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Restless optical vortex
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We describe a phenomenon of nonlinear optics that occurs in the framework of transverse effects and

optical vortices in lasers. We find that in a class-B laser vortices can never be at rest, but move, starting
from an initial symmetry breaking of the direction of motion, continuously. In a cylindrically symmetric
laser this motion will normally be about the laser axis, while in a constant background the motion is
toruslike.

PACS number(s): 42.65.—k, 42.60.Jf, 61.72.Lk

The phenomenon of "optical vortices" or "phase
singularities" has recently been predicted [1], observed
experimentally in lasers [2], and studied in some detail
[3,4], in particular with respect to the particlelike behav-
ior of the vortices and their interaction. Equally, the
analogies of laser vortices with superAuid vortices, mag-
netic fIux lines in superconductors, and with normal Auid
vortices have been studied [5]. These studies have
predominantly treated cases of class-A lasers; i.e., lasers
with material variables that are eliminable, since these
lasers' equation shows the most direct relation to the
complex Ginzburg-Landau equation, which permits us to
explain the above analogies.

In an attempt to test the analogy of "optical vortex
crystals, " i.e., ordered arrays of vortices observed in
lasers [6,3], with real crystals or Abrikosov lattices in su-
perconductors, we searched for lattice vibrations ("pho-
nons") in the vortex crystals. The search failed for class-
A lasers (predictably since all time derivatives are nega-
tive [7] and the system is consequently overdamped). We
1ooked then to class-B lasers where we felt the chances
for finding lattice vibrations were higher —given the ex-
istence of relaxation oscillations in these lasers.

A numerical study revealed a somewhat surprising
phenomenon: not only were arrays of vortices found to
show vibrations in the lattice, but it was also found that
this vibration is (i) undamped and (ii) accompanied by a
rotation of the array as a whole. For illustration Fig. 1(a)
shows the arrangement of vortices studied numerically.
The structure consists of two positive and two negative
vortices forming a quadrangle (a.k.a. the "optical leo-
pard" [3]). The pattern Fig. 1(a) was photographed with
a Na2 laser (a class-A laser, which does not show the
motion of vortices discussed) tuned to the transverse
mode family q =2 [8]. We expected to find a damped os-
cillation of the mutual distances of the vortices following
a perturbation of a laser parameter (e.g. , the laser pump).
Instead, the motion shown in Fig. 1(b) is found numeri-
cally. In the calculations it is assumed that only the
mode family q =2 is excited (as it can be realized, e.g., in
a CO~ laser, a typical class-8 laser). The motion consists

of an oscillation in the radial direction accompanied by
an initially accelerated angular motion. The angular
motion in particular appeared difFicult to explain. A
closer consideration, however, reveals that this motion is
a special case of what we would like to call "wandering"
vortices characteristic of class-8 lasers.

This phenomenon is explained as follows: Fig. 2(a)
shows the optical field in the vicinity of the vortex. Near
the vortex center the field is small or zero, resulting in the
absence of stimulated emission here. As the inversion
does not decay in the absence of an optical field (since the
corresponding relaxation rate y is small in a class-8 laser)
an inversion maximum builds up at the location of the
vortex. This "excess" inversion forms an unfavorable
state of the laser, since the attainment of a state of
minimum free energy requires that this inversion be radi-
ated away by stimulated emission (i.e., the laser tends to
avoid, as usual, the "spatial hole burning"). One way to
achieve this would evidently be to build up a field at the
vortex core; however, as the vortex is stabilized by topo-
logical constraints (as any defect), this is impossible. In
principle the vortex could transform into a dark line. In
an infinitely extended background field the energy re-
quired to transform the vortex is infinite. For a laser of
finite dimensions the energy required is finite [14]. It
reaches zero only at the laser threshold. The option the
laser has to reduce the excess inversion is not to destroy
the vortex, but to displace it, which does not require en-

ergy, so that the high field outside the vortex core comes
to coincide spatially with the inversion peak, which can
then be reduced by the stimulated emission of that field.

Evidently, after being displaced, the vortex builds up
immediately a new peak of "excess" inversion at its new
core location, which then calls for a further displacement
of the vortex. It is clear, then, that the vortex motion has
to go on forever. Figure 2(b) depicts the relative location
of field vortex and inversion maximum while the vortex is
moving. We note that this motion has at its roots the to-
pological stability of the defect and can thus only occur
in a greater than two-dimensional system. It can also
only occur in class-B lasers since it requires the slow
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spontaneous decay of the inversion. Due to the spatial
symmetry of the vortex there is no preferred direction for
the initial vortex motion. This means that the motion
has to start with a symmetry breaking.

In the case of Fig. 1, where circular symmetry of the
laser is assumed and where radial restoring forces and
drift forces [5] give a stable distance of the vortices from
the laser axis, the essential motion is azimuthal. Whether
the motion occurs right- or left-handedly depends on the
initial symmetry breaking. Both can occur. It appears
that the oscillation of the vortices in the radial direction

FIG. 2. Electric-field modulus (solid line) and population in-
version (dashed line) corresponding to a stationary (a) and mov-
ing to the right (b) vortex, on the axis along the direction of vor-
tex motion. The changes of field and inversion connected to
vortex motion are shown by arrows.
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in Fig. 1(b) is driven by the azimuthal motion.
From the above one can make predictions on the be-

havior of vortices in a class-8 laser of homogeneous
transverse distribution of parameters. Here, the vortex is
free to move in two dimensions. Thus its motion has to
start with a symmetry breaking that chooses a direction
out of all the possible directions of motion (angle 0—2m).
One can also predict that the direction of motion will
change under external influences; thus the direction can
undergo a random walk in the presence of noise in the
course of time in the same way as the phase diffuses in
lasers. Effectively this means that, under the inAuence of
noise, the vortex will "meander" around the plane.
Therefore we believe that the "restless" vortex reported
here is related to the "meandering vortex*' described in
[9], where the equations bear some similarity to class-B
laser equations and to Winfree's "meandering rotor" [10].

We have studied the vortex motion in an infinite two-
dimensional plane numerically. The equations are
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FIG. l. (a) Photograph of the structure investigated. Two
vortices with positive topological charge and two negative ones
form a quadrangle as radiated by a Naz laser [3]. (b) Location of
the zeros of the four vortices calculated for equidistant points in
time. An azimuthally accelerated oscillatory motion is observed
(mode family q =2). The parameters used for the calculation
are y&

=3.3, yI~
=Or 033, and Do =6. y~, y

~~

are normalized to the
resonator decay time sc, Do is the pump above threshold, and the
pump profile is plane.

Here E(r, t) and D(r, t) are the two-dimensional en-
velopes of electric field and population inversion, Do is
the population inversion in the absence of radiation,
D,h

= 1+p is the threshold population inversion, y is the
population inversion decay rate, and p is the detuning
from resonance (both y

~~

and p are normalized to the pho-
ton decay rate «); the spatial coordinates were normalized
to make the diffraction constant d in the diffraction term
equal to 1. As the polarization relaxation for class-B
lasers is much faster than that of the other variables
(y~))1))y~~), the polarization is adiabatically eliminat-
ed from the Maxwell-Bloch equations to obtain (1).

The system (1) was numerically integrated. The pump
function Do was homogeneous in space, and periodic
boundary conditions were used (care was taken to ensure
that the boundaries did not inhuence the observed
dynamical behavior). The vortex was set in motion by a
small perturbation of the field phase in the vicinity of the
vortex core.

Figure 3 represents the trajectory of the electromagnet-
ic field zero. It is seen from Fig. 3 that the direction, in
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FIG. 3. Vortex motion obtained by numerical integration of
Eq. (1). The circles represent the positions of the electric-field
zeros at equidistant time intervals ht =5. The trajectory was
interrupted after 80 snapshots and continued after 200
snapshots (divided by eight circle periods). The parameters are
1 rr

=0.05 Do =2, and P=O. The circle radius is r = 13.

which the vortex starts to move, is given by an initial
symmetry breaking. After a long transient of toroidal
motion the vortex trajectory is found to become circular.
Toroidal motion of the vortices has also been observed in
the mode expansion calculations of the laser [11]. Ap-
parently the rotary element of the motion is related to the
fact that the vortex itself is a rotating object. (The vortex
with the opposite topological charge circles in the oppo-
site direction. ) The difference between Figs. 3 and 1(b) re-
sults primarily from the finite and circular geometry of a
realistic laser shown in Fig. 1(b) and the realistic restric-
tion to the excitation of one mode family. However, for
parameters different from Fig. 1(b), toroidal motion simi-
lar to Fig. 3 can also be obtained [11]in this mode family.

Figure 4 shows the electric field and population inver-
sion configurations near the core of the vortex moving
along a circular trajectory. It is characteristic that the
shapes of the population inversion peak and the electric
field well are significantly "squeezed" in the direction of
motion, and their centers are displaced with respect to
one another along the same direction.

The detailed characteristics of the circular motion will
be reported elsewhere. Here we note that the radius of
the trajectory circle is comparable to the radius of the
vortex core (usually slightly larger) and the frequency of
the circular motion is proportional to and of the same or-
der of magnitude as the frequency of the laser relaxation
oscillations. (Our numerical integrations show circular
motion frequency being by a factor of 7 or 8 smaller than
the relaxation oscillation frequency. )

While the radius of the vortex circle was found to be
uniquely determined by the system parameters (mainly by
P, yrr, and Do), the circle location was very sensitive to
external perturbations, and even slight perturbations of
the field or of the boundary conditions caused the vortex
circle to drift. This could explain the slow angular com-
ponent of the toroidal motion in [11]. (We suspect that
this is the reason why in [9] "meandering" of the vortex
was reported instead of a circular motion. )
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FIR. 4. Iso-lines of the electric field (solid lines) and popula-
tion inversion (dashed lines) of a moving vortex. The parame-
ters are as in Fig. 3. The direction of motion is indicated by the
arrow. The approximate half axes of the 0.5-level line ellipse of
the electric field are 5 and 7.5; the distance between the electric
field and population inversion ellipse centers is Ax =4.

Finally we mention possible relations of the vortex
motion described here with similar observations in other
fields. In [12] it is mentioned that an entire spiral flow
pattern in a circular convection cell is set in uniform ro-
tation by the presence of one defect in the spiral pattern.
Slowly rotating intensity patterns have been observed in
CO& lasers —typical representations of class-B lasers
[13]—and it was even observed that the rotation of the
pattern sometimes reversed itself after the laser emission
was blocked.

We think that the speed of vortex motion in the class-8
laser will attain an asymptotic value of the order of the
ratio of vortex radius and the "hot" (that is, in the pres-
ence of stimulated emission) laser medium inversion life-
time. We mention for distinction that the wandering vor-
tex described here is unrelated to the phenomenon of the
"spinning vortex" in a recently reported class-A laser
[11,4]. The latter is a motion related to a mode spacing
and occurs consequently on a nanosecond time scale.

The phenomenon of the "restless vortex" appears in-
teresting to us since it constitutes a clear case in which
dynamics occurs not because the system "knows what it
wants" (e.g. , to reach a stable fixed point) but because the
system "knows only what it does not want" (namely, for
the vortex to remain at its current location). We think
that it thus particularly simply captures the essence of
chaotic system dynamics.
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