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Measurements of light-scattering noise accompanying two-wave mixing in a Kerr medium
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We report measurements of noise accompanying two-wave mixing in a Kerr medium. Experiments
were conducted at visible wavelengths using an aqueous suspension of shaped microparticles as the non-
linear medium. Theoretical calculations and computer simulations using a stochastic model for light-
scattering noise are shown to give excellent agreement with the experimental results.

PACS number(s): 42.65.Hw, 05.40.+j, 78.35.+c¢

The propagation and mixing of electromagnetic waves
in Kerr media have been studied since the earliest days of
nonlinear optics [1] and continue to be a focus of consid-
erable research interest. Specific applications include op-
tical phase conjugation via four-wave mixing [2],
squeezed-light generation [3], and two-wave mixing [4].
In all of these processes, noise is an important considera-
tion. Recent studies based on the fluctuation-dissipation
theorem have shown that the optical Kerr coefficient is
fundamentally associated with thermal fluctuations in the
linear dielectric constant of the medium. These fluctua-
tions reduce the fidelity of an optical signal by mixing in
scattered light from the pump-laser field as noise [5,6]. In
this Rapid Communication we report measurements of
noise during two-wave mixing in a Kerr medium and
demonstrate excellent agreement with theoretical predic-
tions for thermal light-scattering noise [7].

Measurements of gain and noise were made using
liquid suspensions of polytetrafluoroethylene (PTFE)
shaped microparticles as artificial Kerr media. Light-
induced, particle-orientation rearrangements account for
optically induced birefringence with consequent large
nonlinear optical response. Several studies have been car-
ried out to characterize the linear and nonlinear optical
properties of these suspensions, and good agreement be-
tween theoretical predictions and experimental results
was found [8-10]. This agreement is due in large part to
the characteristics of the suspensions, which fit an
independent-particle single orientational relaxation-time
Debye model remakably well. Particles are ellipsoidal in
shape (the dimensions are 0.4X0.2X0.2 um? and the
particle polarizability tensor has corresponding symme-
try. The particle suspensions are highly monodisperse
and interparticle interactions are negligible even at rela-
tively high volume fractions (1.0-2 %). In the present
experiments we typically used a 1% volume fraction of
PTFE particles suspended in a 65-35 water-glycerol
host-liquid mixture. This mixture was chosen because it
matches the average value of the particle refractive index
ny=1.376, thus minimizing the importance of light-
scattering fluctuations due to the isotropic part of the
particle polarizability (8).

4

Figure 1 shows the experimental setup for nondegen-
erate two-wave mixing. The pump and the probe waves
are provided by splitting the 514-nm TEMy, output of a
cw argon-ion laser into a 1-W-power pump beam and a
50-mW probe beam. The two beams eventually intersect
at the focus of the lens (L) within the sample at an angle
of 5°. The beam waist size is about 100 um and the in-
teraction length is 0.1 cm. Before entering the sample,
the polarization direction of the pump beam is rotated
perpendicular to that of the probe so that only the
orientational-particle gratings are generated in the sus-
pension by the beam interference pattern [10].

The angular frequency shift ) required for the nonde-
generate beam configuration is provided to the pump
beam by the mirror M1 that is mounted to a piezoelectric
transducer (PZT). A triangular 8-Hz high-voltage wave
is fed through the PZT so as to produce a periodic linear
displacement of the mirror with constant, sign-inverting
speed. The consequent square-wave-like angular frequen-
cy shift can be varied by either changing the amplitude or
the frequency of the mirror displacement. The periodic
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FIG. 1. Schematic diagram of the two-wave mixing optical
arrangement and electronics for noise analysis. L, focusing lens;
M1, 100% mirror; PZT, piezoelectric transducer; D, photo-
diode.
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intensity gain of the probe beam is revealed by a low-
noise photodiode (D). A polarizer is placed before the
photodiode to remove the polarized component of the
pump light scattered into the probe beam by the isotropic
particle fluctuations. After a low-pass electrical
amplification (—3 dB at 3 kHz), the photodiode output is
fed both into a digital oscilloscope and into a 12-bit,
computer-interfaced spectrum analyzer. For each value
of the frequency shift, the average value of the intensity
gain was obtained by a digital average on the oscilloscope
while the spectral properties of the gain fluctuations were
monitored on the spectrum analyzer.

Implementing this setup, particular care had to be tak-
en to damp mechanical vibrations that could add random
phase shifts to the beams, thus introducing spurious noise
in the gain process.

Figure 2(a) shows the experimental results for the
probe intensity gain and noise fluctuations. Pump light
intensity in the sample was approximately 10 kW/cm?,
while the transmitted probe power in the absence of the
pump beam was 50 mW. The vertical bars report the
transmitted probe-beam power in watts as a function of
the nondimensional frequency shift Qr, where
7=7,=8,9 ms is the orientational response time as
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FIG. 2. Comparison of experimental and simulation results
for two-wave mixing gain and light-scattering noise.
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determined through independent measurements [10].
Each vertical bar is centered on the average value of the
transmitted power and the bar length reports the root-
mean-square (rms) value of the noise fluctuations on the
same scale. rms noise fluctuations are also shown in the
figure on an expanded scale for clarity (full circles) and
were obtained by integration of the noise power spectrum
over a collection bandwidth of 60 Hz. The smooth curve
is a fit to the data using o(P,)=C[1+(Q7)2]"1/2, which
is the form expected from the theory, which will now be
described. g

For two incident plane waves the total field is of the
form

E(r,t)=¢,E (r)cos[K ' T—w ;1 +6,(r)]
+e,E,(r)cos[ Ky r—wyt +0,(r)] , (1)

where €, E j(r), and 9j(r) are the unit polarization vec-
tor, slowing varying amplitude, and slowly varying phase
of wave j, respectively. Inserting Eq. (1) into the wave
equation, making the slowly varying amplitude and phase
approximation, and equating the in-phase and out-of-
phase terms gives a set of four coupled equations describ-
ing the evolution of the two amplitudes and two phases,
which may be integrated using the stochastic noise model
[6,7]. In the absence of pump depletion and background
loss, an analytic solution to these equations may be ob-
tained, which is sufficient for comparison with the
present measurements. Here we require the solution for
the weak probe beam E,(L), where L is the beam interac-
tion length, in the presence of a nondepleted pump E;.
The result, from Ref. [7], is

E,(L)=expla,L)E,(0)+(ay/ag)[explagL)—1]E, ,

)
where
ag=(K /4¢)e,E3Q7/[1+(Qr)?=hQ7/[1+(Q7)*]
3)
and
ay=(K /4gx)bg . (4)

In Eq. 3), K=|K,|=|K,|, € is the background dielec-
tric constant, €, is the Kerr coefficient, and Q=w;—w,.
The last equality in Eq. (3) defines h. In Eq. (4), by, is the
quadrature component for a thermal fluctuation grating
having the same orientational configuration as the signal
grating, thereby giving rise to a scattered light com-
ponent that is indistinguishable from the signal beam (7).
Note that €, and b, are off-diagonal components of
second-rank tensors, but may be treated here as scalars
since in each case only one tensor component is selected
by the fixed polarizations of the writing beams.

Inspection of Eqs (2)—-(4) reveals that fluctuations in b
cause fluctuations in the amplitude of the transmitted
probe. In addition to by, there is an in-phase noise com-
ponent ag, which results in fluctuations in the phase.
The mean and variances for the grating amplitude fluc-
tuations are derived in Ref. [7],
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(ag)={(by)=0, (5a)
(a)=(b%)=027rB){|8e(q)®) /[1+(Qr)*], (5b)

where the dependence on frequency difference Q) and
response time 7 follows our assumption of a single
relaxation-time Debye medium. The right-hand side of
Eq. (5b) gives the noise power over a frequency band-
width B and is obtained by multiplying the result of Ref.
[7], which gives the noise power on a per unit angular fre-
quency basis, by 27B. The right-hand side of Eq. (5b)
may be evaluated in terms of the nonlinear dielectric con-
stant, or Kerr coefficient, €, using [5,6]

(|8e(q)|?) =87kTe,/V, , 6

where q=K;—K, is the wave vector of the matched
thermal fluctuation grating and V¥ is the scattering or
beam interaction volume determined from the product of
the beam cross-section area A4 and the interaction length
L.

For comparison with experiment, Eq. (2) was evaluated
numerically using the stochastic noise model (6). The one
adjustable parameter in the theory is the Kerr coefficient,
and this is obtained here from a fit to the gain curve, not
to the noise. The gain curve shown in Fig. 2(b) was ob-
tained using €,=3.6X 10"’ cm? /erg, in reasonable agree-
ment with the estimate for this quantity obtained from
previous nonlinear optics measurements [8-10]:
€,=2.5X 1077 cm®/erg. The remaining conditions used
in the calculations are the same as those described above
for the experiment. The simulation proceeds by the fol-
lowing steps. (i) A value for Q7 is selected and Egs. (5)
are used to obtain the mean and variance for the noise
amplitude fluctuations over the measurement bandwidth
B =60 Hz. The fluctuations are assumed to be Gaussian
and sampling is achieved using a standard computer algo-
rithm incorporating the Box-Muller transformation for
the generation of normal deviates from random numbers
sampled uniformly on the interval (0,1). (ii) Equation (2)
is evaluated for each sampled b to give a solution for
E,(L) and corresponding amplified signal power P,(L).
Steps (i) and (ii) are repeated on the order of a thousand
times to obtain a good statistical sampling of the noise
over the full Q7 range of interest. Results of the calcula-
tion are shown in Fig. 2(b). Note that both the experi-
mental and theoretical gain profiles follow frequency
dispersion curves characteristic of the Debye relaxation
model [8,10]. More importantly, there is excellent agree-
ment between theory and experiment in regard to the rms
values of the noise fluctuations, including their depen-
dence on frequency shift. This agreement is remarkable,
in view of the lack of adjustable parameters in the theory.

Squaring the right-hand side of Eq. (2) gives noise
terms proportional to ay and to a3. In most cases of in-
terest, E,(0) is sufficiently large that the latter term may
be neglected, leaving the cross term containing the prod-
uct EE,(0). Then we find for the standard deviation of
the power fluctuations in the amplified signal in the limit
of small gain [7],
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o(P,)=(477B)2(hL)!?[kTvP,(0)]'/?
X[1+(Q7)?]7 2 (WL <<1) . (7

Since the maximum power gain (G =e”L) in the experi-
ment is 1.05, the small gain approximation used to derive
Eq. (7) is valid for the present discussion. Equation (7)
shows the origin of the [1+(Q7)?]71/? dependence seen
in the measurements and provides an explicit form for
the prefactor C. Here P,(0) is the incident signal power,
P, is the fluctuating signal power at z=L, and o(P,)
is the standard deviation of P,: o(P,)=[{(P,)?)
—(P,)?]2,

The solid curve in Fig. 2(b) displays the analytical re-
sult given by Eq. (7). The open circles are numerical re-
sults obtained by Gaussian sampling using the stochastic
noise model—each circle represents the rms value com-
puted for 100 samples at a fixed value of Q7. The simu-
lated noise is in excellent agreement with both the analyt-
ical and experimental results. Finally, we note that the
noise fluctuations decrease monotonically with frequency
unlike the average gain, which peaks at Qr=1.

Equation (7) shows that the rms amplitude of the noise
fluctuations increases with the square root of the incident
probe power P,(0). Figure 3 reports the experimental
values of the rms noise power (triangles) as a function of
the probe power for 27=0. As can be seen, the square-
root dependence (full line) is well verified over a decade
range.

Theory predicts that the rms probe-power fluctuations
should satisfy Eq. (7) as long as light-induced gratings are
dominant with respect to thermal gratings. Equation (2)
shows that for an incident probe power of zero, output
fluctuations will occur proportional to a%. Note that the
noise fluctuations proportional to a%, unlike those pro-
portional to ay, do not vanish on time averaging.
Analysis similar to that used to derive Eq. (7) gives

(P,(L))=(wrB)hL)XkTv)[1+(Q7)*]7 !, (8)

0.5 T T T T T

0.01 3

rms noise power (mW)

0.005

T T

1 1 !
10 20 30 40 50 60

Probe power (mW)

0.001

o—r
i
Il

FIG. 3. rms noise power as a function of probe power for
Q7r=0. The experimental data points (triangles) follow a
square-root dependence on the probe power (solid curve) as pre-
dicted from Eq. (7). The single data point on the ordinate gives
the rms noise power measured in the absence of the probe beam
as discussed in connection with Eq. (8).
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where ( P,(L)) is the average power of the noise at z =L.
The factor (kTv) is the Nyquist expression for the
thermal noise power radiated by a channel having a
bandwidth equal to the optical frequency v. Equation (8)
yields a predicted average noise power at zero probe
power of 0.2 uW due entirely to scattered pump light.
The stochastic noise model sampling confirms this result
and gives an rms power of 0.28 uW. The rms noise
power was measured at zero signal power by blocking the
probe. The result of this measurement (1.8 uW rms) is
represented by the single data point appearing on the or-
dinate of Fig. 3. At this low-noise level, the discrepancy
between theory and experiment is much greater than for
the previous comparisons made with the probe beam on
and most likely due to extraneous sources of noise being
present in the measurement.

The results described in this Rapid Communication ap-
ply to the thermal noise limit (Q << kT /#) typical of slow
media having large nonlinear optical coefficients. In this
limit the maximum frequency difference Q is limited by
the medium response time and quantum noise effects,
which can be dominant for Raman amplifiers [11], may
be neglected. Excellent agreement between experiment
and theoretical calculations based on the stochastic mod-
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el of thermal light-scattering noise has been obtained. A
future paper will extend the theory to fast response
media, for which ) is comparable to or greater than
kT /#, in a unified treatment of quantum-thermal noise.

Note added. After our experiments had been complet-
ed, a paper by Sternklar, Glick, and Jackel examined
noise limitations for Brillouin two-beam coupling [12],
which also confirms a number of predictions from Ref.
[5]. In addition to the focus on Brillouin two-beam cou-
pling, two important differences between Ref. [12] and
the present study are the following: (i) Ref. [12] does not
treat the dependence of noise on the frequency difference
between the two beams, and (ii) it does not treat the noise
fluctuation term proportional to our ay, but only the
term proportional to our a3 that does not vanish on time
averaging.
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