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This paper prescribes an orbital construction of the exact local effective potential in the Kohn-Sham
self-consistent equations, so that from a given electron density the corresponding exact Kohn-Sham po-
tential and orbitals may be found self-consistently. It also shows the convergence of the method if the
system is u representable.
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In the Kohn-Sham formalism [1] of density-functional
theory [2], the ground-state electron density n (r) of an
interacting system with external potential v,„,(r) is deter-
mined self-consistently from the equations (in atomic
units throughout the paper)

[ —2V +w(r)]&p, (r)=s, y, (r),
w (r) =v,„,(r)+ vH(r)+ v „,(r), (2)

(3)

vH(r) = f d r'
Ir —r'I

Here

(4)

n (r)=glq;(r)l',

where the sum is over the X lowest occupied orbitals.
All we need to know to implement calculations with

these equations is the universal exchange-correlation po-
tential v„,(r), which is defined as the functional deriva-
tive of the unknown exchange-correlation energy density
functional E„[n]. However, an orbital construction of
v„,(r) may work equally well, since in the course of the
self-consistent Kohn-Sham calculations we always obtain

orbitals before we construct the density. Therefore, a
knowledge of v„,(r), constructed either from density or
orbitals, is sufficient to deduce the ground-state density.

The inverse question, i.e., given a ground-state density
n (r) to find the orbitals and the corresponding effective
potential v„,(r), is also interesting because in some cases
the electron density can be found accurately by Monte
Carlo simulations, by sophisticated traditional quantum-
chemical methods, or by experiment. If one can con-
struct the exact effective Kohn-Sham potential from the
density, one will be in a position to better study known or
new approximations for the exchange-correlation energy
functional (or potential) in density-function theory.

Different approaches have been suggested [3—12,18] to
deal with this problem. Some involve varying the param-
eters in a trial effective potential w (r) to fit a given densi-
ty [3—5], and some involve minimizing the kinetic energy
subject to appropriate constraints [6—8]. In the
exchange-only approximation Talman and Shadwick [9]
found a local effective central potential for spherically
symmetric atoms. Werden and Davidson used the linear
response of the effective potential to the change of density
in a one-dimensional system in an iterative calculation
[10]. Aryasetiawan and Stott solved N —1 coupled
simultaneous second-order differential equations with
care taken to ensure the cusp condition [11]to obtain the
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Kohn-Sham orbitals and the efFective potential [12,13].
All these methods are restricted to a few small systems
like beryllium and neon atoms.

This work presents a general approach for constructing
the exact Kohn-Sham orbitals from a given electron den-
sity. It is related to the iterative procedure of Werden
and Davidson [10] but with the crucial advantage of be-
ing applicable to any real large system up to the size that
can be handled by today's Kohn-Sham computer pro-
grams. It differs from previous works in the following
sense: (i) it imposes no constraint on the form of the
effective potential as we seek it; (ii) there is no additional
parameter such as the Lagrange multiplier which has to
be determined in the calculations; (iii) it is exact and gen-
eral; and (iv) there are no boundary conditions or unoccu-
pied orbitals involved and it is particularly easy to imple-
ment.

Because of the one-to-one correspondence between the
density n (r) and the eff'ective potential w (r) [except for a
trivial additive constant to w (r)] we do not need to know
the detailed structure of u„,(r). If we can find one poten-
tial w (r ) which generates the known density n ( r )

through Eqs. (1) and (5), we will have found the exact
eff'ective potential w(r) and consequently the correct
Kohn-Sham orbitals. [This idea was first used by Willi-
ams and von Barth [14] and Smith, Jagannathan, and
Handler [15] to get U„,(r) for the helium atom within the
Hartree-Fock approximation. ]

We rewrite Eq. (1) as

The density constructed from these orbitals is

Substituting this result into

we obtain

w~(r) =

where

n (r) —n~(r)

g—
tp, (r)*qf(r)1

l l

+w~ '(r),

That is to say,

p()p i()n(r) —n~(r)

g—qf(r)*qf(r)
1

l

Thus

qf(r)'( —
—,'V )Q(r) = [Ef—w~ '(r)]qf(r)'Q(r) .

(10)

(12)

(13)

(14)

(7)

Now equating Eq. (7) to the given density n (r), we find

w(r)=

[ ——,'V +w~ '(r)]Q(r)=E~qf(r) . (9)

To solve Eqs. (1) and (8) we make an initial guess w (r)
for the effective potential w (r) and solve Eq. (1) for the X
lowest orbital energies and the orbitals associated with
them. Then we construct a new effective potential ac-
cording to Eq. (8) using the orbitals and orbital energies
just found. We go back to Eq. (1) with the newly con-
structed effective potential, and repeat the procedure un-
til self-consistency is reached. There results the exact
effective potential w(r) and Kohn-Sham orbitals. From
them will follow the properties of the noninteracting sys-
tem, including T, [n].

Denote iteration numbers by superscripts. Then we
have

This interesting lemm. a implies that during the iterative
process the density n~(r) is constantly compared with the
given density n (r). As long as there is a difference be-
tween them, a new effective potential will result. This
feature will drive the calculations eventually to self-
consistency if a solution exists. When w~(r) =w~ '(r),
n ~(r ) =n (r ), and inversely.

As an example of this method, we have carried out a
simple calculation for the beryllium atom. We used just
six basis functions (two ls-type and four 2s-type Slater or-
bitals) to expand Kohn-Sham orbitals. Employing an ac-
curate density from Esquivel and Bunge [16], we reach a
self-consistency in which we can reproduce the desired
density with an error of 0.002 over the range r = 10 to
10. We compute the kinetic energy and find
T, =14.5947. This is fairly accurate compared with the
result of a more sophisticated calculation [17], 14.5932.

The simple and compact form of Eq. (14) suggests that
the function in the denominator of the right-hand side,
i.e., the quantity

(15)

may be of special interest and worth further studying.
Dr. Zhongxiang Zhou of this laboratory has devised

another, similar procedure by summing Eq. (1) without
dividing by c;.
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In summary, we have found an orbital construction of
the exact effective potential so that the Kohn-Sham self-
consistent equations will decompose a given ground-state
electron density into the corresponding noninteracting
Kohn-Sham orbitals.
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