate the theory with the calculation of complex-
wave-number resonances for the two-disk scatterer and show that effects beyond the Gutzwiller leading
approximation are at the origin of a lengthening of the resonance lifetimes at low energy.

PACS number(s): 03.65.Sq, 03.40.Kf, 05.45.+b

In recent years, there has been an increased interest in
semiclassical methods for quantizing the classically
chaotic systems found in highly excited atoms and mole-
cules. Several important results have been obtained
thanks to the Gutzwiller-Selberg trace formula [1],which
has been applied to calculate the energy eigenvalues or
the scattering resonances of systems such as the aniso-
tropic Kepler problem [1], the disk scatterers [2,3], the
helium atom [4], the hydrogen negative ion [5], and oth-
ers [6—8], in terms of their classical periodic-orbits.

In semiclassical methods, the action W of a path q(t) is
expanded around the classical trajectories with respect to
the diff'erences q(t) —q,~(t). The first variation in the ac-
tion vanishes according to classical mechanics, 68 =0.
As a consequence,

1 1W[q(t)]= f L(q, q)dt = W„+—6'W+ —8'W
0

+—6 8'+1 4 (1)
41

where L is the Lagrangian, 8'„ is the action of the classi-
cal trajectory, and 6"8' is the nth-order variation. The
Gutzwiller-Selberg trace formula only uses the quadratic
variation in (1). For special geodesic ffows on surfaces of
constant negative curvature, it is known that the
Gutzwiller-Selberg trace formula establishes an exact re-
lationship between the quantum energy levels and the
periodic orbits [1].

However, evidence has accumulated that this trace for-
mula is not exact for more general systems. In the three-
disk scatterer, the complex energies calculated from the g
function and the curvature expansion appear to di6'er sys-
tematically from the exact quantum-mechanical values
[3]. Similar discrepancies have been observed more re-
cently for the energy eigenvalues obtained with the
Riemann-Siegel look-alike formula for several bounded

systems, which raised some criticism about the method
[7]. Moreover, for the two- and three-disk scatterers, the
Selberg trace formula is unable to reproduce a lengthen-
ing of the resonance lifetimes at low energy [9,10]. In
view of these problems, the higher-order terms of the ac-
tion (1) can no longer be ignored in the periodic-orbit
quantization method.

In the present Rapid Communication, our purpose is
to show that these higher-order variations in the action
are at the origin of contributions to the semiclassical

trace formula that are in powers of the Planck constant
In this way, we develop an alternative theory for ob-

taining the periodic-orbit quantization condition to aO or-
ders in the semiclassical approximation. Our theory is
based on the evaluation of the Feynman path integrals by
the stationary-phase method, keeping all the terms of the
expansion in powers of A. For a one-variable integral
with an arbitrary function P(x) having one stationary
point where t), tb(xo) =0, we have

f (i /A)P(x)d~

1/2
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trU(T) = N
2' AT

dqo' ' 'dqN —
&

l
X exp —8'(qo, . . . , q (4)

where the propagation has been subdivided into & small

time intervals At = T/N and where 8' denotes the discre-
tized path action (1). The trace of the resolvent will be
calculated afterwards.

The trace has the eff'ect of closing the paths in (4):

with the notation Po'"'= 8„"P(xo ). Thanks to the
stationary-phase method, the oscillatory integral is re-
duced to a series of moments of an imaginary Gaussian
integral. Our aim is to apply the expansion (2) to the
Feynman path integral defining the trace formula.

Let us consider a system with f degrees of freedom de-
scribed by the Hamiltonian H = —(A' /2)V + V(q), pos-
sibly with boundary conditions on hard walls or symme-
try surfaces. The classical dynamics is assumed to be hy-
perbolic, i.e., that all the periodic orbits are unstable and
of the saddle type. The energy eigenvalues or the scatter-
ing resonances are known to be poles of the trace of the
resolvent of the Hamiltonian at real or complex energies
[1]. Since the resolvent is related to the propagator
U( T)= exp( iHT lfi) by—

1 dTe('/" U( T) (3)E —P i' o

with ImE )0, we first consider the trace of the propaga-
tor that can be directly evaluated as the Feynman path
integral

Nf /2

47 R3468 1993 The American Physical Society



li' ll II ~ 0 I( ) I I( 1I I I(
'

ll ~ . I I I I ~ (
' ~

47 R EXPANSION FOR THE PERIODIC-ORBIT QUANTIZATION. . . R3469

qo= q&. Hence the stationary phase condition
88'/Bq„=O selects the following solutions of Newton's
equations q= —

Bq V. (i) There are the fixed points where
t) V(q, )=0 for the critical energies E, = V(q, ). We shall
describe the fixed points elsewhere because they are ab-
sent in several known examples of hyperbolic systems
[3—8]. (ii) There are the periodic orbits, which are unsta-
ble and isolated due to the assumption of hyperbolicity.
Because the time T may be some multiple r ~ 1 of the
fundamental periods T (E), which vary with the energy
in anharmonic potentials, the periodic orbits are found at
the different energies satisfying T =rT (E „).

Since the periodic orbits are one-dimensional solutions,
one among the positions [q„] remains arbitrary while the

others are determined by Newton's equations and the
fixed value of T. We take qo, as the arbitrary position
that parametrizes the periodic orbit. Thereafter, the ac-
tion in (4) is expanded in Taylor series around the classi-
cal solution according to (1). The (Nf —1)-component
vector [P J

= [q„—q,~(n b, t)]„o denotes the separation
of the path with respect to the classical solution. In the
double index a =(i,n), the first index i refers to the ith
space component of q (i = 1, .. . ,f ) and the second index
n to the time t =nAt (n =0, . . . , N —1). W, . . . ,
denotes the partial derivative t) . t) W /t)P . t)P evalu-
ated at the classical solution P=O. We adopt the con-
vention of summation over repeated indices. We get

trO(T) N
2tri AT

Nj" /2
0

e~p —~.i "qo&d ~ exp

&& 1+
6g

)V,.b, Pg'P+
24/ ~,.b,dye'Pg"+O(g'/&) , 8'—.„,W „,f/''Pg~Pg/+O(g'/A')+O(g'/I') . (5)

The second derivative matrix D., = 8'.b carries informa-
tion on the linear stability of the periodic orbits. Its ele-
ments are

(t)+O{N—2)
Bq;(t)Bq (t) T " N ()q;Bq

N6 +ON
Bq, (t)Bq, (t+At) T "

and zero otherwise. The higher derivatives are
8 T 8 V

Bq; (t) Bq; (t) N Bq; Bq;
1 m 1 m

(t)+O(N ),

(6)

1/2
(2~is)N~-'

(ifi)
detD

X[(D &) ~ &. . . (D ~)&t- & & +.L. . ]

and zero otherwise. As announced with (2), the Feynman
path integral (4) has now been reduced to the series (5) of
moments of imaginary Gaussian integrals. Because the
periodic orbits are unstable and isolated, odd moments
are vanishing while even moments are given by

where the sum contains all the terms obtained by group-
ing the indices two by two. At the Gutzwiller approxi-
mation given by the first term of (5), we only need the
functional determinant detD, which has been derived in
Ref. [11] for the trace of the propagator. The higher ap-
proximations require the knowledge of the inverse matrix
0 '. Remembering the convention on the indices
a =(i,m) and b =(j,n) and recovering the continuous
time limit, the inverse matrix can be expressed like
(D ')' = G;, (m At,

nest)

in terms of the classical Green
function, which is the solution of

G; (t, t')+ [q.l(t)]GkJ(t ') = 6vfi(' ' ) (9)
a'v

dt

for the periodic orbit q„(t). The associated boundary
conditions are

Gi -(tp, t') =Gi, (to+ T, t') =0, G;, (to, t') =G;,.(to+ T, t'),

(10)
with i =2, . . . ,f and j=1, . . . , f. The initial time to corre-
sponds to the position on the periodic orbit that is fixed

by the value of q„.
Gathering the results, the terms in g and g of Eq. (5)

divided by the leading term take the form iAC, with

T to+T $4+(t)
C, = f dt, f dt G,, (t, t)G»(t, t)8T o 'p Bq;Bq Bq Bq,

+ f dto dtdt' [3G;,(t, t)Gbr(t, t')G „(t',t')+2G;, (t, t')G, (t, t')Gk„(t, t')] . (ll)
1 T 'o+, O' V(t) O' V(t')

24T o qk ~qr q q

The next terms are given by similar integrals. All these integrals can be written in terms of diagrams of a kind con-
sidered in quantum field theories [12—16] according to the following rules. A vertex with m legs is associated with each
8 V(t)!Bq, Bq, . A line is associated with each classical Green function G,,-(t, t ) that joins two free legs either of the

1 m

same vertex or between two different vertices. Integrals are then performed over the times of the different vertices. Fi-
nally, a time average T f dt, is carried out over the initial time to. In the series, we find connected and disconnected
diagrams. A very important property is that the series of all the diagrams can be transformed into the exponential of a
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series involving only the connected diagrams. Finally, we get that the periodic orbits contribute to the trace by the
terms

QO

T exp rW——i ri—j, + i—sgnc) z T + g ( iR)"C„(rT )
n=1

I2Mr(r)z T~ )det(M~ —I) I'~'tr0(T) (12)
p, l

(T=rT )
P

W~ is the action of the prime periodic orbit p over the fundamental period Tp,
'

pp is its Morse index; Mp is the linearized
symplectic first return map in the neighborhood of p. In the exponential, we find a a new asymptotic series with all the
corrections in A". For geodesic Aows on surfaces of constant negative curvature, these corrections are vanishing C„=O,
so that a Selberg trace formula is then recovered [1].

We now turn to the trace of the resolvent (3). According to the stationary-phase method, the integral (3) over the
time T has several types of critical points. (i) There is T =0, which leads to the average level density of Fermi, Thomas,
Weyl, and Wigner [17]. (ii) There are the periods T =rT determined by the condition BTW+E =0. (iii) There are the
fixed points. As explained before, we focus on the unstable periodic orbits. Introducing the reduced action
S(E)=ET + W( T) and using T =BzS, we finally obtain our main formula for the contribution of the periodic orbits
to the trace of the resolvent,

1
tr

E —H po p, 1

(T=r T )
P

l . 7T
Tp exp —rSP —i —rpp2 Q'B (O'S) 0 S

igldet(M' —llI'~ 2r(c) S )B „6r(B S ) Sr(B S )
(13)

where Sp S( E ) /r C
&

is the first correction given by Eq.
(11), and

T
B „(E)=

IB T det(M" —I)I'
14

Equations (13) and (14) give the correction in A' to the
Gutzwiller trace formula. The next corrections can be
obtained systematically.

To illustrate the theory, we apply the preceding
method to the scattering of a point particle on two disks
fixed in the plane, which is one of the simplest classically
hyperbolic systems. Its classical repeller consists of the
single unstable periodic orbit for which the particle

remains trapped between the two disks. This scatterer
can be viewed as a model of unimolecular dissociation
[2]. To obtain the energies and the lifetimes of the quan-
tum resonant states, we have to solve the Schrodinger
equation (b, +k )/=0 with the Dirichlet boundary con-
dition tlt=0 on the border of the disks. Because the wave
number k is related to the energy by E=A' k /(2m), the
small parameter is k ' instead of A. Using the free quan-
tum Green function Qo=( i/4)H—O" (k lq

—q'I), the full
quantum Green function is obtained by a multiple-
scattering expansion: Q=g" OQ™Qo [18—20]. The
scattering resonances are obtained as the zeros of the
characteristic equation

2m ()g aa,O=det(I —Q)=exp —g —trg =exp —g ds, ds (m 1) (m —1 m)
, m , m

'
Bn, Bn

(15)

for complex wave numbers k. 0/Bn denotes the normal
derivative exterior to the disks. The integer m is the
number of collisions of the path on the disks. The argu-
ments (j,j+1) of the quantum Green functions refer to
the free Aights between the jth and (j+1)th collisions.
The integrals are performed over the infinitesimal arc of
perimeter ds, running along the border of the disks.

We have carried out a systematic k '-expansion of
(15) beyond the leading approximation, which is known
to give the Gutzwiller-Selberg g function [20]. Our calcu-
lation required the extension of the method described in
the preceding paragraphs from smooth potentials to bil-
liards. Instead of Feynman path integrals, we are dealing
here with ordinary multiple integrals where the role of
the classical Green functions (9) is played by finite ma-
trices controlling the quadratic stability of the periodic
orbits under the defocusing collisions on the disks. We
have obtained the following periodic-orbit quantization
condition:

10= 1—,~z exp[ikL +ik 'c~ —k ~cz+O(k ')] . (16)

If the two disks of unit radius have their centers separat-
ed by a distance R =6, the length of the periodic orbit is
L =8; its stability eigenvalue is A=97.989795; and we
finally get the first two coefficients c, =0.625 000 and
c2 = —0.750 12 from our semiclassical theory, the details of
which will be given elsewhere. We remark that the real
parts of the resonance wave numbers are modified by the
k ' term because it gives a real correction to the term kL.
On the other hand, because the k ' term is imaginary
with respect to kL it brings a correction to the imaginary
parts of the zeros, i.e., to the lifetimes of the resonances.
This behavior is indeed confirmed by the comparison
with the exact quantum-mechanical values of the reso-
nances provided for us by Wirzba [9,10]. Except for the
first resonance where the series in (16) cannot converge
since Ik, I

& 1, Table I shows that our semiclassical expan-
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TABLE I. Complex wave numbers k=Rek+i Imk of selected 3& resonances of the two-disk
scatterer with interdisk distance 8 =6 and unit radius. The figures in parentheses give the relative er-
rors defined by

~

k„—k,„„,(!~ k,„„,(.
No.

21

31

41

k approx.

0.785 398—0.286 554i
(0.084)
2.356 195—0.286 5541
(0.013)
3.926 991—0.286 554i
(0.0047)
5.497 787 —0.286 554i
(0.002S)
8.639 380—0.286 554i
(0.0010)
16.493 361—0.286 S54i
(0.000 29)
24. 347 343 —0.286 554i
(0.000 13)
32.201 325 —0.286 554i
{0.000075)

k approx.

2.318 964—0.273 752i
(0.0042)
3.906 216—0.281 940i
(0.000 73)
5.483 256 —0.284 197i
(0.000 19)
8.630 254 —0.285 598i
(0.000 036)
16.488 613—0.286 292i
(0.000 002 9)
24. 344 131—0.286 434i
(0.000 000 63)
32. 198 897—0.286 485i
(0.000000 21)

Exact (Refs. [9,10])

0.725 975 3 —0.261 155 6i

2. 327 416 7—0.278 815 Oi

3.908 771 4—0.283 223 8i

5.484244 8 —0.284 579 3i

8.630 553 9—0.285 687 8i

16.488 659 7 —0.286 302 8i

24. 344 145 5 —0.286 437 Oi

32. 198 903 4 —0.286 486 7i

sion considerably improves the leading Gutzwiller ap-
proximation; in particular, by two digits at large wave
numbers. Moreover, we see in Table I that our theory,
carried out till the k ' approximation, explains the
lengthening of the resonance lifetimes at low energy,
which remained unraveled at the Gutzwiller k' approxi-
mation. The lengthening has its origin in the quantum
fluctuations due to the high-order variations in the action
(1) around the classical periodic orbit. Besides, we recov-
er the inverse of the Ruelle g function of the two-disk re-
peller if we neglect the k "corrections in (16). In this re-
gard, our result shows how the g functions must be
modified to incorporate the quantum corrections in the
periodic-orbit quantization condition. We can show that
similar results hold for quantum maps [21,22].

In conclusion, we think that the A expansion described
in this Rapid Communication provides a foundation for
the periodic-orbit quantization method, which is no

longer restricted to the leading approximation. In this
respect, the A expansion can be fruitfully applied to clas-
sically chaotic systems, not only to improve the accuracy
of the semiclassical evaluation of the energy levels of
highly excited atoms or molecules, but also to obtain the
lifetimes of autoionizing states of He or H, which are
not attainable [4,5] at the leading approximation.
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