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Circular Rydberg orbits in circularly polarized microwave radiation
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Using classical dynamics we analyze the ionization of the maximum angular-momentum circular Ryd-
berg orbits of the hydrogen atom in strong circularly polarized microwave radiation. We find the ioniza-
tion threshold generally higher than that for the static field, depending upon the direction of rotation,
and in some cases completely different than the prediction based upon the above barrier escape. Below
the ionization threshold the system returns to its initial state after interacting with the smooth mi-

crowave pulse.

PACS number(s): 32.80.Rm, 42.50.Hz

While interaction of atoms in Rydberg states with a
linearly polarized microwave field has been studied in de-
tail both theoretically [1] and experimentally [2], the cor-
responding process in a circularly polarized microwave
field has, so far, received little attention. In a recent
Letter [3] the first experimental measurement to our
knowledge of the threshold field for ionization by a circu-
larly polarized field was reported. The threshold field,
higher than that for the linearly polarized field, scaled
with the principal quantum number in a way characteris-
tic of the classical dynamics and was very close to the
value expected for the onset of the field ionization in a
static field (E = 1/16n ). In a brief Comment [4], Nauen-
berg argued that a simple application of the constant of
motion, characterizing the motion in the frame rotating
with the field, predicts the threshold field dependence on
the frequency and, contrary to the experiment, it quickly
decreases with growing frequency. In another recent pa-
per, using a classical phase-space averaging method [5],
Griffiths and Farrelly [6] confirmed the experimental ob-
servation [3] that the departure from circular polariza-
tion towards elliptic polarization quickly decreases the
threshold field. In Ref. [7] the existence of the approxi-
mate constant of motion has been demonstrated, which
helps to label the eigenstates of the quantum Hamiltoni-
an.

In the present paper we examine in some detail the
classical dynamics of the Rydberg state in the circularly
polarized microwave field. We confine our attention to
the maximum angular-momentum circular orbits placed
in the polarization plane. Hence, the problem is merely
two dimensional. There were some earlier studies of the
classical dynamics for this case [g]. For the most part the
different points of the phase space of the orbit are
equivalent and minirnurn attention needs to be paid to the
phase-space averaging. And yet, even this simple prob-
lem has many unexpected features.

Our starting point is simply a Newton equation for the
electron moving under the inAuence of the Coulomb
force and the force of the microwave field of amplitude E
and frequency co. We use atomic units:

x= , +E cosset,

I

y'= — +co y' —2cox' .
r 3

These equations have an obvious constant of motion:

(x' +y' ) 1 Ex ——co l'
2 7"

(2)

Hence, in spite of the nonpotential Coriolis force, the ini-
tial conditions for which the constant 6 has its value
below the saddle point of the potential V(x ',y '),

V(x', y') = —— Ex' ,'co r——— (4)

generate trajectories which are confined to the interior of
the potential and will never be ionized.

So far we just followed Ref. [4] but now we depart
from that reference. Suppose we deal with a circular or-
bit of the Rydberg type, of principal quantum number n.
Its energy is E„=—1/2n . Transforming the initial con-
dition, the constant @ is

E co + Ecosg
2 E„l

where y is the difference between the initial phase of the
field and the phase of the motion on the orbit at the ini-
tial moment. If the frequency of the applied field, co, is
positive, we deal with the electron moving in the same
direction as the field. Negative cu describes the situation
of the two motions in opposite directions. It is easy to

y = — +E sin&at .
r3

We then transform our equations to the noninertial frame
rotating with the frequency of the field and in the same
direction as the field,

Ix'= — +E +co x'+2coy',
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see why (for positive co) the electron sinks deeper into the
potential well (sign of the second term). This is because
in the rotating frame it moves slower, hence its kinetic
energy is smaller but its (negative) potential energy is the
same since the distance from the nucleus has not
changed. It makes the sum smaller.

In most cases, we introduce the excited Rydberg atom
into the field. Hence we deal with smooth pulses. So in
the initial moment the field amplitude is zero and the ini-
tial value of our constant of motion has no contribution
from the last term in (5) and is independent of the point
on the orbit. So the initial value of the constant charac-
terizes the whole orbit.

Now we may apply the saddle-point criterion. All or-
bits with constant 8 below the rim of the potential are
confined. This way we get the dependence of the thresh-
old field on the applied frequency represented by a solid
line in Fig. 1. The threshold field at zero frequency is of
course 1/16n (in figures we omit the Coulomb scaling
dependencies on the principal quantum numbers, so the
field should be divided by n" and the frequency by n ).
For positive frequencies it grows a little and then tends to
zero at Kepler frequency I/n . For negative frequencies
it goes to zero very quickly and reaches zero at the fre-
quency which is only —,

' of the Kepler frequency. The re-
sulting dependence differs fr'om the one obtained in [4].
The difference is caused by the second term in the formu-
la (5) which is present because we deal with the circular
orbit.

But physics is somewhat more complicated since we
deal with pulses. Fields are time dependent making 6'

time dependent. To account for that we have performed
a series of computer runs of the original Newton equa-
tions (1) for the smooth pulse with the envelope given by

f (t) =sin
T

(6)

where T is the duration of the pulse. The results of these
runs are indicated as black triangles in Fig. 1. The obser-
vations may be summarized as follows.
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(i) For the whole range of frequencies studied, the
threshold intensity for the smooth pulses is higher than
predicted by the saddle-point estimate.

(ii) If the length of the pulse is sufficiently long, then
the threshold field is independent of the initial point on
the orbit and of the duration of the pulse. We tested it
using up to 100 randomly chosen phases. The system
behaves adiabatically. Even very short pulses are adia-
batic. In fact almost all triangles in Fig. 1 correspond to
pulses lasting only 100 Kepler periods. There are two ex-
ceptions. At the frequency —0. 1 we needed 200 Kepler
periods and at —0.05 we needed 400 Kepler periods to
get the phase-independent result. At this frequency it is
only 20 cycle pulses. The case of static field viewed from
the point of our numerical experiment is fairly singular
especially when approached from negative frequencies.
Obviously the notion of an adiabatic pulse has to break
down for sufficiently small frequencies. Indeed, at zero
frequency we got different threshold fields from different
points in the phase space. This case would need a
genuine ensemble average. However, it corresponds to a
separable Hamiltonian and has been studied in detail in
the past [9]. Diff'erent points of the given energy mani-
fold in the phase space indeed ionize at different field
strengths with the highest threshold field equal to 0.38.
Note that outside of the region of static field we find that
the whole realizable classical orbits have the same escape
thresholds [14] but also that for the negative frequencies
this threshold exceeds the maximum threshold field for
the static electric field.

(iii) We also studied in some detail the dependence of
the threshold field on the pulse shape. For the positive
frequencies we find the results hold also for the tra-
pezoidal shape pulses lasting 100 Kepler periods with
10% rise time 80% of constant amplitude and 10% fall.
However, for negative frequencies such pulses at the
same length are not adiabatic enough and considerably
lower thresholds are obtained.

The further analysis is very different for the positive
and negative frequencies. To explain this we looked at
the time dependence of O'. lt is shown in Fig. 2. As we
see, this "constant" changes smoothly and slowly for the
nonionizing trajectories. In fact for positive frequencies
6 is pulled deeper into the potential. The broken lines
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FICx. 1. Threshold amplitude of the microwave field for the
ionization of the circular Rydberg orbit as a function of the fre-
quency. The solid line represents the application of the saddle-
point argument. The triangles mark break-up points for the
sine square pulse. Note the dramatic difference between posi-
tive and negative frequencies. There are no data at co=0 be-
cause different points on the orbit ionize at different field in this
case. There are also nonionizing trajectories for frequencies
greater than 0.4 above triangles.
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FIG. 2. Adiabatic change of D(t) for the sine square pulses.
The duration of the pulse was 100 Kepler periods, the peak field
was 0.1. Compared are cases of co=+0. 1: (a) the negative fre-
quency, (b) the positive one. Note the opposite signs of the vari-
ation. Dashed lines represent the approximate formula (7).
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represent a simple adiabatic approximation to 6'(t):

co co Ef (t)
&2[@„]

This neatly explains why the orbit can withstand stronger
fields than that predicted by the saddle-point argument
for the cw field. In fact the threshold field for pulses
agrees with taking the minimum value of 6 just below the
escape point and using it for the saddle-point argument.
Consistent with the above is the finding that the thres-
hold field for the square pulses is almost identical with
the constant field predictions represented by the solid line
in Fig. l.

The picture gets more complicated in two regions: for
the field frequency approaching the Kepler frequency, the
threshold field rapidly grows exhibiting the classical reso-
nance. This region is likely beyond the validity of the
classical picture and need not exhibit the same properties
in quantum simulations. Much more surprising, howev-
er, is the dramatic increase of the threshold field or even
very small negative frequencies. Moreover, A(t) is grow-
ing during the pulse, as shown in Fig. 2, so the threshold
field in this case has nothing to do with the saddle-point
argument. Also for negative frequencies this argument
does not predict correctly the behavior of the system in-
teracting with the square pulse. This is all at frequencies
much smaller than the Kepler frequency, where the clas-
sical equations are generally considered to describe
correctly the dynamics of the atomic system.

To get more insight into the dynamics we looked at the
dependence of the final state on the peak amplitude of the
field. The typical results are those in Figs. 3(a) and 3(b)
where we have plotted the final energy and the final dis-
tance of the electron for the frequencies +0. 1 and some-
what longer pulses of 400 Kepler periods or 40 field
periods. Below the threshold the initial circular orbit is
regained with a remarkable accuracy. Note that both
threshold amplitudes are the same as in Fig. 1, where we
have used a shorter pulse. They are both considerably
higher than for the static field. The one for negative fre-
quency is more than a factor of 5 larger. It means that
the atom withstands without any effect a short pulse with
the peak strength of about 40% of the Coulomb field.
The very precise return to the initial state agrees with the
conjecture [3] that according to quantum mechanics,
below the threshold the system goes during the evolution
adiabatically over a single eigenstate of the coupled Ham-
iltonian in the rotating frame.

To summarize, we find that, unlike in the case of the
linearly polarized field (and also the static field), all points
of the circular orbit of the Rydberg level become unstable
at the same field amplitude of the circularly polarized
low-frequency smooth pulse. Defined this way threshold
amplitude depends dramatically on the angular momen-
turn of the orbit. On an example of the maximum
angular-momentum circular orbits we showed that if the
electron rotates in the direction opposite to the field, the
simple saddle-point argument does not work. The ioniza-
tion threshold in this case is much higher if the ionizing
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FIG. 3. Final-state energy (a) and final distance from the nu-
cleus (b) for the interaction of circular orbit with the 400 Kepler
periods with long pulses of varying peak amplitude. Note that
below the ionization threshold the initial values ( —0.5 and 1)
are reproduced with great accuracy. (a) is the negative frequen-
cy (above the threshold is numerically unstable), (b) is the posi-
tive frequency.
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pulse is sufficiently smooth. In fact, it exceeds even the
highest threshold amplitude obtained for the static field.
We also showed that below the ionization threshold the
system returns exactly to its initial circular orbits.

Triggered by the present results, quantum-mechanical
calculations have just been completed [10]. They yield
results which are qualitatively similar to the classical
ones. In particular the strong asymmetry between the
positive and negative frequencies is observed with much
higher threshold for the negative frequencies.

It would be interesting to test the above predictions in
the experiment. In fact several schemes have been pro-
posed to produce the circular Rydberg states [11] and
some of them were even successfully implemented [12].

It is also worth noting the similarity of the results of
this paper to the results obtained for the dependence of
the, so-called, appearance intensities on the frequency for
a multiphoton ionization of atoms by a powerful circular-
ly polarized laser field [13].
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