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Interpretation of geometric phase via geometric distance and length during cyclic evolution
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We cast the nonadiabatic geometric phase in terms of the geometric distance function and the
geometric length of the curve for arbitrary cyclic evolution of the quantum states. An interpretation is

given to the geometric phase as the value of the integral of the contracted length of the curve along
which the system traverses. It is found that for arbitrary cyclic evolution of the quantum states the
geometric phase P(C) acquired by the system cannot be greater than the total length of the curve 1 (C).
We have argued that the geometric phase arises because of the fundamental inequality between the length
of the curve and the distance function. Finally, we have illustrated the calculation of the geometric
phase based on the geometric distance function and the geometric length of the curve.

PACS number(s): 03.65.8z

I. INTRODUCTION

The geometric phase plays an important role in under-
standing some of the outstanding enigmas of quantum
mechanics. Originally the geometric phase was formulat-
ed for adiabatically changing environments [1], in which
the system Hamiltonian H(t) varies very slowly. The
wave function in such systems is an associated instan-
taneous eigenstate of the Hamiltonian and after a cyclic
evolution of the external parameters the state returns to
itself apart from a phase factor. It was Berry who real-
ized that the phase factor is not just the usual dynamical
one, but contains another one which is purely geometric
in nature. The dynamical phase provides information
about the duration of the evolution of the system whereas
the geometric phase reflects the geometry of the circuit
and its magnitude depends on the path, but not on the
rate of traversal of the path. But what significance do we
attach to this geometric phase? As long as the wave
function describes the whole system we know that the
phase factors associated with the state do not matter, be-
cause the physical quantities are determined by the abso-
lute value squared. Berry suggested that this is not so. If
we divide the system into two parts and let the subsystem
undergo a cyclic evolution, then the interference experi-
ments between different parts allow the determination of
the relative phases. In this way the geometric phase
could lead to observable consequences.

Simon [2] interpreted the adiabatic Berry phase as a
consequence of parallel transport of vectors in a curved
space appropriate to the quantum system. He showed
that the Berry phase is an early example of holonomy
that was known to physicists long before differential
geometry. In an important generalization Aharonov and
Anandan [3] removed the adiabaticity condition and
defined a geometric phase for arbitrary cyclic evolution
of the quantum system. This nonadiabatic Berry phase
(AA phase) is the holonomy transformation for parallel
transport around a curve C in the projective Hilbert
space P, with respect to the natural connection given by
the inner product in &. It is also the "area" of any sur-

face spanned by C with respect to the natural symplectic
structure in & determined by this inner product. Soon
after this Samuel and Bhandari [4] showed that the
geometric phase is not akin to adiabatic and nonadiabatic
cyclic evolutions, but it also appears in a more general
context like nonunitary, noncyclic evolutions. In a fur-
ther generalization the AA phase made its appearance in
nonlinear equations governing the classical fields [5].
Geometric phases now abound in many areas of physics,
such as in the Born-Oppenheimer approximation [6], in
the Jahn-Teller effect [7], in the quantum Hall effect [8],
and in understanding anomaly phenomena in quantum
field theory [9]. Recently it was shown that the spin-orbit
interaction arises as a Berry phase term in the adiabatic
effective Hamiltonian for the orbital motion of a Dirac
electron [10]. Many experiments have been performed
and proposed to support the discovery of the geometric
phase.

Turning to the aspect of calculation of the nonadiabat-
ic Berry phases there are three main methods available so
far in the literature. One is the operator decomposition
method of Moore and Stedman [11],where they use the
Floquet theorem for periodic Hamiltonians and decom-
pose the unitary evolution operator into two parts. One
part gives the total phase for cyclic choice of initial states
and the other part, being a periodic one, gives the
geometric phase. It provides a simple algorithm for cal-
culating the nonadiabatic Berry phase. However, this
method is inefficient and is not applicable for general
nonperiodic and time-independent Hamiltonians. The
other two methods employed are the geometrical ap-
proach and the Lie-algebraic approach [12]. In the
geometrical approach the AA phase is expressed in terms
of coordinates of the projective Hilbert space P and can
be written as an integral over one form. In the Lie-
algebraic approach the Hamiltonian of the system is a
member of some Lie algebra and the Berry phase is cal-
culable in a direct way from the Hamiltonian itself.

This paper concerns the interpretation and an efficient
calculation of the AA phase using geometric concepts
such as "distance function" and "length of the curve"
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during arbitrary cyclic evolutions. The Hamiltonian that
describes the system may or may not be dependent on
time and need not even be periodic. All we require is that
the state should be cyclic —a fundamental feature of the
evolution of the system where the final state differs from
the initial state only by a multiplicative phase factor. We
also give an explanation about how the geometric phase
originates during the time evolution of the quantum sys-
tem. The claim by Moore [13] that the Berry phases for
time-dependent and time-independent Hamiltonians have
a different origin seems to be unfounded. In our view the
geometric phases for both types of Hamiltonians have the
same origin, which has a deep topological relation to the
quantum state space. In Sec. II we outline the formalism
that will be used to calculate and interpret the nonadia-
batic Berry phase. There we brieAy define the quantities
such as "geometric distance function, " "geometric length
of the curve, " and, for the sake of completeness, also
define the AA phase. In Sec. III we present three exam-
ples to illustrate the ready viability of this method for cal-
culation of the geometric phase. The first example is that
of a spin- —,

' particle precessing in a homogeneous magnet-
ic field, the second example is that of a two-level atom in-
teracting with external electromagnetic (em) field, and the
third is that of a neutral spin- —, particle in the presence of
a harmonic oscillator potential along with a nonuniform
magnetic field. In each of these cases we calculate the
"geometric distance, " the "geometric length of the
curve, " and utilize these quantities to calculate the
geometric phase. This is followed by some conclusions in
Sec. IV.

II. FORMALISM

Consider a set of normalized vectors belonging to a
Hilbert space& of dimension N+1. Then the set of rays
of & forms a projective Hilbert space P with one dimen-
sion less than that of A', i.e., N, where the rays are
defined as the equivalence classes of states differing only
in phase.

Let 4'(t)) be a quantum state that evolves according
to the Schrodinger equation

Ie'(t) & =ale(t) &,
d
dt

and for all times, l%'(t)) H& with &%l+) =1. Define a
cyclic vector for the evolution equation if there is a cycle
time T such that an initial state and a final state differ by
a multiplicative phase factor, i.e.,

(2)

The existence of the cyclic state is assured by the very
fact that it is in an eigenvector of the unitary evolution
operator U(T) with the corresponding eigenvalue e'~.
The existence of such cyclic initial states has been dis-
cussed in detail by Moore [12]. It should be noted that
for the periodic Hamiltonians the cyclic state exists. For
Hamiltonians of the form H(t)=e ' 'H(0)e' ', the cy-
clic initial states are precisely the eigenvectors of the
time-independent operator B =H(0) —A. Although a
complete set of such cyclic states must exist for systems

lg(t) &= exp —J &+l~l+&«' I+(t) &,
0

(3)

such that & g(t) dg(t)/dt ) =0. Alternatively, we can see
that lg(t) ) keeps its phase unchanged to the extent possi-
ble for infinitesima changes, i.e., the infinitesimal change
in g(t)) is orthogonal to lP(t)) itself. This can be ex-
pressed as &g(t)id/(t)) =0. Thus lg(t)) is phased with
the parallel connection. During cyclic evolution the
curve traced by g(t) is not closed and

l g( T) ) =e'~l g(0) ),
where e'~ is the holonomy transformation associated with
the curve C. An explicit expression for P is obtained [3]
by choosing a single-valued state l4(t)) =e ' '"l%(t))
with & tl0) =1, and f (t) is any smooth function of time
satisfying f (T)—f (0)=P. It is then easy to show that
l'I'(T))=l4'(0)). These single-valued states do not de-
pend on the redefinition of the phase of l%(t)); hence
single-valued vectors only depend on the shadow of the
evolution of l%(t) ) on the projective Hilbert space. Thus
the geometric phase is given in terms of these single-
valued states as

P=i J &4(t)l4(t))dt,
0

(4)

for arbitrary cyclic evolution of the quantum state, im-
plying that the nonadiabatic Berry phase depends only on
the image of the evolution in P. Therefore the AA phase
is independent of the phase that relates the initial state to
the final state. It is also independent of the Hamiltonian
that causes the motion for a given projection of the evolu-
tion in P, or in other words it is independent of the ener-
gy normalization. This is because if we add a scalar E to
the Hamiltonian then it will give a different total phase
factor to the evolving state; however, the extra phase will
be absorbed in the dynamical phase and in no way affects
the geometric phase. One can see also that if one changes
the parameter t of 0 to t' with dtldt') 0 then P is an in-
variant and is a geometric property of the un-
parametrized image of C in P.

In addition to the geometric phase there are two more
geometric objects in the projective Hilbert space P. For
an arbitrary quantum evolution (not necessarily cyclic)
there exist (i) the geometric distance function and (ii) the
geometric length of the curve. It has long [14] been
recognized that the inner product of vectors in & gives a
metric. This metric is the distance between quantum
states. Provost and Valle [15] considered in particular
the distance between two quantum states which are

with finite-dimensional Hilbert space, this may not be
true in general.

Let there be a natural projection map in P, II: &~P
defined by 11(

I
+ & ) = [ I

+ &'
I
+ &

' =c
l
e &, for any complex

number c]. Then the cyclic evolution of the state de-
scribes a curve C, t ~%(t) in gf' that begins and ends on
the same ray. That is to say, C: [0, T]~&, with
C = II(C) being a closed curve in P and it is the image of
the curve C under the projection map H. If we want a
"connection" to be defined in P, we remove the dynami-
cal phase factor from the state l@'(t)) and obtain the
state lP(t)). Then the state vector lg(t)) will undergo a
parallel transportation, where

l g(t) ) is given by
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i (% (t) i% (t +dt) )
~

= 1 ,' bE—2(—t)dt2/A2+ 0 (dt 3),

where

bE'(t)=( P~H'~% ) —(q ~H~q/)' . (6)

Thus for an arbitrary evolution the infinitesimal dis-
tance function as measured by the Riemannian metric is
given by

infinitesimally close, and found that it induces a Rieman-
nian metric. If the quantum system evolves in time, then
the minimum normed distance function between ~%(t))
and

~
4( t +dt) ) is given by

dD = [2—2i (4'(t)i%'(t +dt) ) i
]'

This can be evaluated directly by Taylor expanding
~'I/(t +dt) ) up to second order in time and using the ex-
pression

&(+)1:=f &q(t)lWt))'/2dt . (&)

Here ~%'(t)) is the velocity vector in the projective Hil-
bert space P of the curve 4 at point t along the path of
evolution of the state vector. It is the tangent vector to
the curve 4(t).

We would like to mention a few important geometric
properties of the length of the curve. First the integral
exists, since the integrand is continuous. The length of a
broken C curve is defined as the finite sum of the length
of its C pieces. The number l(4) ~o is independent of the
parametrization of its image set. If we change the param-
eter from t to t' with dt/dt') 0, then the length of the
curve remains unchanged. Therefore it is a geometric
property of the whole curve C' in P and is a t-invariant
quantity. Hence for arbitrary time evolution of the state,
we can define the infinitesimal length of the curve during
the infinitesimal time dt as

dD =bE(t)dt/A . (7a) dl =(4'(t)~q(/t))' /d2t .

If %(t) is a curve C: [0,T]~&, then the distance trav-
eled during the interval [0, T] is

D = f bE(t)dt/fi. (7b)
0

This distance function differs from that of the Fubini-
Study metric [16] by a factor of 2. Anandan and Aharo-
nov have given a geometric meaning to this quantity in
Ref. [17]. This is geometric in the sense that it does not
depend on the particular Hamiltonian used to transport
the state along a given curve C' in P. It is also indepen-
dent of the phases of ~%(t)) and ~%(t +dt)), which is a
consequence of the two-point Bargmann invariant; and
therefore depends only on the points to which they pro-
ject. By changing the Hamiltonian we will have a
different overall phase factor associated with the evolving
state; however, they will give the same value for the di-
mensionless quantity D. According to Anandan and
Aharonov the evolution of the system in P completely
determines bE(t); no other information about the Hamil-
tonian is needed to determine b,E(t) Also the .geometric
distance function is independent of the rate of evolution
of the system and depends only on the unparametrized
curve C in P, that is determined by the evolution of the
state vector.

The next geometric object in P is the "length of the
curve" along which the quantum system moves. We
study the transport of the state vector in the projective
Hilbert space along a closed curve but earlier authors
have not defined and calculated it explicitly for a given
problem. Below we define it for arbitrary evolution of the
quantum system and we will calculate it for various prob-
lems that will be treated subsequently in Sec. III. On a
proper Riemannian manifold the existence of a metric al-
lows the definition of the "length of the curve" C in P
which is traced out by the normalized vector

~
4( t) ) [20].

Let
~
4( t) ) be a curve C: [0,T]~&. We choose a sec-

tion of the curve as + which is differentiable along C such
that the length of the 4(t) along which the system
evolves from point 4(0) to a point 4(T) is a number
defined as

If the parameter t is such that (4(t)~'0)' is constant
then we may surmise that the length of the curve is
parametrically proportional to the arc length. We em-
phasize here that as the existence of the Berry phase is
measured experimentally, the total length of the curve
could be measured for cyclic evolution of the quantum
states.

Having defined the geometric distance function and
geometric length of the curve we can easily see that for
an arbitrary cyclic evolution of the uantum system any
physical state traces a closed curve in P, such that at
each instance of time, the length of the curve is greater
than the distance traveled by the quantum system and the
nonadiabatic Berry phase is given by

f3 f (d~2 dD2)1/2 —f (1 U2 /u2 )1/2d~ (10)
0 0

T
or P= dL, where dL =(1—u~/u~)'/ dl, is called the

.0
infinitesimal contracted length of the curve. Therefore
the geometric phase is manifested as the integral of the
contracted length of the curve C along which the system
moves. The factor (1—U~/u/t)' is called the length
contraction factor because v~ & u+, where U~ =dD/dt is
called the speed of transportation in the projective Hil-
bert space P and u~=dl/dt is called the magnitude of
the rate of change of arc length of the curve C in P. The
speed of transportation in P gives the rate at which the
state moves away from the original state determined by
the inner product between them. Expression (10) gives a
new way of looking into the geometric phase factor ac-
companying nonadiabatic evolution. It only depends on
the two geometric objects in P, the geometric length of
the curve (a t-invariant quantity) and the geometric dis-
tance function [an M(t)-invariant quantity]. This also
says how the geometric phase arises in a general situa-
tion. Thus from (10) it is quite clear that the geometric
phase as introduced here originates from a different
reason than realized so far. It arises because at each in-
stant of time the "length" is greater than the "distance. "
The above fact does not depend on the Hamiltonian's
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time dependence. As long as the system evolves in time,
we have the concept of length and distance, and because
of the fundamental inequality between the "length" and
"distance" the system shows up a geometric phase. For
cyclic evolution of the quantum system the excess length
of the curve at each instant of time over the distance goes
on accumulating, so that it finally appears as the
geometric phase. However, if the system evolves along a
shortest geodesic the length and the distance coincide
and hence the geometric phase vanishes. Also it is evi-
dent that if the contraction factor approaches zero the
system will not acquire any geometric phase. For no con-
traction, i.e., when the contraction factor approaches uni-
ty the geometric phase acquired by the system exactly
coincides with the total length of the curve during the cy-
clic evolution. Thus our expression also sets a limit to
the value of the geometric phase that a quantum system
may acquire upon a cyclic excursion. Therefore P(C)
ranges from zero to total length of the curve, i e.,
O&P(C) & l(C).

In the main result (10), the integrand and therefore /3 is
non-negative. But for a general ~4),P can be negative
and furthermore, even if f3 is non-negative, the integrand
would take both positive and negative values. But it is al-
ways possible to do a gu age transformation
~'P(t)) ~e' ' 4'(t)), A(0)=A(T)+2~n, where n is an in-

teger, so that for new ~4),i (4~4) is non-negative in the
interval [O, T). The latter condition, which implies that
beta is non-negative, is necessary and sufficient for the va-
lidity of (10).

In the following section we use (10) explicitly to study
various examples and also to calculate the geometric
phase via calculating the geometric distance function and
the geometric length. Our expression not only provides a
better understanding of the geometric phase but also pro-
vides a tractable algorithm for calculation of the nonadia-
batic Berry phase. Our first example comprises a fermion
system interacting with the homogeneous magnetic field.
Secondly we focus our attention on a time-dependent
Hamiltonian involving coupling between bosons and fer-
mions, i.e., the Jaynes-Cummings model of quantum op-
tics which describes the interaction of light with a two-
level atom. The third example we consider is that of a
time-independent Hamiltonian where the fermion is cou-
pled to a bosonic (harmonic oscillator) potential along
with a nonuniform magnetic field. In each of these cases
the geometric distance function and geometric length of
the curve are calculated. The latter quantity is found to
be always greater than the former one and the integrated
difference between them is attributed to the geometric
phase.

III. EXAMPLES

A. Spin-
~ particle precessing in a magnetic field

This is a simplest example in which the precession of a
spin- —,

' particle in a homogeneous magnetic field B has
been considered. The Hamiltonian in the rest frame
is given by H = pBo„where B =—

~B~ and cr, is the
Pauli spin matrix. The Hilbert space is spanned

by two-dimensional vectors with components
cos(0/2), sin(0/2) and 0&[0,m. ]. The initial state is
given by

cos(0/2)
l+(O)) —

(0/2)

which evolves into ~4(t) ), where

cos( 0/2 )e '~

+( t) ) (0/2) —jy/P )

(1 la)

(1 lb)

and $=2pBt/A', and corresponds to the spin direction
being always at an angle 0 to the z axis. Due to preces-
sion, the wave function rotates by 2~ radians about some
axis which results in a cyclic motion of every state vector
of %. We now calculate the infinitesimal normed dis-
tance function dD . It can be easily seen that dD is
equal to

p B sin (0)dt /A = sin (0)dg (12)

This is nothing but —,
' of the usual metric defined on the

sphere of a unit radius with a fixed 0. (The factor —,
' arises

from our convention. ) Then the total distance traveled
by the state vector during a cyclic evolution is given by
D =m sinO.

For the calculation of the geometric length of the
curve we have to choose the single-valued state 4(t)).
That can be done easily by setting

cos(0/2)

=sr[1 —cos(0)], (16)

which is half the solid angle subtended by the orbit of
motion in a sphere of unit radius. This result matches ex-
actly with the ones derived previously in different ways.

In addition to these geometric objects we can also cal-

such that 4'(T)) = ~4(0)). Then the rate of change of
arc length of the curve, u~ is given by

u.„=(4 (t) 4 (t) ) '"
= [(2p, B /fi )[1—cos(0)]]'

Therefore the total length of the curve during the cyclic
evolution is given by

l(C)= [2[1—cos(0)]]'

From this calculation it is clear that the length of the
curve is also a geometric object of the motion of the sys-
tem, in the sense that l (C) is just 7r times the total solid
angle subtended by a curve traced on a unit sphere, by
the direction of the spin state, at the center. Therefore it
is as "geometric" as the geometric phase acquired by the
system.

Once we have calculated the dD and dl, it is now
easy to calculate the geometric phase P. Thus P is given
by

P= J P[l —cos(0)]—
—,
' sin (0)]' dP



102 ARUN KUMAR PATI AND AMITABH JOSHI 47

culate the contraction factor (1 —U~/u&)' . This is
found to be sin8/2 in this case. A necessary and
sufticient condition for acquiring a geometric phase is
that the contraction factor during a cyclic evo1ution
should be nonzero and in this case it is indeed true. For
0=0 the spin state traces a curve such that the contrac-
tion factor vanishes identically, and hence the system will
not acquire any geometric phase. It is interesting to note
that for 0=~ the contraction factor is unity, i.e., there is
no contraction of the length of the curve and hence the
geometric phase coincides with the length of the curve
during a cyclic traversal of the spin state.

dD =(co /4)dt (22)

This shows that the speed of transportation U~ is con-
stant for a two-level atom. Therefore the total distance
traveled by the state during a cyclic evolution is just ~.

To calculate the geometric length of the curve, we have
to choose the single-valued state ~4' +(t) & corresponding
to the state ~V+(r) &. This is achieved by writing

++(t) & =e + ~%+(t) &, such that f+(T) f+(—0)
=P+. Therefore

For this problem it is simple, because ('P+~H~V+ & =g
and (0'+~H ~%'+ &=(co /4)+g. Hence

B. The Jaynes-Cummings model -(~ '"Il&+Io&) . (23)
In this example we consider a system where bosons and

fermions are coupled and the Hamiltonian that describes
it is an explicit time-dependent one. The situation is that
of interaction between light and a two-level atom, which
is well represented by the Jaynes-Cummings model (JCM)
[18]. For this problem we calculate the geometric dis-
tance function, the geometric length, and the geometric
phase using the former two quantities. Consider an atom
in a strong laser beam that is nearly in resonance with
one of the atomic transitions, for example, the transition
between the ground state and the excited state. This is
approximated by a two-level atom with a combined
atom-electromagnetic field interaction Hamiltonian
developed by Jaynes and Cummings [18]. The semiclassi-
cal Hamiltonian for this system is given by

H(t)=cuS, +g(e ' 'S++e'"'S ), (17)

~e(t) & =c ~e (t) &+c ~e (t) & . (19)

Now the cyclic state is chosen by assuming either c+ = 1

and c =0 or c+ =0 and c =1. In the first case we
choose c+ =1 and c =0. Then the states ~%+(t)& are
given by

e -'"(e-'""~1&+.'""~0
& ),1

v'2

(r)&= e'"(e' '"~1&—e ' '
~0&)

1

v'2

(20)

where ~0& and ~1& are ground and excited states of the
two-level atom. We can easily see that this is cyclic with
an overall phase factor P+=(vr gT) for a perio—d of
T =2~/co, i.e.,

(21)

We now calculate the distance function by evaluating AE.

where co is the transition frequency of the atom, g is the
atom-field coupling coeKcient, and S+, S, are the usual
atomic operators. The system is initially in a pure state
which is factorizable and given by

~
e(0) &

=
~ e.(o) & g

~ e/(0) &, (18)

where ~4, (0) & is a general atomic state and ~%/(0) & is a
coherent state. The total wave function at a later time
can be written as

Hence the infinitesimal length of the curve is given by

dl = —comdt
1

2
(24)

(25)

This matches exactly with the result that is obtained in
Refs. [14,19]. In this example also we can calculate the
contraction factor and it is found to be I/v'2. However,
there is no way of making the contraction factor zero and
the system will always acquire a geometric phase. In this
case the phase acquired by the system is 1/v 2 times the
total length of the curve. Thus in the time-dependent
problem considered here the length is greater than that of
the distance and because of this there is a net phase ~ in
the final state of the system.

On the other hand if ~% (t) & undergoes a cyclic evolu-
tion, then the total phase acquired will be P =(m+gT),
but the geometric phase will be the same, i.e., ~. It has
been shown by Moore [13] that the well-known Rabi os-
cillation frequency and the splitting of the Mollow triplet
is related to the difference in the total phase for the two
cyclic ( ~'P+ &, ~%' & ) states.

C. Spin-2 particle
in a harmonic oscillator potential

with magnetic field

In this last example what we consider is a time-
independent situation where our system is a fermion cou-
pled with a bosonic potential together with a nonuniform
magnetic field. The fermion interacts with the magnetic
field via its magnetic moment. For such a system we cal-
culate the geometric distance function, geometric length
of the curve, and the geometric phase by using (10).

Let us consider an uncharged, spin- —,
' particle in a har-

monic oscillator potential with a very weak, nonuniform
magnetic field. For simplicity we consider the motion of
the particle to be confined to one dimension, say along

which again shows that the arc length changes at a con-
stant rate. Therefore the total length of the curve during
a cyclic evolution is equal to &2m. .

The calculation of the geometric phase is now trivial,
i.e.,



INTERPRETATION OF GEOMETRIC PHASE VIA GEOMETRIC. . . 103

the z axis. The Hamiltonian of the one-dimensional sys-
tem is given by

d + —,mco z +pB(z)cr, ,
2m dz

(26)

where p is the magnetic moment of the spinning particle,
o., is the 2X2 Pauli spin matrix. It has been chosen that
the nonuniform magnetic field has a minimum at z =0,
therefore B (z) =Boz, where Bo is a constant having di-
mension of 6/cm . Thus the Hamiltonian takes the form

+ 2m' z
2m dz

(27)

where co is a frequency operator with eigenfrequencies
e+, where

co+ = (co +Bop /m
)'~ (28)

1

~y (z, t) &
= I+ (z, t) & 0 (29}

where ~V+(z, t) & is a wave packet oscillating at frequency
co+ about z =0, with an amplitude zo. Initially we
choose a Gaussian shape of the wave function and after
the summation is carried out 4'+(z, t) & is given by

Physically this shows that in the presence of the mag-
netic field the particle with spin polarized in the positive z
direction will oscillate with a frequency co+ and the one
with its spin polarized in the negative z direction will os-
cillate with a frequency co

The state with spin up (spin down) can be chosen to be
a cyclic one with a period T=2m /co+( T=2m/co ). The
cyclic state with spin up is

f4+(z, t) & =(a'+ /n' ) exp[ —
—,'a+[z —zocos(co+t)]

i [ ,' co+ t—+a—+zz0sin( co+ t ) ——,
' a+z o sin( 2co+ t ) ] } . (30)

It can be easily seen that ~y+(z, t) & is cyclic, i.e.,

IX+(z, T) &
= e

' ' IX+(z,0) &, (31)

Hence the speed of transportation U is given by

1
v ~ —6E /A — —a+ co+zo

2
(33)

with P+ =7r, the total phase acquired in one complete cy-
cle.

We now calculate the geometric distance function by
evaluating (y+ ~H~y+ & and (y+ ~H ~y+ &:

(y, ~H~~ &=-,'h, +,'h, ', ,',
(32)

(g+ ~H ~g+ &
= 4h co++ —'h co+a+zo+h co+a+zo .

During the cyclic evolution of the system the total dis-
tance is

D =+2vra+zo . (34)

To calculate the geometric length of the curve we have
to define the single-valued wave function. This is done—I~+ (f]
again by defining f~+(z, t) & =e + ~g(z+ t) & in such a
way that f+ ( T) f+ (0)=P+. Hen—ce

1

~g+(z, t) &
= (a+ /m'~ ) exp I

—
—,
' a+ [z —zo cos(co+ t) ] i [a+zz—o sin(co+ t) —

—,'a+zo sin(2co+ t) ] } (35)

and ~g+(z, T) &
= ~g+(z, 0) &.

Therefore the rate of change of arc length of the curve
is given by

Once the geometric distance and length is calculated it
is easy to calculate the geometric phase using (10}. Thus
P(C), during one cycle, is

ttyf=(4' (z, t)~4 ( t)&z'~ P( C)=~a+zo, (3&)

2 4 4 I 2 2 2 1/2=
[ —,co+a+zo+ —,co+a+zo } (36)

1 (C)= [—,'a+zo+ —,
' ]' 2n.a+zo . (37)

Now the total length curve, a geometric property of the
curve, is

which can otherwise be calculated and matched with the
result obtained here.

Lastly we calculate the contraction factor. It is found
to be

= [—,'a+zo /(1+ I /2a+zo ) ]' (39}

Once again one can see here that total length of the curve
is greater than that of the geometric distance function
during a cyclic evolution of the wave packet.

which is independent of time and is finite. There is no
way to make the contraction factor equal to zero thereby
making the geometric phase vanish identically. Howev-
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er, when the particle oscillates with a resonant frequency
co =/3ottlm, then only may we have zero contraction fac-
tor. But then the geometric distance and length also van-
ish for resonant oscillation and hence it is of no physical
importance. It is important to note that we cannot make
the contraction factor equal to unity and hence there is
always a contraction of the length in this problem which
asserts that the geometric phase acquired by the system is
the integral of the contracted length of the curve during
the cyclic evolution.

IV. CONCLUSIONS

In conclusion we have shown in this paper that the
geometric objects such as "phase, " "distance, " and
"length of the curve" in the projective Hilbert space are
intimately related. We could cast the expression for the
geometric phase in terms of the geometric distance func-
tion and geometric length of the curve. This enables us
to interpret it as an integral of the contracted length of
the curve which the system traverses. In addition to this
we are able to answer an important question concerning
the geometric phase, viz. , given a cyclic evolution of the
quantum system, what would the maximum value of the

nonadiabatic geometric phase acquired by the system
during that period be? The answer we found is that it is
just the total length of the curve C in P, during the evolu-
tion. Thus in any case the geometric phase cannot be
greater than the total length of the curve. Furthermore
our expression provides a new way of calculating the
nonadiabatic geometric phase, which we have illustrated
by studying three examples and calculating explicitly the
geometric objects.

As a final remark we would like to mention that the
length of curve 1(C) is as geometric as the geometric
phase. Since the geometric phase is a physically observed
quantity, and the geometric distance function can be es-
timated by measuring the uncertainty in the energy of the
system, hence the length of the curve should in principle
be measurable.
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