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Experimental characterization of unstable periodic orbits by controlling chaos
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A modification of the method proposed by Ott, Grebogi, and Yorke to control chaos [Phys. Rev.
Lett. 64, 1196 (1990)] has allowed us to characterize unstable orbits of a Nd-doped fiber laser in their

whole domain of existence. Stabilization could be achieved both on orbits embedded inside the chaotic
attractor and on orbits located in other parts of the phase space. Transient regimes provide direct exper-

imental information on the unstable Floquet multipliers.

PACS number(s): 42.55.—f, 05.45.+b, 42.50.Lc

Lasers like other nonlinear dynamical systems exhibit
deterministic chaos when some instability conditions are
met. As the laser applications rely mainly on their ability
to provide clean "coherent" radiation, this chaos appears
as a serious drawback. For instance, it was shown that
chaos limits the possibilities of intracavity modulated
CO2 lasers [1] and one practical interest of studies of
chaos in lasers is to circumvent the parameter domain in
which chaos is likely to appear in order to avoid it.

Recently several techniques have been proposed to in-
hibit the chaotic behavior in a nonlinear system. They
are based on feedback techniques in which information
from the system output is used to modify the value of a
control parameter so as to stabilize the behavior in a pre-
viously unstable state. In the original method proposed
by Ott, Grebogi, and Yorke (OGY) [2], deviations from
the exact position of the chosen unstable orbit are
corrected via small shifts of the control parameter to
maintain the system as close as possible of the unstable
periodic orbit. With this method, the stabilized orbit is
theoretically identical to the unstable periodic orbit, ex-
cept for its stability. This was applied in periodically
forced systems such as chemical reactions [3], a gravita-
tionally buckled magnetostrictive ribbon [4], and a diode
resonator [5]. Recently, this method has also been ap-
plied on autonomous laser systems by Roy et al. [6]. The
OGY method has been modified to create nonexistent
periodic orbits, as shown by Hunt, who used larger
corrections of the control parameter [5]. It has also been
used to stabilize an autonomous chaotic water How in a
stationary state [7]. Methods derived from OGY have re-
cently been introduced to generate controlled aperiodic
orbits [8] and to take advantage of chaos to direct trajec-
tories to targets [9]. Chaos can also be suppressed by us-

ing a small periodic modulation of a control parameter
[10]. The aim of the work presented here is to investigate
the properties of unstable orbits. As will be shown, the
advantage of a control method over the well-known close
return technique is that it is not restricted to the parame-
ter domain for which the orbit is embedded in the chaotic
attractor.

A reliable characterization of unstable orbits requires
that the considered unstable orbit not be modified by the
control method. This is realized if the correction on the

control parameter vanishes when the trajectory lies on
the stabilized cycle. Therefore, a feedback method analo-
gous to that of OGY is preferred to a modulation tech-
nique. OGY suggested stabilizing a chaotic fiow X(t) us-
ing values g„(t) taken from a Poincare section. Let
g F =0 denote the position of the unstable orbit for a con-
trol parameter p =0. They showed that if the unstable
orbit has only one Floquet multiplier A,„with modulus
larger than 1, a correction p„ofthe control parameter
may be calculated such that, after the correction, the sys-
tem lies on the stable manifold of /=0. The correct feed-
back factor does not need to be exactly known since there
exists a parameter domain in which the orbit remains sta-
bilized [4], but the OGY method requires a knowledge of
the dynamics near the unstable orbit and, in particular,
its location. We have modified the OGY technique and
the new method has been checked on autonomous chaos
of the Nd-doped optical fiber laser (OFL). We propose
here to use only the difFerences (g'„—g'„,) to determine
the required correction. Correcting the control parame-
ter by an amount proportional to (g„"—g„",) instead of

g, as sugge—sted by Ott, Grebogi, and Yorke [2], al-
lows one to stabilize the unstable orbit even when a con-
trol parameter is swept (g is the component along the
unstable direction).

Another difference with the OGY method is that the
correction is applied during a small part of the period. In
the usual case where the Poincare section is reconstruct-
ed by the time delay technique, Dressier and Nitsche [11]
have shown that the OGY method with a correction dur-
ing all the period can lead to instabilities, because the
plane of the Poincare section depends on the value of the
correction. The instabilities can be suppressed if the
correction is applied during a small part of the period
and the measure is always with a correction on the con-
trol parameter equal to zero. Moreover, a. well-chosen
correction (duration and timing) may be more efficient
than a quasicontinuous one [6], especially in systems such
as the OFL for which a quasicontinuous correction shifts
the orbit location in the Poincare section essentially along
the stable manifold.

In the case of small corrections and in the vicinity of
the unstable orbit, the response of the system may be
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FIG. 1. Stability domains of the control parameter a (in h„
units) vs the unstable Floquet multiplier A,„.In the hatched re-

gion the chaotic system can be stabilized on the unstable period-
ic orbit.

linearized in f and p„[2]:g„+&=A/„+p„h,where A, is
the Floquet matrix of the unstable orbit at g'=0 and h
characterizes the response of the system to the correction
p„,taking into account its shape and its duration. The
unstable orbit is supposed to have only one Floquet mul-
tiplier A.„with modulus larger than one associated with

h„,the component of h along the unstable direction. If
the proposed correction is applied at each period, i.e.,
p„=a(g„"—g„" 1), where a is the feedback factor, the sta-
bility analysis reveals that it is not possible to obtain a
value of a stabilizing the orbit when A,„&1 or X„&—3.
The instabilities are due to the fact that we do not know
the location g'F of the unstable orbit and they can be
suppressed if the feedback takes the previous value into
account. This is similar to the modification of the OGY
method by Dressier and Nitsche for experimental systems
in which time delay coordinates are used. Their method
requires the simultaneous adjustment of two feedback
coefficients, which is difficult to obtain in an experimental
system whose dynamical equations are unknown. The
stabilization of the system is obtained here by the appli-
cation of the feedback only every other period, i.e.,
p2„=a(gz„—gz„,) and pz„+,=0. In this case, the sta-
bility analysis reveals that there exists a range of values of
a leading to the stabilization of the unstable orbit for any
unstable Floquet multiplier A,„.This is achieved when a
belongs to the [(A.„—1)/(k„—1)h„,(A.„+I)/(A, „—1)h„]
interval. Figure 1 represents the suitable range of values
of o; versus A,„.A single value of the feedback coefficient
a leads to stabilization for a large range of the Floquet
multiplier A,„.Thus, it is possible to keep o. constant and
to stabilize a particular unstable orbit, even when a con-
trol parameter is swept in a wide range. By this method
it is possible to track an unstable orbit in its whole
domain of existence. This feedback system automatically
finds the unstable orbit but, a priori, several different or-
bits could be stabilized for given values of feedback pa-
rameters, depending on the initial conditions. In fact, if
the periodicity of the correction is adjusted to stabilize an
nT unstable periodic orbit, the system can stabilize (i)

different nT orbits if they exist in the chaotic attractor,
(ii) a 2nT unstable orbit if its unstable Floquet multiplier
verifies —3 & A,„&+ 1, (iii) an m T unstable orbit if n is a
multiple of m. However, in our experiments, this
phenomenon has not been observed.

Our experimental setup essentially consists of a 4.5-m-
long Nd-doped silica fiber pumped by a diode laser with
index-matched plane mirrors. The design of this laser is
the same as that reported in our previous paper [12] and
the powers (P1,P2 ) emitted by the laser along the two po-
larization eigendirections are monitored with the pump
power as the main control parameter. Other parameters
such as the coupling of the fiber with the mirrors or of
pump power into the fiber provide additional control of
the laser behavior. Laser oscillation occurs on many lon-
gitudinal modes, but the laser behavior appears to be
governed by a small number of dynamical variables [13]
in which light polarization plays a crucial role [12,14].
This laser is known to present chaos when subjected to
pump modulation [12,15], but we have recently found
conditions under which it spontaneously destabilizes to
chaos through a cascade of period-doubling bifurcations.
In general, the stabilization method requires a Poincare
section in which the unstable direction corresponding to
the unstable orbit should be known in order to measure
g. This could be obtained by the time delay technique
[11]. In the particular case of our OFL, it is possible to
use P,„edfiendby the sampled values of P, instead of g„".
With this purpose, we detect the maxima of the power
P&. Then the sampling is performed after an adjustable
delay, and one of every m samples is kept if the unstable-' orbit is to be stabilized. The correction is applied im-
mediately after the sampling. In fact, P& is a linear com-
bination of the components of g'„. For a well-chosen de-

lay, the first return map of P,
„

looks to be quasiunidi-
mensional, like in previous experiments on the control of
chaos [4—7]. In this case, the contribution of the stable
components does not prevent the stabilization. This pro-
vides the data required for stabilization, which, in our ex-
periment, are sent to an analog system delivering the suit-
able corrections to the driving current of the pump laser
diode if the difference between two successive sampled
values is less than e (a few percent of P,„).In this case,
the trajectory can stay in an e-ball neighborhood of an
unstable orbit.

Stabilization has been achieved with the method
presented here. The duration of the correction has been
adjusted to optimize the efficiency. It is typically a small
part of the period (5—20%). When the E-ball condition
mentioned above is met, the feedback control switches on
and stabilizes the trajectory. The correction on the pump
power decreases and amounts to a very small value (less
than 1% of the average pump power). It displays ran-
dom amplitudes because once the system is set on the un-
stable orbit, the feedback corrects only technical noise
originating from the laser. In particular, it does not
present the periodicity of the stabilized cycle. Therefore,
we can conclude that the stabilized trajectory is not
measurably affected by the stabilization. The chaotic
OFL could be stabilized on 2T and 4T unstable orbits in a
wide range of pump power. For example, Fig. 2 displays
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the output signal P&(t) of the laser power corresponding
to a 4T cycle and the correction applied to the pump
power.

When an orbit has been stabilized, we can slowly vary
a control parameter (here the pump power) without
modifying any parameters of the feedback system. Due
to the high stability of the system with feedback the orbit
remains stabilized in a wide range of the control parame-
ter. Moreover, during the sweep, the correction applied
to the system remains small and random, showing that
for each value of the parameter, the observed orbit is
identical to the unstable orbit existing without stabiliza-
tion.

The feedback technique proposed here allows us to fol-
low an unstable orbit not only when it is embedded in the
chaotic attractor but in its whole domain of existence.
For instance, the 2T unstable orbit is embedded in the
chaotic attractor after the C4-C2 transition of the inverse
cascade [16]. This suggests that this 2T unstable orbit
comes from the destabilization of the 2T stable orbit
through the 2T 4T bifurc-ation [17]. We propose here to
show experimentally that this hypothesis is true. The
chaotic laser can be stabilized on the 2T cycle above the
C4-C2 transition since the attractor will visit the vicinity
of this orbit. Then by decreasing the control parameter,
the system stays on this unstable 2T orbit in a parameter
domain where this orbit is no longer embedded in the at-
tractor and even where the chaotic attractor no longer
exists. More precisely, as shown on Fig. 3(b), the laser
could be stabilized on the 2T unstable orbit at P =5.6
rnW, and it could be tracked down to the 2T-4T bifurca-
tion (P =4.4 mW) where this orbit becomes unstable.
The fact that the stable and u.nstable orbits continuously
merge into each other at the bifurcation point is another
proof that the stabilized trajectory is the same as the un-

stable cycle.
Automatic following of a particular orbit allows us to

study its properties all through its domain of existence,
while other methods, like the close return technique or
the OGY method, are restricted to the parameter domain
where the unstable orbit is embedded in the chaotic at-
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FIG. 3. Bifurcation diagrams without (a) and with (b) stabili-

zation of the unstable 2T orbit. The dashed line of (b) corre-
sponds to samples of the unstable 2T cycle. The 2T stable orbit
is destabilized at P =4.4 mW and the unstable orbit is embed-

ded in the chaotic attractor for P & 5.6 mW.

tractor. As an example, the Floquet multiplier of the 2T
unstable orbit has been measured on the whole domain of
existence of this orbit (Fig. 4). It could be measured by
switching off the control of system and monitoring the
transient regime out of the unstable orbit. The fact that
at the 2T-4T bifurcation the Floquet multiplier is equal to
—1 and the continuity of the bifurcation diagram [Fig.
3(b)] at this point clearly indicates that the orbit on

which the system is controlled results from the destabili-
zation of the 2T cycle at the second period-doubling bi-

furcation. The method is quite general and could also be

applied to the 4T unstable orbit, which destabilizes at the
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FIG. 2. Stabilization of the 4T unstable orbit: {a) the upper
trace represents the correction applied to the pump power in

units of the average pump power (the narrow spikes are the ap-

plied corrections, the rest corresponds to the technical noise).

{b) The lower trace is the laser output in the 4T stabilized cycle
in arbitrary units.

pump power (mW)

FIG. 4. Evolution of the Floquet multiplier X„with the

pump power for the 2T unstable orbit. The cross indicates the

2T-4T bifurcation that occurs at P =4.4 mW, and the 2T unsta-

ble orbit is embedded in the attractor for P & 5.6 mW.
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4T-8 T period-doubling bifurcation.
To conclude, chaos could be suppressed in a laser sys-

tern by locking it to unstable orbits. The method pro-
posed here makes it possible even when no information
on the location of these orbits is available. Moreover, au-
tomatic locking allows us to follow these orbits when the
control parameters are varied. In particular, an orbit can
be tracked even in a parameter region in which it is no
longer embedded inside the chaotic attractor. For in-
stance, the 2T unstable orbit could be analyzed up to the
2T-4T bifurcation where the 2T orbit destabilizes. The

information on unstable orbits embedded in the chaotic
attractor can be used to derive topological properties of
this attractor [18]. On the other hand, stabilization of
unstable orbits created in other regions of the phase space
is also possible by the method proposed here and has
been achieved on a 3T unstable cycle. This provides
direct experimental information on the limits of the basin
of attraction, which are usually difficult to obtain.
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