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Approximating q-order reduced density matrices in terms of the lower-order ones.
I. General relations
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The commutation-anticommutation relations of q-electron operators imply a set of N representability
conditions [A. J. Coleman, Rev. Mod. Phys. 31, 668 (1963)]for the corresponding q-order reduced densi-

ty matrices (q-RDM) [C. Valdemoro, An. Fis. 79, 95 (1983); in Structure, Interaction and Reactivity, edit-

ed by S. Fraga (Elsevier, Amsterdam, 1992)]. From these conditions, a general and closed-form relation

is obtained here. In this equation the part involving RDM's has the same structure as that involving

hole reduced density matrices. This relation is the basis of a method for approximating a q-RDM in

terms of the r-RDM's [C. Valdemoro, Phys. Rev. A 45, 4462 (1992)] with r & q. The derivation of this

relation can be simplified significantly by employing a graph method which is described here. These

graphs are in a one-to-one correspondence with the elements of the symmetric group of permutations.

PACS number(s): 31.20.Sy, 31.15.+q, 02.20.—a, 31.10.+z

I. INTRODUCTION

Contracting a q-order reduced density matrix (q-RDM)
into an r-RDM, where q ) r, is a well-known and
straightforward operation [1—6]. However, the informa-
tion carried by the r-RDM is in general insufficient to
determine the corresponding q-RDM in an unique way.
Nevertheless, according to the central idea of the
density-functional theorem [7—9] (DFT) the average local
density p(r) carries sufficient information about the
ground state of the system to determine its energy. It is
well known that the energy is the trace of the product of
the reduced Hamiltonian [10—14] and the 2-RDM of the
state of the system considered. Therefore, the DFT raises
the question whether all the relevant information about
the state of the system can be recovered from the 1-
RDM. This question was studied in a previous work
[15], where it was shown that from the knowledge of the
1-RDM an approximation to the 2-RDM could be ob-
tained. This method was used for calculating the value of
the energy of the three lower states of the beryllium
atom, and it was found to be highly efficient.

The main purpose of this paper is to extend the results
obtained in Ref. [15] to higher-order RDM's. Apart
from its formal interest, a general algorithm for approxi-
mating a q-RDM from the knowledge of the r-RDM with
r & q may prove to be very useful. In particular, if good
approximations to the 3-RDM and to the 4-RDM can be
constructed from a 1-RDM and/or a 2-RDM, they can
be used as initial data to build up a matrix representation
of the contracted Schrodinger equation [16—21] (CSchE).
In this way, the indeterminacy [20,22] of the CSchE can
be removed [16] and it is reasonable to expect that by
solving this new equation a better approximation to the
exact 2-RDM can be obtained. This idea will be de-
scribed in more detail in the following paper. Although
the idea itself is straightforward, its practical implemen-
tation needs a careful study of the computational ques-

tions involved. This part of the study is still being
developed.

The first step in attaining this practical aim is to derive
the general relation linking the q-RDM with the q-order
holes reduced density matrix (q-HRDM) in terms of the
r-RDM's and r-HRDM's with q ) r. This is needed in
order to proceed in a similar way as in Ref. [15].

This paper is organized as follows. In Sec. II the nota-
tion, the basic relations, and the rules for a graphical
representation are described. The 3-RDM N-
representability conditions following from the anticom-
mutation relation of 3-electron operators are derived in
Sec. III. In this same section, the advantages of working
with graphs which map the classes and operations of the
symmetric group of permutations S are shown. Finally,
the general and exact equation relating the q-HRDM
with q-RDM in terms of the r-HRDM's and r-RDM's
with r & q is inferred from the lower-order relations (Sec.
IV). In this general equation the part involving RDM's
has the same structure as that involving HRDM's. In the
following paper the relations reported here will be ap-
plied for approximating the 3-RDM and the 4-RDM in
several test samples.

II. BASIC PROPERTIES OF THE REDUCED
DENSITY MATRICES AND GRAPHICAL

REPRESENTATION

A. Properties of the RDM's

When using a spin-free Hamiltonian operator it is ad-
vantageous to employ the following definition for the re-
duced density matrix of order q corresponding to a state
~X ) of an X-electron system:

where E ' ' ' ' is the q-order replacement operator
J& J2 Jq
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(q
—RO) [23—26] defined as TABLE I. Graphs and operators correspondence.

Operators Graphs

0' )) 0'2, ~ ~ ~, 0

X. -b bJ

In relation (2) the indices i and j denote orbitals while
o. , o.z, . . . , o.

q
denote the spin functions.

Similarly, the holes reduced density matrices (q-
HRDM) are defined as

(3)

where

q~J& J2 J&
1 ),12, . . . ~ lq

0) 0'2, . . . , 0
b . b, b b; b;

(4)

2E&
3132

l2

22

is the q-order holes replacement operator (q-HRO).
An important property of these RO's is that they are

invariant when an upper index and its corresponding
lower index changes simultaneously their place in the list,
e.g. ,
qE'~'2'' ' ' ''e =qE'2'j 'q =qE'~, 'q'' '

2 E3122
4142

22

22

and this also holds for the q-HRO's.
As is well known the RDM's (as well as the HRDM's)

are positive, semidefinite matrices and our trace, in our
convention, has the value

Tr(~D ) = qDX
ll&l2& . . el jllil2&. . . &l q

(6)

In what follows, the monoelectronic subspace is as-
sumed to be finite and spanned by K orbitals. It follows
that the trace of the q-HRDM is obtained by replacing X
by 2K —X in relation (6).

B. Graphical representation

A graphical method similar to that previously used
[21,26] will be employed extensively in this work since it
simplifies the algebraic derivations involving RO's in a
significant way. The basic correspondences between the
different operators and graphs are given in Table I.

Finally, each Kronecker 5 function is represented by a
dotted line and a product of n deltas is represented by a
group of n disjoint dotted lines.

These graphs are very useful in order to visualize the
structure of complicated algebraic expressions. More-
over, there are two kinds of operator multiplication

I

which may be performed directly in graphical form.
Namely, there is a general and simple graphical rule for
multiplying two RO's [21,26] of arbitrary order and the
same rule applies to multiply two HRO's. We have not
yet been able to devise a general and suKciently simple
graphical rule for multiplying a p-RO and a q-HRO (or
vice versa), which would complete the list of fundamental
operations.

C. Graphical equations

Let us now consider the graph representations of two
important relations.

(i) When using graphs, the fermion anticommutation
relation

g[b&, b; ]+=EJ+EJ'.=25,

becomes

2

(ii) The algebraic development of the commutation re-
lation between pairs of fermion operators is already
slightly long to write, thus

0 l, 02

(9)

When the graph language is employed Eq. (9) becomes
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4
~ ~

+

(10)

and the symmetry of the relation can be easily recognized.
Although operators and their corresponding expectation values are different concepts, the graphs just described are

useful for representing both the RO's and the RDM's. To avoid confusion, an asterisk placed in front of a relation indi-
cates that the relation concerns RDM's (and HRDM's). That is, the expectation value of the corresponding operator
has been taken and the normalizing factor 1/q! has been applied. When these two operations have been performed re-
lation (10) becomes

2

+

1+
2

The mathematical form of relation (11) was transformed in Ref. [15] into an equivalent but more useful one, at least
for our purpose, by replacing the value of the Kronecker 5 functions by the expectation value of Eq. (8). The equation

1
2

shows an example of how such a transformation can be performed graphically. When all the 5's in (11) have been re-
placed accordingly, it takes the following form:

1

4
1

2

1

4
(13)
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Note that in relations (11) and (13) the terms appearing
on the right-hand side (rhs) can be associated with one of
the two classes, each with a single operation, of the sym-
metric group Sz. This correspondence between graphs
and the operations of the symmetric group of permuta-
tions can be easily seen. Indeed, let us number the points
of the graph

Let us now consider the upper point of index 1 and fol-
low the line starting there. This line ends at the lower
point of number 2; that is, 1 is changed into 2. The fol-
lowing step is to go to the upper number, i.e., to upper 2,
and follow the line starting there. It ends at the lower
point of number 1 and thus closes a cycle. The graph
therefore maps the transposition (12) (expressed in stan-
dard cyclic notation [27,28]) and corresponds to class [2].

When the same procedure is applied to the graph,
1J, lJ lj, lJ

d l 1 —0
2

ll —0
2

(123) corresponding to class [3] of S3. (Note that the con-
vention chosen in this work is that the lower indices are
the ones which are permuted).

In Sec. III similar graph expressions linking the 3-
RDM with the 3-HRDM will be given. These graphical
relations will be used to obtain a general closed-form ex-
pression in Sec. IV.

It is interesting to note that the scheme of orbital in-
dices appearing in the graph equation (13) is the familiar
Coulomb and exchange one. This is due to the antisym-
metry of the wave function or equivalently to the fermion
statistics described by the anticommuting rules of fer-
mion operators. Therefore, provided that the state func-
tion is antisymmetrical this equation will be fulfilled in-
dependently of the form of the state.

A particularly interesting case arises when the 1-RDM
is diagonal (i.e., represented in its natural orbital basis).
Indeed, when the off-diagonal elements of the 1-RDM are
null, the matrix equation (13) has only the following non-
vanishing elements:

and

dll dJJ
ij ji ij ji 4

dli djj0—
4

the lines go from 1 to 1 and from 2 to 2, both closing a
cycle. As a consequence, this graph maps the unit opera-
tion and corresponds to class [1 ].

In the case of the more complex graph

independently of the quality of the state of reference con-
sidered, that is, of the quality of the 1-RDM.

III. THE EQUATION LINKING THE 3-RDM
WITH THE 3-HRDM

the lines leading from 1 to 2, from 2 to 3, and from 3 to 1

close the cycle. Hence, this graph maps the permutation
I

The graph form of the relation linking the 3-RO and
the 3-HRO may be obtained by anticommuting three fer-
mion annihilators with three fermion creators and by re-
placing the algebraic symbols in this relation by the cor-
responding graphs. The result is

8(:: ) —4(:-. ':: + '-." +
~ ~

~ ~

~ ~ ~ ~ ~ ~ ~)+2( + " )
~ ~ ~ ~ ~ ~ ~ ~

4( + + +2( g + +
~ ~

~ ~

+

+ /

~ ~

~ ~

+ +

+2(::
(16)

Let us analyze the structure of the right-hand side of
relation (16). Observe that there are graphs including
three, two, or one 5 functions. Grouping the graphs hav-
ing the same number of Kronecker 6 functions into one
set, three diAerent sets are obtained. These sets may be
classified according to the order of the RO's as, none, 1-

I

RO, and 2-RO, since the sum of the number of 5 func-
tions and the order of the RO's must be three. Consider-
ing now, either the three-5 (no RO) set or the two-5 (1-
RO) set, it can be seen that the graphs map the opera-
tions of the symmetric group S3 and graphs belonging to
the same class have the same coefticients. It should be
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noted that the product of two Kronecker 6 functions and
an operator gives rise to a number of graphs which may
be considered as degenerate since they arise from the
same topological graph but any of the lines may represent
the operator. The same effect is encountered when taking
the product of a Kronecker 6 function and a 2-RO.
Indeed, this happens whenever the graph represents a

product of symbols of different nature.
It may seem puzzling that the single 6 set has only two

classes of graphs ([1 ] and [2,1]) and that some terms cor-
responding to the class [2,1] do not appear in Eq. (16).
The explanation can be found from the analysis of the
missing terms,

The first of these graphs represents 6;3 3 E ' '. By comparing it with the 3-RO operator E ' ' ', from which it mustJ2Jl J1J2J3'
arise, one sees that there is an incorrect matching of the spin variables on which the sum is performed. Therefore, this
term must be a forbidden one. The same mismatching of spin variables can be found in the other missing terms. This
point will be discussed in more detail below.

Let us now take the expectation value of Eq. (16) in order to obtain the relation linking the 3-RDM to the 3-HRDM.
By replacing the 5 functions according to relation (8) one does not yet obtain an expression in which the hole part has
the same structure as the particle one. Indeed, mixed particle and hole terms do appear. Nevertheless, when the value
of the 2-RDM is replaced, according to relation (13), in the terms which are the products of a 1-HRDM element and a
2-RDM element, the fo11owing final expression is obtained:

oooo 1+
m

= —-(
oooo 3

1+-(
3

+

1
) —-(

6

1—-(
3
1+ —(3

+ +

1 0 0 0

( go'12ooo
'a s'

)
0 0 0

+g + psi + pi.') (18)

Equation (18) shows clearly that, similarly to the two-
electron case [15], the particle graphs have a symmetric
counterpart in the hole graphs (the coefficients, the
graphs symmetry, and the number of graphs are the same
in the hole part of the equation as in the particle one).
Let us examine how the structure of this equation can be
classified according to the S3 group. As the holes part is
similar to the particles part, only this part will be con-
sidered. Two main type of graphs may be distinguished.

(i) The graphs involving a product of three 1-RDM ele-
ments which map the classes [1 ], [2,1], and [3] with the
coefficients —

—,', —,', and —
—,', , respectively.

(ii) The graphs involving the product of a 1-RDM ele-
ment and a 2-RDM element. Here class [3] is spin-
forbidden and the two other classes have coefficients with
opposite signs but with the same absolute value as in the
previous case. Since a 2-RDM element may, in principle,
involve any of the three possible pairs formed with the
supraindices and any of the three possible pairs of the
subindices, a structural degeneracy follows and the num-
ber of terms increases accordingly.

IV. THE GENERAL CASE

The cases q =2 (Sec. II), q =3 just described, and q =4
(which is not given here) can be generalized to any value

of q. Thus, from these particular cases it can be inferred
that the addition or subtraction of the q-RDM to or from
q-HRDM (for q odd or even) will give rise to an equation
which can be exactly expressed in terms of the r-RDM's
and r-HRDM's with r =1, . ~ . , q

—1. Moreover, in this
expression the holes part will have the same form as the
particles one.

The derivation of the general expression may be
decomposed into the two following steps.

(1) The derivation of the anticommutation-
commutation relations of q-electron operators, whose ex-
pectation value generates the equation linking the q-
RDM and the q-HRDM in terms of Kronecker 6 func-
tions and r-RDM's with r (q.

(2) The Kronecker 5 functions are replaced by their
values given in terms of the 1-RDM and the 1-HRDM.
Then, the expression thus obtained is transformed by us-
ing lower-order equations into the final equation where
the part involving HRDM's has the same structure as
that involving the RDM's.

In order to express the equations resulting from steps 1

and 2 in a compact form, it is useful to introduce two new
symbols, G-' and 9'- . These symbols are associated"c ~c

q q

with a graph or in most cases with a sum of graphs. The
meaning of these symbols is described in detail in the fol-
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TABLE II. Graphs and symbols correspondence.

Symbols Graphs

3~0 3~0
(123) ~ (12)(23)

~ ~ ~

3~0 3~0
~(132) ~(13)(23)

3 1
G(12) ~ + ~ +

+(12)

(12)

lowing subsections and may become clear by examining
the examples given in Table II.

As can be observed the graphs involving Kronecker 6
functions are denoted by the letter 6, while those which
are products of RDM elements correspond to the symbol
X The asterisk placed in front of the graphs has the
same meaning as previously, i.e., the symbols G and V
represent RDM terms, not operators. Note that the last
diagram of 9~&2~ is spin forbidden.

A. The general anticommutation-commutation relation

Let us start by considering the first two lines in Table
II. According to our notation, the general order of the
term (q) is given by a left-side superscript, i.e., G. The
right-side superscript (i) indicates the order of the RDM
appearing in the term. Since these two particular exam-
ples involve only Kronecker 6 functions, the order i of
the RDM must be zero. The lower index, which generi-
cally is denoted Pc, represents the permutation (P) of
the indices belonging to class (C ) of the group S~. Thus,
the permutations applied to the lower indices in these ex-
amples are the two diA'erent permutations belonging to
class [3] of the S3 group.

The third line of Table II shows a slightly more com-
plex case. As before, the general order of the term is
three but here, the right-side superscript specifies that the
term involves a 1-RDM element [consequently it involves
(3-1) 5 functions]. As has already been discussed, the line
representing the 1-RDM may be any one of the three
graph lines and hence three graphs appear in this term.

Using this notation the general expression for q ) 1

may be written as

&c
(20)

3D&2 &3&4

&2/4/3

The spin variables associated to this graph are

0'i 672 0 3 0'4

Oi 02 03 04

The index p& denotes the parity of the permutations be-
q

longing to class Cz (i.e., their resolution in terms of
transpositions).

Thus, in the general case this addition or subtraction is
partitioned into terms with q 6 functions, terms with

q
—1 6 functions and an element of the 1-RDM, terms

with q
—2 5 functions and an element of the 2-

RDM, . . . , terms with a single 5 function and an ele-
ment of the (q —1)-RDM. It can be observed that for an
even q (therefore, the equation derives from a commuta-
tor), the sign of the left-hand side (lhs) of relation (19) is
negative. In this case, the highest value of i is odd and
then the last value of the factor (

—1)' appearing in the
rhs is negative. For an odd q (the equation derives from
an anticommutator) the sign of the lhs is positive and
that of the rhs factor ( —1)' for the highest value of i is
positive.

It must be stressed that relation (19) includes the spin-
forbidden terms which must be removed from it. This
can be done easily by analyzing the graph structure. Let
us consider an example in detail,

'I'2 . . 'q ~&~2 . ~q 'j'2 . . 'q»~2 . Jq

2q q
—1 ~

t

g ( —1)' —'. QI c g qGp' (19)

Since in the 3-RO generating the 3-RDM element ap-
pearing in this term the upper and lower spin indices
should be ordered in the same way and they are permut-
ed, this term is forbidden. Let us now consider

where
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Here, the spin mismatching is only apparent because the
5 requires that o.

&
and o4 be equal and therefore the 3-

RDM element has the right order of spins. As a conse-
quence, this term is allowed.

The need to remove the spin-forbidden terms from (19)
complicates slightly the procedure since, with the excep-
tion of the 1-RDM graphs, all the other graphs should be
analyzed. Fortunately, only a simple inspection of the
graph is required. Indeed, one must just consider the E'-

RDM lines of a graph (for i ) 1) and verify that the
partners of the vertices joined by an oblique line do not
take part in the i-RDM graph (which is only a part of the
complete graph).

The application to the case q =4 of Eq. (19) is given in
the Appendix.

B. Transformation of Eq. (19)

In Table II two examples of the new symbol ~P'- are~c
q

given. These symbols represent the sum of products of
I

(q —i) 1-RDM elements and an element of the i-RDM.
The graphs represented by this symbol are associated
with the permutation I'c (belong to class C of the S
group).

Having replaced the Kronecker 5 functions by Eq. (8)
in relation (19), the mixed holes-particles products can be
eliminated by substituting the 2-RDM elements, the 3-
RDM elements, . . . , the (q —1)-RDM elements by their
values deduced from the lower-order equations in which
no 6 functions appear. In the resulting expression the
form of the holes part is the same as that of the particle
part (i.e. , the holes part has the same coe(5cients with the
same or opposite sign depending on whether q is odd or
even, and the same symmetry of the graphs as those in
the particle part). Although up to q =4 it is still simple
to perform all the graphical operations, for higher orders
it is more convenient to use the generalized closed-form
expression which may be inferred from the four lower-
order cases,

q q 1
i&i , 2.

. . , i;j&j , 2.
. . ,j — i&i 2,

. . . , i;j&j 2,
. . . ,j ( )

~
X c P +p

q
—1

1)q
—i+1

L=2
QI c +~9p +(hole part) .

q' c q~ c
~c

q

(21)

The spin-forbidden terms must be eliminated from (21).
This can be done in the same way as Eq. (19) but now the
1-RDM elements assume the role that is played by the 5
functions in Eq. (19). The "hole part" is a sum of terms
which are identical to the particle one [given explicitly in
(21)] except that each q

—RDM element is replaced by a
q-HRDM one. The application of Eq. (21) to the case
q =4 is given in the Appendix.

In Ref. [15] the formal similarity of the holes and the
particle parts was studied for q =2 and exploited in order
to approximate the 2-RDM when knowing the 1-RDM.
The discussion on how Eq. (21), which after removal of
the spin-forbidden terms is exact, may be used to approx-
imate higher-order RDM matrices is the subject of the
following paper.
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APPENDIX: DERIVATION OF
FOURTH-ORDER RELATIONS

Table III summarizes the most relevant information
for our purposes about the symmetric group S4 and the
values of the coe%cients I c . By taking into account the

4

data given in this table, it is now an easy matter to obtain
the fourth-order relations according to (19) and (21).

I et us consider the commutation relation of the four-
electron operators or equivalently its expectation value
divided by 4!. According to (19) it can be expressed as
(only the terms corresponding to the first permutation of

TABLE III. Classes, parities, and permutations of the symmetric S4 group. The coefficients I c are
4

also given.

JPc4 rc

[41

e
(12), (13), (14), (23), (24), (34)

(12)(34), (13)(24), (14)(23)
(12)(23), (13)(23), (12)(24) (14)(24),
{13)(34), (14)(34), (23)(34), (24)(34)
(12){23)(34), (12}(24)(34), (13)(23)(24),
(13)(34)(24), (14)(24)(23), (14)(34)(23)

1

2
1

4
1

4

1

8
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each class are shown)

4D 4D
1 2 3 4'~1~2~3~4 1 2 3 4'~1~2~3~4

+T Ge T( G(12)+ )+ 6( 6{12)(34)+ + 6( G(12)(23)+ {2( 6(12)(23){34)+

T Ge 6( G(12) + ) {2( G()2)(34) + ) &z( G()2)(23) + )+ zc( G(12)(23)(34)

+T Ge 6( G(12) + )+ )p( G(12)(34) + )+ (p( G{12){23)+
)463+ {(4G3 +. . . ) (Al)

where the symbols 6 have been explicitly written.
Finally, let us consider the equation relating the 4-HRDM and the 4-RDM where the terms involving HRDM ele-

ments have a symmetric counterpart in the terms involving RDM elements. According to (21) it can be expressed as
(only the particle terms corresponding to the first permutation of each class are developed)

'D . - -'D
1 2 3 4' 1 2 3 4 1 2 3 4' 1 2 3 4

+
8 +e {6( +(12)+ )+ gP( +(12){34)+ )+ 32( +(12)(23)+ '' ) 64( +(12)(23){34)+

{2 &8+24( &(12)+ ' ' ' ) 4{{( &(12)(34)+ ' ' ) 48( &(12)(23)+

+ &~Pe
~ ( V()2)+ ' ' ) (hole pait) (A2)

%'hen the structure of the permutations becomes complicated and the order of the RDM's is large, the number of
spin-forbidden terms increases appreciably. It can be shown that in this example all the 2-RDM terms of the class [4]
and all the 3-RDM terms of the classes [2 ], [3,1], and [4] are spin forbidden. These spin-forbidden classes have been
omitted in (Al) and (A2). In the remaining classes some of the terms are also spin forbidden and therefore the corre-
sponding graphs must be analyzed and spin-forbidc}en terms must also be eliminated.
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