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Generalizing a recent theoretical result obtained by Freyberger and Schleich [Phys. Rev. A 47, R30
(1993)], we show that the phase-measurement scheme proposed and realized by Noh, Fougeres, and
Mandel [Phys. Rev. Lett. 67, 1426 (1991);Phys. Rev. A 45, 424 (1992)] amounts to measuring the Q func-
tion for the light under investigation, provided the reference beam (used for homodyne detection) is a
very strong coherent field so that it can be described classically. The desired phase distribution follows
from the Q function by averaging over the field amplitude. Since an analysis of an earlier proposal by
Bandilla and Paul [Ann. Phys. (Leipzig) 23, 323 (1969)] to measure phase distributions via amplification
led to just the same result, a perfect physical equivalence of those two approaches has thus been estab-
lished.

PACS number(s): 42.50.Wm, 03.65.8z

I. INTRODUCTION II. WHAT IS MEASURED'P

The quantum-mechanical description of phase by in-
troducing a Hermitian phase operator [1] or, equivalent-
ly, phase states with correct orthogonality properties
suffers, apart from the fact that this problem could be
solved in a perfectly satisfactory way only by resorting to
a finite-dimensional Hilbert space [2], from the lack of
any prescription for an actual phase measurement, even
in the form of a gedanken experiment. So, in order to
make contact with reality, one will have to turn the
tables: One will first devise an experimental scheme for
measuring phase properties, thus giving an operational
definition of phase, and afterwards search for the proper
quantum-mechanical description of the experimental pro-
cedure. In 1969, such a program was first carried out
successfully by Bandilla and Paul [3], who proposed to
amplify, with the help of a laser (or parametric) amplifier,
the microscopic field to be investigated to a macroscopic
level, where classical phase measurement techniques
could readily be applied. Fifteen years later Shapiro and
Wagner [4] analyzed a heterodyne-detection scheme,
which allows simultaneous, however noisy, observations
of both the phase and the squared amplitude of a signal
field.

Only recently, Noh, Fougeres, and Mandel [5] pro-
posed and, moreover, realized a different experimental
scheme based on homodyne detection. The basic idea,
well known from classical optics, is to "duplicate" the
signal beam by means of a semitransparent mirror and to
measure sing and cosP separately on the reflected and the
transmitted beam [6].

It has been shown [7,4] that both the proposals by Ban-
dilla and Paul [3] and Shapiro and Wagner [4] amount to
measuring the Q function for the signal field. Moreover,
Freyberger and Schleich [8] succeeded in demonstrating
that the same holds true for Mandel's scheme [5], provid-
ed the reference beam used for homodyne detection is
very strong, for the special case of coherent signal fields.
In the following we will show that this result is, in fact,
quite generally valid. x, =2 '"(x,+x, ), x, =2 '"(—x, +x, ) (2)

Following Mandel's proposal [5], we study the experi-
mental scheme sketched in Fig. 1. The signal beam is di-
vided, with the help of a lossless SO:50 beam splitter, into
two parts. On each of them a homodyne measurement is
carried out, whereby the reference beams differ in their
phases by m/2. We will assume that the reference beams
are very strong, compared to the signal field, coherent
fields, so that the observed phase properties actually
reAect features of the signal field not distorted by the
reference fields.

This assumption allows us to describe the reference
fields classically, which drastically reduces the mathemat-
ical effort needed. In fact, the homodyne measurements
on the split beam, in those circumstances, are nothing but
measurements of the two field quadrature components x
and p, respectively. So the essence of Mandel's scheme is
as follows. Since x and p do not commute, it is impossi-
ble to measure them simultaneously on the original field.
However, one can measure them separately on the two
beams emerging from the beam splitter. The price to be
paid for this is the introduction of undesired additional
noise in the process of beam splitting: Formally speak-
ing, vacuum fluctuations are entering the unused port of
the beam splitter.

Let us now describe the experiment in the quantum-
mechanical formalism. Since the description of the ac-
tion of a (lossless) beam splitter takes its simplest form in
the x representation, we will use the latter. We thus
characterize the incident signal field by a wave function
tb(x, ) and the vacuum field entering the second port, as is
well known, by the wave function

lb„,(x2)=m. ' exp( —
—,'x2) .

The wave function for the outgoing fields lb, „,(x3,x4) is
then obtained from that for the incoming fields
1b;„(x„x2)=t)'r(x,)g„,(x2) by rotating the (x„x2) plane
by rr/4 [9], i.e., by substituting
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the scalar product of the Glauber state a & and the signal
field g for a=x3+ip4 .In fact, in the x representation
this scalar product reads [cf. Eq. (17) for s =1]

&aIQ&=m. '~ f g(x)exp( —
—,'[x —2' g]

i 2—'"gx )dx,
vacuum
gvac(&2)

entangied state
@(X3,X4)

measurement
of 23

FIG. 1. Experimental scheme for a simultaneous, however
noisy, measurement of the two quadrature components of the
field via homodyne detection with strong coherent fields.

in P;„(x„x2). This means that i',„,is simply given by

g „,(x3 X4) T/l(2 [X3+X4])

where we have put

a=g+ig .

Substituting here

X=2' x

gives us

&aIQ& =n. ' 2 ' f P(2 ' X) exp( —
—,'[X —2g]

i r)X)—dX,
and the new substitution

X'=X—
g

leads to

(9)

(10)

(12)

Xg„„(2 '~ [x4 —x3]) . (3)

Note that this wave function describes an entangled state
in general.

Since we want to measure x3 and p4, it is advantageous
to Fourier transform the wave function (3) with respect
to x4, i.e., to form the integral

4,„„(X3,p4)=m. '~ (2m) '~ f g(2 '~ [x3+x4])

&aIq& =m '"2 '"exp( igg}—
X 2 '"X'+

X exp( —,' [X' —g] —i gX'—)dX' . (13)

With the identifications g =x 3, q =p4 the integral
occurring here is indeed identical to that on the right-
hand side of Eq. (4). Thus we arrive at the following rela-
tion:

X exp( —
—,
' [x,—x 4 ] )

Xexp( ip4x4)dx4, —(4)
i(x3,p4)= ir ' exp(ip4x3 )& aI (i (14)

where Eq. (1) has been observed.
Now, it is well known from the statistical interpreta-

tion of quantum mechanics that the modulus squared of
the wave function (4) gives us just the probability distri-
bution for the joint measurement of x3 and p4,

w(x3 p4)=I ..i( 3 p4)I'

Introducing here polar coordinates

x 3 p cosy, p4 =p sing

(5)

(6)

and averaging over p, we find the phase distribution

w(q&) = t w(x3 =p cosy, p4=p sing)p dp, (7)
0

the knowledge of which enables us to calculate any ex-
pectation value that rejects phase properties, e.g.,
&cosy&, &sing&, &cos y&, etc.

Almost needless to say, the experimentally determined
"phase-space distribution" (5), in fact, contains more in-
formation than the phase distribution (7); in particular,
the amplitude distribution is found from Eq. (5) by
averaging over the phase.

Let us now have a closer look at the right-hand side of
Eq. (4). It is easy to show that, apart from a normaliza-
tion constant and an irrelevant phase factor, it is equal to

Observing Eq. (5) and noticing the definition of the Q
function for a pure state f

Q(a)=~ 'I&alp&l',

we thus find from Eq. (14) the simple relation

w(x3, p4) =Q(a=x3+ip4),

(15)

(16)

which, in fact, has already been derived for the special
case of an incident coherent field [8].

One learns from the quite general result (16) that
Mandel's measuring procedure [5], when not restricted
from the beginning to the study of phase properties,
amounts to measuring the Q function of the signal field.
Since the same holds true for the measuring schemes pro-
posed by Bandilla and Paul [3„10] and by Shapiro and
Wagner [4], we can state that all three approaches are
perfectly equivalent. In particular, they lead, according
to Eq. (7), to identical (measured) phase distributions,
despite the large differences in their experimental setup
and the physical processes involved. It should be no-
ticed, however, that they actually share the common
feature that undesired additional noise is introduced ei-
ther by beam splitting or by amplification.

At first sight, one might find it surprising that those
different sources of noise should give rise to precisely the
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same enhancement of phase (as well as amplitude) fluc-
tuations, compared to the "true" fluctuations present in
the original field according to the phase operator concept
[2]. It should be noted, however, that formally amplifier
and beam-splitter noise share a common property: Both
of them enter, in the form of Langevin forces, the
quantum-mechanical equations of motion in just such a
way as to preserve the quantum-mechanical commutation
relations for the photon creation and annihilation opera-
tors in the course of interaction, either with the beam
splitter or the amplifying medium. From this argument,
one may actually find the equivalence of all operational
definitions of phase discussed so far quite natural.

III. EXAMPLES OF MEASURABLE
PHASE DISTRIBUTIONS

A. Squeezed states

Q„„„(a)=fr 'I &riIa) I

'exp( —
I
a I')

I
a I'"/n! . (24)

Obviously, it is independent of the phase; hence the cor-
responding phase distribution is constant. This is just
what one expects, since there are no distinguished phases
in a Fock state.

IV. DISCUSSION

The Q distribution is more strongly smeared out than
the Wigner distribution (both are Gaussian convolutions
of Glauber's P function, the width of the Gaussian, how-
ever, being greater by a factor of 2' in case of the Q dis-
tribution [12]). As a result, the widths of the two margin-
al distributions for x3 and p4, respectively, following
from the Q function (16), satisfy the inequality [13]

As is well known, in this case the wave function reads
[11] Ax36p4 1 (25)

g, (x)=(s/rr)'~ exp ——[x 2'~ g]—+i2' r)x

(17}

instead of Heisenberg's sharper inequality

AxiAp) (26)

where g and r) characterize the displacernent and s is the
squeezing parameter. From Eq. (17) the Q function is
readily calculated,

Q,~( aq+ip ) =2m 's'~ (s+ 1)

X exp — (q —g)
2$2

$+1

(p —ri)' '

$+1 (18)

Introducing now polar coordinates

q =p cosy, p =p sing, (19)

and forming the average (7) over p, we arrive at the result

w(q)=m 's'"(s+1) 'u

X expI —4s(s+1) u (/sing —r) cosy) J

Xf(v/u), (20)

where the following abbreviations have been introduced:

u =2(s+1) '(s cos p+sin qr},

v =2(s + 1) '(sf cosy+ r) sing),

f(x)=exp( x)+n' x [1+er—f(x)] .

(21)

(22)

(23)

B. Fock states

For these states the Q function reads

Equation (20) includes as special cases the squeezed vacu-
um (/=0, ran =0) and the Glauber state (s = 1).

valid for the signal field. Accordingly, the phase distribu-
tion obtained from the Q function by averaging over p
will be broader than the "true" one following from the
phase operator concept [2].

Finally, we would like to mention that the problem of
simultaneously measuring a pair of canonically conjugate
variables has, in fact, a longer history. It was first tackled
by Arthurs and Kelly [14], and recently their approach
was followed up by Braunstein, Caves, and Milburn [15].
It is to the credit of Stenholm [13] to have elucidated the
physical content of those papers and to have given the
mathematical formalism an admirably transparent form,
thereby establishing the connections with related work by
Husimi [16] and himself [17]. The proposed measure-
ment process, thus far discussed only theoretically, con-
sists in instantaneously coupling, via a suitably chosen
nonlinear interaction, the system under investigation to
two "meter systems, " which are read out after the in-
teraction. It turns out [13] that also with such a setup
the Q function of the signal is measured, provided op-
timal conditions (corresponding to equal resolution in the
measurement of the two conjugate variables) are chosen.
Moreover, the Q function was recently shown [18] to be a
special case of the quantum-mechanical propensity [19],
corresponding to the choice of the reference state as the
vacuum state and of the phase-space "motion" as
Glauber's displacement operator.

So the result found in the present paper fits very well
into a, as it seems, quite general context. What can be
measured, at best, in any attempt to obtain information
on the simultaneous values of two conjugate variables, is
apparently the Q function.

To summarize, we have demonstrated that the experi-
mental scheme for phase measurement recently proposed
and realized by Noh, Fougeres, and Mandel [5] quite gen-
erally amounts to measuring the Q function for the signal
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field under investigation, provided the coherent reference
fields are very strong compared to the signal field. We
have thus succeeded in generalizing a special result by
Freyberger and Schleich [8].

Note added. Recently we became aware of a paper by
Y. Lai and H. A. Haus in Quantum Opt. 1, 99 (1989), in
which beam splitting, combined with homodyne detec-
tion, was shown to be a practical means of measuring the

Q function. However, those authors did not establish a
connection between their result and phase measurement.
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