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F. Colmenero and C. Valdemoro
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientigcas, Serrano 123, 28006 Madrid, Spain

(Received 24 February 1992)

The general equation linking a q-order reduced density matrix (q-RDM) with the corresponding q-

order hole reduced density matrix (q-HRDM) has been reported in the preceding paper [F. Colmenero,
C. Perez del Valle, and C. Valdemoro, preceding paper, Phys. Rev. A 47, 971 (1993)]. In this equation,
neither Kronecker 5 functions nor mixed products of elements of RDM's and HRDM's appear, and the
part involving hole terms has the same structure as that involving particle terms. Recently [C. Val-
demoro, Phys. Rev. A 45, 4462 (1992)],a similar equation for q = 2 has been used to approximate the 2-

RDM from the knowledge of the 1-RDM. Here, the 3-RDM and the 4-RDM are approximated by us-

ing the 2-RDM as an initial datum. The ultimate aim of this research is to develop an iterative method
for solving the contracted form of the Schrodinger equation [L. Cohen and C. Frishberg, Phys. Rev. A
13, 927 (1976); H. Nakatsuji, ibid 14, .41 (1976)]. A matrix form in the orbital representation of this
equation is reported here. Finally, the second-order hypervirial equation, also in its matrix form, has
been derived so that the quality of the results can be judged.

PACS number(s): 31.20.Sy, 31.15.+q, 31.20.Gm

I. INTRODUCTION

By integrating the time-independent Schrodinger equa-
tion over N qvar—iables, Cohen and Frishberg [1] and
Nakatsuji [2] obtained an equation which gave the energy
of an eigenstate of an ¹ lectron system and the corre-
sponding q-order reduced density matrix (q-RDM).

An equivalent equation [3], the contracted Schrodinger
equation (CSchE), can be obtained by using a matrix con-
traction mapping [4]. This equation is indeterminate [5]
because it contains terms which depend on the (q+1)-
RDM and on the (q+2)-RDM. This indeterminacy
could be removed if the (q+1)-RDM and the (q+2)-
RDM could be calculated, or at least approximated, in
terms of the q-RDM.

The aim of this paper is to show a way for approximat-
ing a RDM in terms of the lower-order ones as a step to-
wards the iterative solution of the CSchE.

The main idea of a self-consistent iterative scheme for
approximating the solution of this equation is described
in Sec. II to show the purpose and importance of the
present and preceding paper [6]. The details of the
method for approximating the solution of the CSchE are
still being investigated and results are not yet available.
Nevertheless, the matrix representations of the q-CSchE
for q =2 and q = 1 are given in Sec. II.

In what follows, the model used for approximating the
2-RDM in terms of the 1-RDM [7] will be extended to
approximate the 3- and 4-RDM's from the knowledge of
the 2-RDM. Since the main theoretical developments
needed have been already reported in paper I of this
series [6], the notation, the graphs, and the acronyms
used here are the same as in this preceding paper.

The test states chosen for this study are the three

lowest singlet states of the beryllium atom and the two
lowest singlet ones of the water molecule. In all the ca1-
culations, the initial data are low-order RDM's (2- and
3-RDM's) derived from a full configuration-interaction
(FCI) wave function.

Since, for this test, the initial data entering into the ap-
proximating procedure are q-RDM's derived from an
eigenstate of the system, they fulfill the hypervirial condi-
tions exactly. An indication of the quality of the approxi-
mate (q+1)- and (q+2)-RDM's may be obtained by
determining how well the first- [3] and the second-order
hypervirial conditions are satisfied. The second-order hy-
pervirial equation in the orbital representation, needed
for this control, results from commuting a second-order
replacement operator (2-RO) [8—11] with the Hamiltoni-
an and is reported in Sec. III. The results obtained when
approximating the 3-RDM and 4-RDM are analyzed in
Sec. IV. Finally, a short discussion is given in Sec. V.

II. THE CONTRACTED SCHRODINGER EQUATION

By integrating the Schrodinger equation over N —
q

variables, the following integral equation was obtained
[1,2]:

q

EPq HqPq+(q+1) f +q+1+ y f~,q+i Pq+ ldxq+1

+—'(q+2)(q+1) J II +, q+, pq+, dx +,dx +, .

Here we have followed the notation given by Cohen and
Frishberg [1]. Thus,

Pq
e

q Ptq ~ q q+i '' » '' '' q' q+ (2)
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and the operators 0 represent the one- and two-electron
operators which appear in the q-electron Hamiltonian H
summed over the q-electron variables.

By using the mapping reported in Ref. [4] a discrete
matrix representation of this equation was derived [3] for
q =1 and q =2. In the orbital representation, the 1-
CSchE takes the form

Edpq=2+( D H)p~ qj+3 g H;& ki Dp,j qki
j ijk, l

(3)

one can use either this value of the energy or that ob-
tained in the previous iteration to calculate the new 2-
RDM by means of

Pg', I'S

Pg, l'S (6)

Then, this procedure can be repeated with the new RDM.

where the symbol H; kI represents a generalized two-
electron integral [12]. The form of the 2-CSchE is

2 0 2 0 4
pq, rs Rpq, rs ( H —)pq, rs+6 g Hij, k( Drsij, pqgl

i,j,k, l

(4)

As can be seen, both equations are easy to handle in this
representation since only matrix operations are involved.

The idea, which is being developed in our laboratory,
for solving the CSchE is the following: Let us take a
reasonable initial 2-RDM (it can be one of the
independent-particle type) and approximate from it the
corresponding 3- and 4-RDM's. Having replaced these
approximate 3- and 4-RDM's into the right-hand side
(rhs) of Eq. (4) a new 2-RDM can be obtained. Since

E tr D=E
2 =trR, (5)

Thus, an iterative self-consistent (SC) procedure for solv-
ing the 2-CSchE can be devised.

At first sight, the first-order equation is more appealing
than the second-order one. However, the terms on the
rhs of Eq. (3) are both average terms. Thus, the first term
is averaged over an orbital index which appears twice,
and the second term, involving the 3-RDM, is averaged
over four orbital indices. Therefore, the information car-
ried by the H matrix will influence the value of this side
of the equation only in an averaged way. For this reason
we suspect that convergence will probably be slow in the
case of 1-CSchE. Thus, although the 1-CSchE may prove
useful, our primary goal is to attempt a solution of the 2-
CSchE.

Whether or not this equation can be solved iteratively
depends on the possibility of obtaining good enough ap-
proximations to the higher-order RDM's from the
knowledge of the lower-order ones.

III. THE SECOND-ORDER HYPERVIRIAL
EQUATION

Since the initial data for the test samples considered
here correspond to eigenstates of the system, it is con-
venient to verify how well the hypervirial theorem is
fulfilled when the exact matrix is replaced by the new ap-
proximate one.

The second-order hypervirial condition may be written

(7)

where E and H are the 2-RO and the Hamiltonian
operator, respectively.

Equation (7) involves operator products of the type
k&k2

Ej j Er p
~ Such operator products can be performed

easily by applying the graphical rules reported in Refs.
[11,13]. The final result, in graphical form, is

'L2 k1 k2

22 T2

OI

+ ~~ '
~

~

(8)

The interpretation of these diagrams has been given in Table I of paper I (recall that the dotted lines represent
Kronecker 5 functions). The graphs in (8) have two, one, or no dotted lines and correspond to a 2-, a 3-, or a 4-RO, re-
spectively. Using these diagrams it is easy to see that the second-order hypervirial condition can be written as
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Pi& k(=0=2[ H D]ij k(

+ H D+3 p ( pq, ir pqj, kr! + Hpq jr pqi, (rk + Hpqri , pqj, rkl pq, rj pqi, rlk

p, q, r

—H D —H D —H D —H D
kq rp ijq rip pk rq ijp qlr Iq rp jiq krp p! rq ijp kqr )

%'hen the 2-RDM and the 3-RDM appearing in rela-
tion (9) correspond to eigenstates of the Hamiltonian, the
second-order hypervirial condition is fulfilled and P is a
null matrix. Hirschfelder showed [14] that if the expecta-
tion value of the commutator of the Hamiltonian with
any operator was equal to zero, this was a sufficient con-
dition for the state considered to be an eigenstate of the
system. In the case of a q-RDM of an ¹ lectron system,
all the hypervirial equations involving p-RDM's of order
p ~ N should be fulfilled [15]. Moreover, when the
q-RDM's are determined directly, i.e., not from a known
antisymmetric function, the ¹epresentability conditions
may be fulfilled only approximately. Therefore, the satis-
faction of the first- and second-order hypervirial condi-
tions is a necessary but not a sufficient condition and has
only indicative value. On the other hand, this test indi-
cates the quality of the approximating procedure used
here because if the method were exact, all the hypervirial
conditions for p &N would necessarily be fulfilled given
that the initial q-RDM corresponds to an eigenstate.

IV. APPROXIMATIONS TO THE 3- RDM
AND 4-RDM

In Eq. (21) of paper I each side is a sum of a part in-
volving hole reduced density matrix (HRDM) terms and
a part involving RDM terms. Since the structure of the
part involving HRDM's is the same as that of the part in-
volving RDM's, the approximating method proposed in
Ref. [7] can be employed: identify the left-hand-side (lhs)
holes part with the rhs holes part and identify the lhs
electrons part with the rhs electrons part.

It should be stressed that the holes and the particles
are interrelated through the fermion anticommutation re-
lation and therefore this is not an exact operation. As a
consequence, this procedure is only an approximate one.
However, it works well, as will be shown in the following
subsections, particularly when additional properties that
the RDM's must fulfill are imposed.

Let us now consider the form of the approximate 3-
RDM,

D, k( „= M;k( „= ,'d(d dk„—+—,'(d, d (dk„+—d,„d d„(+d,(d „dk )

—d (d,„d,(dk~ +dim d,„dk( )+ ,
' (d(( D,k ~„+—d,m D,k („+dk„D(j(~ )

,'(dj( D(k ~„—+—d(m Djk („+dk( Dij „~+d,„D(k ~(+dk~ Dij („+d)„D(k(I ) . (10)

The elements of the 4-RDM will be approximated in a
similar way from Eq. (21) in paper I with q =4. The ma-
trices obtained using this approximate method will be
denoted by M while keeping D for the exact RDM's.

In this section a series of results concerning the three
lowest singlet states of the beryllium atom and the two
lowest singlet ones of the water molecule will be reported.
The rest of this section is divided into two paragraphs in
which the results concerning the approximate 3-RDM's
and 4-RDM's are discussed, respectively.

A. The 3-RDM

In these calculations, the 3-RDM's were approximated
by using the 2-RDM s as initia1 data. To obtain the ini-
tial 2-RDM's, FCI calculations were performed with a CI
program based in the unitary-group approach [10,16,17]
(UGA) code written in our laboratory. The following
basis sets were used: Double g [18] for the beryllium
atom and minimal STO-3G [19] for the water molecule.
These basis sets were orthonormalized by the canonical
transformation [20] and subsequently transformed into
the Hartree-Fock (HF) basis [21]. The molecular

geometry used for the water molecule was 0-H bond
lengths of 1.814 a.u. and a HOH angle of 104.5'.

Normalization

In Ref. [7] it was shown that the 2-RDM, when ap-
proximated from the 1-RDM, had a trace error by excess,
which was corrected by using a special normalization al-
gorithm (NA). This NA was devised in order to concen-
trate the normalization modifications on the elements of
the approximate 2-RDM which did not correspond to the
geminal configurations dominant in the state considered,
that is, corresponding to high value 2-HRDM elements.
It did now, however, fulfill all the requirements. Thus,
the resulting 2-RDM was only approximately spin pure.
In addition, the two diagonal elements of the ground-
state matrix corresponding to the frontier geminal
configurations (i.e., the highest-energy geminal with a
high occupation number and the lowest-energy geminal
with a large hole occupation number in the ground state)
which were responsible for most of the error, but whose
errors compensate each other to a great extent, were not
modified by this NA.
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In order to analyze the situation in the third-order
case, let us start by considering the value of tr( M).
From the result previously reported [Eq. (6) in paper I]
and by using the contraction of the 2-RDM to the one-
electron space, it can be shown that

X
tr( M)=

6
N tr[('D) ] tr[('D) ]
2 2 6

Hence, the trace error in the approximate 3-RDM is

tr('D) tr[('D) ]
3

+
2

tr[('D) ]
6

(12)

As traces are invariant with respect to linear transfor-
mations, let us suppose that 'D is diagonal. Then, Eq.
(12) may be written as

K
tr( M) —tr( D) = —

—,'gA, , (2—k, )(1—
A, , ), (13)

2. Correction of negative diagonal elements

The cancellation of errors just mentioned occurring be-
tween certain pairs of diagonal elements was the reason

TABLE I. Traces of the approximate 3-RDM for the three
lowest singlet states of the beryllium atom and the two lowest
ones of the water molecule.

System

Be

State

Ground
First excited
Second excited

Tr( D)

4.0
4.0
4.0

Tr( M)

4.000 00
4.000 00
4.000 00

H20 Ground
First excited

120.0
120.0

120.000 08
120.000 03

where A, , denotes an eigenvalue of 'D. Because (1—
A,;)

may be positive or negative the trace error may be by ex-
cess or by defect. When the state has a clear dominant
configuration of the closed-shell type, some A.; will have
values close to 2 while the rest will have values close to
zero. Consequently, the trace error, independently of its
sign, will be very small in this case.

In all the calculations performed, the trace error found
was extremely small (see Table I) and consequently no
normalization procedure was applied.

The direct application of the approximating algorithm
(see Tables II-IV) showed a strong cancellation of errors
between certain pairs of diagonal elements corresponding
to configuration of the "iij"and "jji"types. This effect is
observed when the i and j indices denote orbitals with a
high particle and a high hole occupation number, respec-
tively, and it is greater when these configurations are the
frontier ones. Thus, when one of these elements is
overestimated, the other one is underestimated, the errors
having practically the same absolute value. As a result of
this almost exact cancellation, the trace value of M is
good.

3 ~3Miij, iij Miij, iij

M M +5—jj i,jji —jji,jji
3 3

Mp'ij jji a d Mjji iij

(14)

where the symbol "~" denotes the computational re-
placement operations. Obviously, these operations do
not modify the values of the trace.

These corrections must be also applied to the
equivalent matrix elements resulting from the symmetry
property,

q~jl J2 Jq P(ili2 i ), P(j]J2 J ) '

where P is an arbitrary permutation of the indices.
It can also be shown (see the Appendix for a proofl

that

D = ——'D
llJ, 1jl 2 llJ, llj

3~ 1 3~
llj,1JJ 2 ilj,jjl

(16)

(17)

The approximate RDM's fulfill the relations (15) and
(16) as well as the most general one given in the Appen-
dix. As a consequence, when applying the corrections
given in (14) one must make sure that these equalities
continue to hold. Therefore, one must introduce the ad-
ditional corrections

3 3
Miij, iji Miij, iji +~ ~

'M — 'M—Jji JV

M"—iij, ijj a d Mijj, iij ~ Miji,jj i t

3. Results

The accuracy of the approximate 3-RDM's may be ap-
preciated by looking at the row denoted by 2—+3 in the
"Calculation" column of Table V. The notation 2 —+3 in-
dicates that the 3-RDM has been approximated from the
2-RDM. Then, by contraction, a new 2-RDM was ob-
tained and used for calculating the energy and the stan-
dard deviations with respect to the initial I-RDM (o, ),

D

the initial 2-RDM (o 2 ), the first- [3,22] and the second-

order hypervirial matrices (o I„and o z, , respectively).'2'
The ground state of the beryllium atom has a dominant

closed-shell configuration involving orbitals 1 and 2 while
the first excited state has a dominant configuration in
which orbital 1 is doubly occupied and orbitals 2 and 3
share two electrons. Therefore, the frontier orbitals are
the 2 and 3 ones in both cases. As has been mentioned,
the higher errors occur in the diagonal elements (223) and
(233) and in the off-diagonal ones (223,232) and (332,323).

why the 3-RDM did not show noticeable trace errors.
On the other hand, when this error was large, the un-
derestimated element had a slightly negative value. In
order to correct this kind of error, whenever a negative
diagonal matrix element M;;;; appeared the following
corrections were applied:

3
Miij, iij
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TABLE II. Comparison of the exact (second column) and the approximate (third column) D;,-&;,k of
the ground state of the Be atom. Only the elements involving an error greater than 10 are given. The
fourth column shows the applied corrections (larger than 10 '). The modified off-diagonal elements
are reported.

Element

113
114
114,141
134
144
144,414
223
223,232
223 332
223,233
233
233,323
244

Exact (FCI)

0.002 20
0.000 00
0.000 00
0.000 00
0.00001
0.000 00
0.000 02

—0.000 01
0.000 00
0.000 00
0.000 00
0.000 00
0.000 26

Approximation

0.002 18
—0.000 26

0.000 13
0.000 02
0.000 27

—0.000 14
—0.002 12

0.001 06
0.000 03

—0.000 02
0.002 14

—0.001 07
0.000 27

Correction

+0.000 26
—0.000 13

—0.000 26
+0.000 13
+0.002 12
—0.001 06
—0.000 03
+0.000 02
—0.002 12
+0.001 06

Error

—0.000 02
0.00000
0.000 00
0.000 02
0.000 00
0.000 00

—0.000 02
0.000 01
0.000 00
0.000 00
0.000 02

—0.000 01
0.000 01

TABLE III. Comparison of the exact (second column) and the approximate (third column) 'D;,k;,&

of the first singlet excited state of the Be atom. Only the elements involving an error greater than 10

are given. The fourth column shows the applied corrections (larger than 10 ) ~ The modified off-

diagonal elements are reported.

Element

112
114
114,141
122
144
144,414
223
223,232
223,332
223,233
224
233
233 323

Exact (FCI)

0.323 16
0.000 00
0.000 00
0.000 29
0.000 02

—0.000 01
0.000 01
0.000 00
0.000 00
0.000 00
0.000 01
0.00001
0.00000

Approximation

0.323 15
—0.000 26

0.000 13
0.000 31
0.000 28

—0.000 14
0.004 65

—0.002 32
—0.041 99

0.021 00
0.000 00

—0.004 62
0.002 31

Correction

+0.000 26
—0.000 13

—0.000 26
+0.000 13
—0.004 62
+0.002 31
+0.041 99
—0.021 00

+0.004 62
—0.002 31

Error

—0.000 01
0.000 00
0.000 00

+0.000 02
0.000 00
0.000 00

+0.000 01
0.00000
0.000 00
0.000 00

—0.000 01
0.000 00
0.000 00

TABLE IV. Comparison of the exact (second column) and the approximate (third column) D;,.&;Jk of
the ground state of H2O. Only the elements involving an absolute value error greater than 10 and

having a value larger than 0.005 are reported. (The modified elements are smaller than this threshold. )

Element

226
227
236
237
246
247
277
346
447
456
556
557
577

Exact (FCI)

0.005 70
0.007 63
0.008 35
0.005 33
0.007 73
0.011 51
0.005 29
0.006 07
0.005 26
0.009 88
0.008 41
0.008 82
0.005 45

Approximation

0.005 04
0.007 44
0.007 87
0.004 84
0.007 01
0.011 50
0.005 48
0.004 90
0.004 12
0.009 90
0.007 93
0.008 75
0.005 51

Error

—0.000 65
—0.000 19
—0.000 48
—0.000 49
—0.000 72
—0.000 01

0.000 19
—0.001 17
—0.001 14

0.000 01
—0.000 48
—0.000 07

0.000 06
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TABLE V. Results obtained for the three lowest singlet states of the beryllium atom and the two lowest ones of the water mole-

cule.

System State

Ground

Calculation

FCI (reference)
2~3
3~4

E (a.u. )

—14.5872
—14.5867
—14.5870
—14.5864

0.0
0.000 015
0.000018
0.000 019

Properties
Op

D

0.0
0.000 002
0.000 045
0.000 074

0.0
0.000 070
0.000 198
0.000 311

0.0
0.000 042
0.000 102
0.000 120

First excited FCI (reference)
2~3
3~4

2~3~4

—14.3014
—14.3013
—14.3029
—14.3021

0.0
0.000 012
0.000 396
0.000 397

0.0
0.000 012
0.000 030
0.000 036

0.0
0.000 097
0.000 335
0.000 288

0.0
0.000 435
0.003 019
0.003 103

Second excited FCI (reference)
2~3
3~4

2~3~4

—13.9850
—13.9845
—13.9848
—13.9837

0.0
0.000 009
0.000009
0.000 009

0.0
0.000001
0.000 020
0.000 045

0.0
0.000 049
0.000 134
0.000 173

0.0
0.000 033
0.000 082
0.000 068

H,O Ground FCI (reference)
2~3

—75.0130
—75.0122

0.0
0.000 024

0,0
0.000 002

0.0
0.000 030

0.0
0.000020

First excited FCI (reference)
2~3

—74.5580
—74.5575

0.0
0.000 017

0.0
0.000004

0.0
0.000013

0.0
0.000 043

The values of these elements reported in Tables II and III
show that, after applying the corrections described in
Sec. IV A 2, the final errors are negligible.

B. The 4-RDM

The results concerning the 4-RDM are reported in this
paragraph. The test samples are the three lowest singlet
states of the beryllium atom. It should be emphasized
that the 4-RDM coincides with the density matrix of the
corresponding state in this case.

Two different kinds of calculations were performed. A
calculation where the 4-RDM was calculated by using
the 3-RDM as initial datum and a calculation where the
initial datum was the 2-RDM. As before, the initial ma-
trices were obtained from FCI calculations. These two
paths are represented in Table V by 3~4 and 2~3—+4,
respectively. In the last case the approximation of the 3-
RDM is just an intermediate step to calculate the final
approximate 4-RDM.

A few negative diagonal elements appeared. Setting
these elements to zero the trace errors were very small for
the ground and for the second excited states. In the first
excited state the trace error was small but not negligible
which is why a simple vector normalization was used in
this case.

The results obtained are reported in Table V and as can
be seen they are quite satisfactory. In the first excited
state of the beryllium atom the results are slightly worse
than those obtained with the path 2—+3.

V. CONCLUDING REMARKS

The numerical results reported here concern two very
different systems in their ground and excited states. We

think that these results have shown that a high-order
RDM can be approximated with a high degree of accura-
cy when at least one lower-order RDM is known. There-
fore, the idea described of solving the CSchE by applying
a self-consistent iterative procedure (see Sec. II) appears
to be a realistic one and is now being explored.

Obviously, a series of unknown difficulties may arise.
However, given the quality of results, it is reasonable to
expect that convergence may be achieved provided that
the initial matrices are chosen reasonably. We expect
that any 2-RDM obtained with a standard method such
as the Hartree-Pock will be satisfactory initial datum for
solving the CSchE.

There is a side result of this study: since an ensemble
X-representable 1-RDM may easily be built, the X-
representability problem for higher-order RDM's can be
given an approximate solution.
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APPENDIX: THE DERIVATION OF RELATIONS
(16) AND (17)

Let us consider the definition of the 3-RDM element:
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1

0'), 02, 0
g

(A 1)

Due to the Pauli principle two electrons with the same spin cannot occupy the same orbital and consequently this ma-
trix element can be rewritten as

1
D; „it=—, X g(b; b~~bjttbittbt~b„+b; bjttb& bt b,pb„) X

a&

(A2)

Now, using the anticommutation property of fermion operators and developing the sum over the remaining spin vari-
able,

3
ll t

X Xb bg bgbbtbb-l b +)
0]

2 b;bbbb(, bb , b„+b;„~P,b,btbbb bb , C)„.„

Now, let us consider the 3-RDM element,

1

&)0 pO'g

(A4)

which can be developed in a similar way

1
Djj t„t

=—,(& ~b; bjab~pbitsb, ~bta+b;pb~ b pbiitb„ttb„~X ) .

Taking into account (A3) and (A5) one finds that

3 = 3
Dijj,rll Dijj,1rl

(A5)
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