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Atomic g; factors have been calculated for Li, Bet, and Ba® with accurate relativistic wave

functions obtained in the coupled-cluster single- and double-excitation approximation.
relation due to the Coulomb as well as the Breit interaction is included.

Cor-
The results are

—2.002 301 58(20), —2.002 262 77(50), and —2.002 491 1(30) for Li, Be*, and Ba™, respectively, which
agree well with the experimental results —2.002 301 00(64), —2.002 262 36(33), and —2.002 490 6(12).
The inclusion of the Breit interaction in the wave functions gives significant contributions to the

final results.

Pacs number(s): 31.30.Jv, 31.20.Di, 31.20.Tz, 32.60.+i

I. INTRODUCTION

The development during recent years of sophisticated
relativistic methods for many-body systems has given
new tools for the treatment of various atomic proper-
ties. Among these is the study of the deviation of the
magnetic moment for a bound )/, system from that of
a free electron. This property is of special interest since
it is of completely relativistic origin and thus is a crucial
test of the ability to treat the combination of relativistic
and many-body effects.

The study of Zeeman splittings has a long history in
precision spectroscopy and due to the recent develop-
ment of ion-trap techniques experimental g; factors for
ions are now available, including heavy systems as Bat
[1,2] and Hg* [3]. Bound-state corrections to the elec-
tron g factor have been studied in detail in hydrogen [4,
5] and helium [6, 7] by Grotch and Hegstrom. Expres-
sions for the contributions to the g; factor in the non-
relativistic limit were given in [6]. In [7] it was demon-
strated how the very accurate results obtained by Pekeris
could be employed directly to give an essentially exact
value for the helium g; factor, including nuclear-mass
corrections and bound-state radiative effects. Lithium
has been treated by Hegstrom [8] and Veseth [9, 10].
These calculations were performed in the nonrelativis-
tic limit and in Refs. [8, 9] the effect of correlation in
the wave functions was neglected. In Ref. [9] Veseth
treated all the first-row elements as well as sodium in the
framework of spin extended Hartree-Fock theory. This
method includes polarization but neglects correlation. In
the later work [10] many-body perturbation theory was
applied to the alkali metals up to rubidium and to the
first-row elements. All third-order contributions, two or-
ders in the Coulomb interaction and one order in the
magnetic perturbation, and some fourth-order contribu-
tions were included. Dzuba et al. have made relativistic
calculations on some heavy elements [11], where spin-
polarization effects are accounted for. In a very recent
calculation on lead and bismuth [12], second-order corre-
lation, and some classes of higher-order correlation were
also included.

A careful treatment in the nonrelativistic limit can
usually provide very good results for light systems even
when, as in the case of bound-state corrections to the
g; factor, the studied property is a completely relativis-
tic phenomenon. Nevertheless, a relativistic formalism
should be employed for heavier systems. As pointed out
by Flambaum, Khriplovich, and Sushkov [13] important
contributions to the Cs g; factor arise from terms which
in a nonrelativistic formalism, where the spin-orbit in-
teraction is included to lowest order only, would cancel
exactly. As discussed by Veseth [10], in connection with
his rubidium calculation, the difficulties to account com-
pletely for the departure from LS coupling may also con-
stitute a severe problem for heavy systems. The nonrel-
ativistic treatment, which even without these consider-
ations includes a number of cumbersome operators, will
then pass the limit where it can be used conveniently.

In the present work we have applied a fully rela-
tivistic treatment to a few systems. The g; factors
have been calculated with all order-correlated wave func-
tions obtained in the coupled-cluster single- and double-
excitation (CCSD) scheme implemented by Salomonson
and Oster [14]. As described in Refs. [15, 16] the di-
agonalization of a discretized one-particle Hamiltonian
yields a finite discrete basis set which is used to solve the
coupled equations in the CCSD method. The method
used to obtain a finite single-particle spectrum has sim-
ilarities to the B-spline method devolped by Johnson,
Blundell, and Sapirstein [17]. The many-body treatment
used here has previously been applied nonrelativistically
to study properties such as hyperfine structure, isotope
shifts, and transition probabilities in Li [18], Na[19], and
K[20]. These represent the most recent extensions of the
coupled-cluster approach developed by Lindgren and co-
workers [21-23]. The relativistic coupled-cluster scheme
has been applied to helium- [16, 24] and berylliumlike
systems [25, 26] and in a limited form to parity-violating
phenomena, hyperfine structure, and isotope shifts in Cs
and Tl [27-29]. Just as in the treatment of the forbidden
M1 transition 235;-11S, in heliumlike argon [24] it is
in the present case necessary to include the effect of the
Breit interaction in the wave functions since it affects the
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result in leading order.

Here we present calculations on Li, Bet, and the re-
cently measured ion Bat. Section II discusses the rela-
tivistic operator for the interaction with a magnetic field
and explains how it can be expressed in a convenient
form. The correct treatment of negative-energy states is
penetrated and finally contributions from the Breit inter-
action and of radiative origin are discussed. The method
of calculation is described in Sec. III and the results are
given in Sec. IV.

II. THEORY

The interaction between the atom and a magnetic field
is considered through the addition of a term

=) hl'=> eco;-A; 1)
i
to the relativistic no-pair Hamiltonian
B Y h-e XV, ®
i<j
where
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The two-particle term V;; includes the Coulomb as well
as the Breit interaction surrounded with projection oper-
ators onto positive-energy states. The additional contri-
butions from virtuals pairs will be considered in Sec. IT A.
In Egs. (1)—(3) radiative effects are omitted. In Sec. IIC
the extra terms which are added to the interaction term,
Eq. (1), as well as to the Hamiltonian without external
fields, Eq. (2), when a QED treatment is applied, will be
discussed.

If the magnetic field is assumed to be homogeneous
over the extension of the atom the vector potential A
can be written

Az_%(pr) (4)
and thus
h'n:—%c(axr)-Bz%Ei 2r{aCl}1'B~ (5)

Classically the energy for a magnetic dipole in a magnetic
field is given as the scalar product between the dipole and
the field. The magnetic dipole created by the motion of a
charged particle is proportional to its angular momentum
and we write

E=——;L-B=—gj-2—3 B——gJ“hB'-B (6)
where the g; factor, with a classical value of —1, has been
introduced. Equations (5) and (6) can now be combined
to give an expression for the g; factor:

g; (§) = —<mcx/§ir {aCl}1>. (7)

When Eq. (7) is used the result for a free electron is

gDirac = —2. This is also the bound-state value for an
s-electron in the nonrelativistic limit. Corrections to
this value have two main sources. First, radiative ef-
fects, omitted in Eq. (7), give the Schwinger correction
of approximately —0.002 319, for a free electron. Second,
the expression (7) gives relativistic corrections to the g;
factor for a bound electron. These scale as Z2a? and
are of the order 10™4 or 10~ in light systems. Finally,
there are also bound-state radiative corrections. These
are smaller than the bound-state relativistic corrections
by one order of the fine-structure constant and will be
briefly discussed in Sec. IIC.

If the expression in Eq. (7) is used directly, together
with relativistic wave functions, it will thus give the non-
relativistic factor of —2 and, in addition to that, the
bound-state corrections. Due to the relative smallness
of these corrections the requirement on the numerical ac-
curacy will be very high. To get three significant fig-
ures for the corrections nine significant figures have to
be produced. In addition, the absence of nonrelativistic
bound-state corrections is not explicit in Eq. (7), but has
to be achieved by numerical means. It would certainly
be desirable to have an operator which instead gave the
corrections directly. To some extent this can be achieved
as follows.

When the magnetic Hamiltonian is rewritten as

=[P, H] + H*® (8)

an expectation value of H™ between eigenstates of the
full Hamiltonian H can be replaced by the expectation
value of H*®. Such effective operators have been widely
used in connection with parity- and time-reversal violat-
ing properties, where they were developed in particular
by Sandars [30, 31]. Here a wise choice of the operator P
is one that results in an operator H°¥ which is separable
in one part which produce the nonrelativistic value and
one part which gives the relativistic bound-state correc-
tions. If P is chosen as

= 2mc Z Bia; - Ay, (9)

the magnetic interaction is readily written as

h:n = ecw; * A,‘

= 2m [,Bzaz AuH]+“—IBz{0"L Ao pz}

e
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i<j

The last term involves the potential and would be zero
for a local Coulomb potential as V;; = e/(4megr;;). How-
ever, when the electron-electron interaction is properly
surrounded with projection operators, special care has
to be taken, as will be discussed below. Further, when
the Breit interaction is included in V;; the last term will
certainly be nonzero. This will be investigated below as
well. The first term on the right-hand side of (10) gives



no contribution to an expectation value and we consider
now the second term in (10). If Eq. (4) is used for A this
term is written

e e
—Z—ﬁﬂ{a-A,a-p}z-éEﬁ(l-i-ha)-B. (11)

The contribution to the value of g;(j) from this term is
thus

(@ [l =B 25— 1) || 2x)

The fact that the functions ® are normalized has been
used to rewrite the integral over the large components to
an integral over the small component plus a pure angu-
lar term which gives the nonrelativistic result. Thus the
two last terms on the right-hand side of (13) gives the
relativistic bound-state correction to the g; factor in the
single-particle approximation. The fact that the correc-
tion is directly proportional to the integral over the small
component was first found by Margenau [32].

In the general case the g; factor is evaluated with
many-electron wave functions and hence nondiagonal ma-
trix elements are calculated. It is then convenient to
rewrite Eq. (12) further.

(=BQ2j—1) =—(2)) —((B-1)2j - Bl). (14)

For an s state the nonrelativistic result g; = —2 is thus
given by the first term and the two remaining terms will
give the bound-state corrections. The second term gives
contributions of order o without any large cancellations.
The last term, the Sl operator, mixes states with differ-
ent j but the same [ value . In the nonrelativistic limit
the expectation value of Gl is zero for any s-state since it
has rank-one in the orbital space. In a relativistic calcula-
tion the contributions from states with different j values
but the same ! value for the large component will cancel
to leading order leaving only contributions of order o?2.
However, only the correlation part of the calculation will
be affected by these cancellations and the numerical un-
certainty always connected with large cancellations has
therefore a limited effect on the total uncertainty.

A. Contributions from negative-energy states

Let us now turn our attention to the last term in
Eq. (10). The commutator would be zero for the local
Coulomb potential V;; = e/(4megr;j). As is well known,
such a potential cannot be used to construct a relativis-
tic many-body Hamiltonian. The normal procedure is
instead to construct the no-pair Hamiltonian with the
Coulomb potential projected onto positive-energy states,
i.e., surrounded with projection operators. Then the
the last commutator in (10) will no longer disappear.
However, the result of such a projection onto positive-
energy states is that negative-energy states are com-
pletely neglected, but negative-energy solutions represent
positron states which have to be included properly. We
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(=B +ho)) =(-B(2i-1) (12)

as follows from Eq. (6). This operator deviates from the
pure nonrelativistic operator only by the presence of the
[ matrix.

If the expectation value of (12) is taken between single-
particle orbitals in any approximation, the nonrelativistic
result can easily be separated out:

=& 2 =L &) f )| )+ (=rll 25— LI —r)g(r) | g(r))
—(l2-tlsy+{sl2-1lr+ (=21l -r)}{g(r) g (r)- (13)

—

will see that the contributions from the last commutator
in (10) when projection operators are inserted around the
Coulomb interaction will, to leading order, be canceled
by positron contributions. Similar situations have pre-
viously been shown to arise also for other operators [31,
33

First note that the original operator for the interac-
tion with a magnetic field, Eq. (1), is nondiagonal with
respect to the large and small component of the relativis-
tic wave function. As an example of how this will affect
the perturbation expansion consider the addition of a sec-
ond perturbation, e.g., the Coulomb interaction with an
other electron. As illustrated in Fig. 1(b) it is then pos-
sible to get an admixture of negative-energy eigenstates
to the unperturbed Hamiltonian. Due to the nondiago-
nal nature of the operator (1), Fig. 1(b) will contribute
in order a2Z and due to the non-existence of nonrela-
tivistic bound states corrections the contributions to dég;
from Fig. 1(a) are of the same order. Thus negative-
and positive-energy states are equally important. This

(a) (b)

FIG. 1. Diagrams that illustrate the situation when two
perturbations are taken into account. The line with a triangle
in one end represents the interaction with the magnetic field
and the other line represents the Coulomb interaction. Dia-
gram (a) corresponds to the inclusion of positive-energy inter-
mediate states (up-going line), as defined by the eigenstates to
the unperturbed Hamiltonian, and diagram (b) corresponds
to negative-energy states (down-going line). Due to the non-
diagonal nature of operator (1), which describes the interac-
tion with the magnetic field, diagram (b) will contribute to
the g; factor in order o®Z. Due to the nonexistence of non-
relativistic bound-state corrections, the contributions to 6g;
from diagram (a) are of the same order. Thus negative- and
positive-energy states are equally important, which is true for
the whole perturbation expansion of (1).
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is an unusual situation which arises when a completely
relativistic phenomenon is described by a nondiagonal
operator. The conclusion is thus that in the case of the
original operator, Eq. (1), an error in order a? will be
made if the negative-energy eigenstates to h, Eq. (3), are
neglected in the perturbation expansion.

Consider now the last commutator in Eq. (10) and
the question of how it will enter in a correct treatment
of the negative-energy states. The commutator will be
examined when the expectation value is taken between
eigenstates to the projected Hamiltonian and afterwards
positron contributions will be considered. The relativis-
tic Hamiltonian (2) with a Coulomb potential projected
onto positive eigenstates of A is written

2
_ ‘ € iyt Loyt
H= §i it g Zj: SV R (15)

The projection operators AT are defined to give zero
when operating on negative-energy states but unity when
applied to positive energy states. The last term on the
right-hand side of Eq. (10) can now be written

2
—° |Bia - Ay, AFAT—5 A+t
2me [ﬁ’al Au A dmeory; AT ]
=20 M [Bios - Au AT e? AFat
T 2me g T Yregry t T
byt € - : +
HATA dmeori; [ Bicks - A Aj ¢ (16)

where the fact that 1/r;; commutes with Sa- A has been
used as well as the relation

AT+ =1.

When an expectation value of Eq. (16) is taken between
eigenstates to (15) the contributions

e
2me Z <\Il++

s—

e2

= N e Th) . ++
47r507'ij S; ><s1, |/61a1 A, I )\ )+H.c.

(17

are added, where | s;7) denotes a negative-energy state.
The presence of a Hermitian-conjugate term, arising from
the first term on the right-hand side of Eq. (16), is in-
dicated in (17). Since Bo - A is anti-Hermitian it enters
with opposite overall sign.

Now the hitherto neglected contributions from the cre-
ation of virtual electron-positron pairs have to be consid-
ered. This corresponds to the addition of terms

2 - -
(T | gt | s7)(s7 | coous - Ay | TH)

2 AB

s—

+H.c.

(18)

The energy denominator in Eq. (18) will be approxi-
mately 2mc2. The only effect that the presence of the

f matrix in (17) has on the leading-order contributions
is a change of, which can easily be seen by examining (17)
in detail. Thus contributions from Eq. (18) are, to order
o?, equal but opposite in sign to the contributions from
Eq. (17) and they will cancel each other.

The whole discussion above is due to the definition
of positive- and negative-energy states in terms of the
Hamiltonian h. If instead the definition was made from
the Hamiltonian h + h™, neither the contributions (18)
nor the nonzero result in Eq. (16) would appear. Fig-
ures 1(a) and 1(b) would then be calculated as expec-
tation values of the Coulomb interaction with magneti-
cally perturbed orbitals. Obviously a magnetically per-
turbed orbital with positive energy includes admixtures
from negative as well as positive-energy eigenstates to the
Hamiltonian without external fields. This is due to the
fact that the whole sum is required to form a complete
set.

The conclusion is then that Eq. (12) can safely be
used between eigenstates to the Hamiltonian (15) and
the last commutator in Eq. (10) disregarded as long as
only Coulomb interaction is considered.

B. Contributions from the Breit interaction

Consider again the original operator Eq. (1). As men-
tioned this operator is non-diagonal with respect to the
large and small components of the wave function. This
is also true for the Breit interaction

B, = — 82 l oy + (ai'rij) (aj'rij) (19)
“ 4meg 2 Tij rfj ’

which is included in the two-particle term eVj; in Eq. (2).
The combination of the magnetic interaction, Eq. (1),
and the Breit interaction, Eq. (19), will then contribute
in order o? provided negative energy states, as defined
by h, are considered. These contributions can be written

T (UH* | By | 57 )(s; | cea - A; | THY) +He
—

AE
(20)

As in Eq. (18) AE is approximately 2mc? and the whole
expression is of order o2. Contributions from positive-
energy states could of course also be added though they
will only contribute in order a*. Although negative-
energy eigenstates to h appear in Eq. (20), the use of the
Breit interaction in the low-energy limit is justified. This
is because it will effectively be evaluated between posi-
tive eigenstates to h 4+ hA™, although, as was discussed
in Sec. IT A, negative- as well as positive-energy eigen-
states to h are needed to express them. A more detailed
discussion can be found in Ref. [34].

In Eq. (10) the magnetic interaction operator, Eq. (1),
was rewritten in terms of a commutator with the Hamil-
tonian and an effective operator. To continue that ap-
proach the presence of the Breit interaction in the Hamil-
tonian has to be considered and additional terms are ex-
pected to enter in the effective operator. These new terms
will be found when —eV;; in the last commutator on the



right-hand side of (10) is identified with B;;. The com-
mutator will now be examined, but instead of evaluating
it explicitly a sum over all states

1=>"|s)s]| (21)

all

is inserted between the operators. Note that only the
negative-energy states s~ contribute in order a?. The
leading contributions to the commutator are then

-3 (TH* | Byj | s; )(s; | ceBicui - Ay | THY)

22 + H.c.

(22)

The denominator AE in Eq. (20) is approximately 2mc?
and the B matrix in Eq. (22) introduces a change of sign
in the leading-order contributions. Thus the results from
Eq. (22) and (20) are equal to order @? and either can
be used to calculate the effect of the Breit interaction.
In the calculations presented in Secs. III and IV we have
evaluated the effects of the Breit interaction directly as in
Eq. (20). The contributions to the g; factor originating
from the Breit interaction corresponds to the diamagnetic
terms in nonrelativistic calculations.

C. Radiative effects

When radiative processes are taken into account the
interaction between the atom and the external magnetic
field is affected in several ways. The most important is
the addition of a term

eh [«
TMM='2‘T—n(-2;—"'),30"B (23)
to the expression for the interaction between the atom
and the magnetic field, Eq. (1). The expression in
parentheses is the anomalous part of the magnetic mo-
ment (AMM) for a free electron as found by Schwinger.
Equation (23) is exactly of the same form as the spin-
dependent term in Eq. (11) and can be treated together
with that term. The free-particle Dirac result gpirac =
—2 as well as the bound-state corrections are affected in
relative order a. There is no similar correction to the
I-dependent term. As was pointed out by Hegstrom [6]
this has the effect that the anomalous part does not fol-
low the Dirac part and when the bound-state corrections
are calculated it is then not permitted to simply replace
the free-particle Dirac results gpijrac = —2 with the ex-
perimental value. The lowest-order contributions to the
bound-state corrections when Eq. (23) is considered is
3x 1078 for Bat and Be™ and 1 x 10~8 for Li. Since this
is below the experimental uncertainty and since there are
also other bound-state corrections of radiative origin of
similar magnitude, see below, no bound-state radiative
corrections are included in this study, but an estimate of
their possible contribution is included in the theoretical
error estimate.

Second, several terms, which contribute to the Lamb
shift, will be added to the Hamiltonian without external
fields when radiative processes are taken into account and
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these may indirectly affect the interaction with an exter-
nal magnetic field. Consider first the terms which contain
the anomalous magnetic moment. The most important
of these can be written [35]

hamMm = =— ( ———— ) Be - [p, V] (24)

and the expectation value of the magnetic interaction
term in Eq. (1) is changed in order a3 when evaluated
with wave functions which include the effect of (24). This
can be seen from the commutator with the full Hamil-
tonian which was used in (10) to obtain the effective
Hamiltonian. When the contribution (24) is added to
the Hamiltonian an extra term will appear on the right-
hand side of Eq. (10):

SRy = —2i (_6_)2 (_a_ —_ ) o-(Ax[p,V].
(25)

To examine the order of magnitude of Eq. (25) it is con-
venient to consider the nuclear part of the potential only.
When Eq. (4) is used for A it is then possible to write

m 1 «a e Z
Ohivm = — 2mc? (-2-; - ) (_ 4meg ?)
eh (o -r)(r-B)
X o {a B 2 . (26)

The first term in Eq. (26) is the Schwinger correction
multiplied with the ratio between the potential and 2mc?
times the nonrelativistic result. With hydrogenlike func-
tions this is easily evaluated to 3 x 1078 (Z/n)? relative
to the nonrelativistic g; factor, where n is the principal
quantum number. This is one order of magnitude smaller
than the present experimental accuracy for lithium and
a factor of 3 smaller than the accuracy for Bet. Also for
Bat this effect is considerably smaller than the experi-
mental error when Z is replaced with a realistic estimate
of the Z.g acting on the 6s electron. The presence of the
contribution in Eq. (25) was originally discussed in {5].

Further, the possibility for corrections to g; factors
originating from self-energy and vacuum-polarization
graphs should be considered. These have been studied
by Hegstrom [6], who found that no such contributions
exist for s states.

III. METHOD OF CALCULATION

The calculation is essentially performed in three steps.
First a wave function, an approximation of an eigen-
state to the Hamiltonian (15), is constructed using the
coupled-cluster single- and double-excitation approach,
which is briefly described below. With this wave function
the bound-state corrections to the g; factor are evaluated
directly by invoking operator (12) and the procedure for
removing the nonrelativistic result which is indicated in
Eqgs. (13) and (14). The two next steps are due to the
effects of the Breit interaction which was penetrated in
Sec. II B. The contributions that are to be considered are
shown in Eq. (20). The first of these steps is to calculate
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the zeroth-order wave function with the Dirac-Fock-Breit
(DFB) [34] approximation rather than with the Dirac-
Fock (DF) approximation and the perturbation expan-
sion of the Coulomb electron-electron interaction in the
CCSD approach is then made from this starting point.
Operator (7) is then evaluated with the two approaches
and the difference is one important contribution to the g;
factor from Eq. (20). The last step is to include the Breit
interaction, Eq. (19), in the CCSD expansion. Earlier
this has been done in [24-26] where the Breit interaction
was added to the Coulomb electron-electron interaction
in Eq. (15), which implies that the two-particle operators
are projected onto positive-energy states. Since the order
a? contributions to the g; factor from the Breit interac-
tion comes from Eq. (20), care must be taken to include
also negative-energy states and ensure that correct en-
ergy denominators enter in the diagrams which are to
be included in the matrix-elements calculation. This is
further discussed in Sec. IIIB.

A. Wave functions

The wave functions used in the calculation of the ma-
trix elements of the operators (7), (12), and (14) were
obtained using the CCSD approach, in which the exact
wave function | ¥) is written in terms of a zeroth-order
wave function | ¥°) and a cluster operator S as

| ) = {exp (5)} | ¥°), (27)

where the curly brackets denote normal ordering with
respect to the occupied states [36]. We use intermediate
normalization, i.e., (¥ | ¥°) = (¥° | ¥O) = 1. The
cluster operator is separated into n-body parts

S =81 +8+: (28)

and is, in the case of CCSD, truncated after double exci-
tations. The implementation of the CCSD scheme used
here is described in [14]. The graphical equivalent of (28)
is shown in Fig. 2. The S; cluster includes only ex-
citations into positive-energy eigenstates of the zeroth-
order Hamiltonian to avoid spurious contributions from
the vacuum. For the S; cluster, however, the contri-
butions which involve negative-energy states enter with
correct energy denominators and have been included in
the calculation. Although many physical effects are only
negligibly affected by negative-energy states, they are es-
sential to obtain the correct contributions to the g; factor
from the Breit interaction as was discussed in Sec. II B.

For Li and Be™' the single- and two-particle clusters

S1 SZ

FIG. 2. The diagrammatic representation of the CCSD
approximation. The cluster operators S; and S; represent
the one- and two-particle interactions, respectively.

were evaluated in a spatial grid containing 91 points.
The grid size dependence was checked and found to be
insignificant for the numbers of figures given in Sec. IV.
The two-particle clusters were then treated by the use of
pairfunctions as described by Martensson [37] and Lind-
gren and Morrison [21]. The spherical expansion of the
Coulomb and the Breit interaction was truncated after
kmax = 6. Also the extrapolation of k values gives negli-
gible contributions.

For the substantially larger system Bat it was nec-
essary to introduce certain approximations. In Fig. 3
all core electrons are included in the second-order coun-
terpart of the diagrams, except for the diagrams in
Figs. 3(m) and 3(n). However, the interactions between
the n=1, 2, and 3 electrons and the other core elec-
trons were neglected in the iteration scheme as well as
in the rather unimportant diagrams in Figs. 3(m) and
3(n). This approximation was checked by isolating the
inner core-core contributions to the diagram in Fig. 3(a)
and these were found to amount to only 3% of the whole
diagram, i.e., 0.2% of the total result. The clusters were
evaluated in a spatial grid containing 71 points, but the
largest contributions, Fig. 3(a) and the lowest-order con-
tributions to Fig. 3(e), were calculated with more grid
points. Both for the Breit interaction and the Coulomb
interaction between the core electrons the spherical ex-
pansion of the electron-electron interaction was trun-

(i) ) (k) (1)

<

(m) (n)

FIG. 3. The leading terms of the expression (29) for a
one-particle operator and a one-valence system, using the def-
initions of Fig. 4. The line with a triangle in one end repre-
sents the interaction with the magnetic field and the filled
box denotes that the Breit interaction, Eq. (19), is included
in the cluster operators. Hermitian conjugates and exchange
versions are not shown. Up-going lines with single (double)
arrows denote excited (valence) states. Down-going lines de-
note hole states.



cated after knax = 2. This limit was also used for the
interaction between the valence electron and the n = 1
and 2 electrons. For the n = 3, 4 and 5 shells the core-
valence interaction was truncated after knmax = 3, 4, and
5, respectively. The truncations may introduce an uncer-
tainty of as much as 10% of the correlation contribution,
but has a rather limited effect on the total uncertainty
as will be discussed below.

J

(w3 | {exp (5]) Jo{exp(s0} 199)
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B. Matrix elements

The relativistic version of the procedure described by
Maértensson-Pendrill and Ynnerman [18] was employed
to evaluate the matrix elements of the operators (12)
and (7). The expression for a matrix element of an oper-
ator O using the coupled-cluster wave functions is given
by

(% | {exp (S})} {exp (Sf)} | ¥9)1/2(w? | {exp (S’J)} {exp (SZ)} | \119)1/2.

The denominator in (29) is due to the use of non-
normalized wave functions. The leading terms of this
expression in the case of a one-valence system and a one-
particle operator is shown in Fig. 3. In Fig. 3(a) the
DFB contribution is included, through the use of DFB
orbitals [34], as well as the effect of the S cluster for the
valence orbital; see Fig. 4(a). In Figs. 3(b) and 3(d) the
contributions from the S; cluster for the core orbitals are
represented. The Breit interaction is included in the di-
agram in Fig. 3(¢), in which the down-going orbital line
represents a negative-energy orbital, leading to contribu-
tions of order a? for this diagram. In Figs. 3(e) and 3(f)
the definitions in Figs. 4(b) and 4(c) are used to obtain
the contributions from the random-phase approximation
(RPA) as well as some diagrams from the correlation sub-
class of diagrams. In Fig. 3(f) the Breit interaction and
the g; operator are connected via a negative-energy or-
bital, which as in Fig. 3(c) enhances the order of mag-
nitude of the contribution. The appearance of negative-
energy eigenstates, in terms of the DF Hamiltonian, was
discussed in Sec. IIB, where it was pointed out that
the Breit interaction is effectively evaluated between pos-
itive energy eigenstates to hP¥ + h™. The diagrams in
Figs. 3(g)-3(j) give the correlation contributions from the
Coulomb interaction and in the diagrams in Figs. 3(k)-
3(n) the Breit interaction has been added to the S; clus-
ter in the last interaction. Just as in Fig. 3(c) the down-
going orbital next to the g; operator is of negative-energy
character and this class of diagrams therefore contribute
in order o?.

IV. RESULTS

The results are displayed in Table I. The interest-
ing number to compare with experiment is the bound-
state correction to the g; factor which for an S state
is obtained as the difference between the experimental
value for the atomic system and the free-particle value
gs = —2.002 319 304 377(9). The lithium result, which
is described in [38], is a combination of three different
experiments measuring the ratio of the g; factors for
lithium and potassium, potassium and rubidium, and
rubidium and the free electron, respectively. The error
for the bound-state correction is dominated by a 10%
uncertainty for g;(Li)/g;(K) — 1, resulting in an over-

(29)

r
all uncertainty of 3%. The present result for Li is in
close agreement with the calculation in the nonrelativis-
tic limit by Veseth [10]. The Bet and Bat measurements
are both ion-trap experiments. The former experiment
by Wineland, Bollinger, and Itano [39-41] derived the g;
value for the ground state from hyperfine measurements

SR B SN
R,

FIG. 4. Graphical definitions of the modification of orbital
lines and effective interactions, which facilitates the inclusion
of infinite chains of diagrams in the matrix-element calcula-
tions. The filled box in (c) and (g) denote that the Breit
interaction is included in the cluster operators.

\/
V.
\



968

E. LINDROTH AND A. YNNERMAN

TABLE 1. Contributions to the bound-state corrections to the g; factor from the diagrams
in Fig. 3. The corrections are relative to the free-electron value g; = —2.002 319 304 377(9) and
obtained as g = g; — gs- The results are displayed as 10%6g. The numbers in parentheses are the
contributions added to the result for each diagram when the perturbation expansion is performed
with a Dirac-Fock-Breit basis set rather than with eigenstates to the Dirac-Fock Hamiltonian.

Correction Li Bet Ba't
Dirac-Fock 1.4198 (—0.0500) 4.8086 (—0.1235) 6.25 (0.71)
Fig. 3(a) DF 0.0451  ( 0.0019) 0.0745  ( 0.0047) 027  (—1.23)
Fig. 3(b) ~0.0013  (0.0001)  -0.0031 (0.0002)  -0.18 (0.09)
Fig. 3(c) 0.1820 0.2685 1.81

Fig. 3(d) 0.0000  ( 0.0000) 0.0000 (0.0000) —0.04  (—0.04)
Fig. 3(e) “first order” 0.1850 (—0.0132) 0.4401 (—0.0221) —26.10 ( 0.47)
Fig. 3(e) “higher orders” 0.0083 (—0.0005) 0.0139 (—0.0006) 0.10 (—0.00)
Fig. 3(f) “first order” 0.1352 0.3271 0.89

Fig. 3(f) “higher orders” 0.0141 0.0242 —0.07

Fig. 3(g) —0.0031 (—0.0088)  —0.0004 (—0.0111) 6.57 (0.17)
Fig. 3(h) —0.0046 (—0.0075)  —0.0020 (—0.0076)  —8.24  (—3.43)
Fig. 3(i) 0.0000  ( 0.0000) 0.0000 ( 0.0000) —1.39  (—0.06)
Fig. 3(j) 0.0018 (—0.0035) 0.0049 (—0.0040) —0.30 (—0.13)
Fig. 3(k) —0.0028 0.0006 0.02

Fig. 3(1) —0.2204 —0.3168 ~2.18

Fig. 3(m) —0.0006 —0.0009 0.00

Fig. 3(n) 0.0001 0.0023 0.02

Norm 0.0137  (0.0146) 0.0120  (0.0142) 5.38 ( 5.05)
Total 1.772+0.020 5.653+0.050 —17.18+0.3
Experiment 1.831+0.064* 5.694+0.033° —17.13+0.12°

g; (Li)

2Derived from measurements of the quotas
Inguscio, and Violino in [38].

>Wineland, Bollinger, and Itano [41].
°Knab et al. [2].

with an estimated error of 0.9%. The g; factor for Bat
has been measured by the Mainz group using two dif-
ferent methods. A derivation of the Zeeman splitting of
each level from measurements of the 65,2, m — 6p1/2, m’
transitions [1] resulted in rather large error bars, but a
later experiment where optical pumping and an induced
microwave resonance were used [2] gave a several order of
magnitude better result: gexp — gs = —17.13(12) x 1075.

The contributions from each diagram, and its exchange
counterpart, in Fig. 3 are displayed in Table I. The
contributions added to each diagram when the pertur-
bation expansion is made with a Dirac-Fock-Breit basis
set rather than with eigenstates to the Dirac-Fock Hamil-
tonian are separated out and given in parentheses. For
Ba™ these contributions to Figs. 3(a) and 3(h) and to the
normalization may seem rather large. However, added to-
gether the diagrams beyond the RPA-like diagrams, i.e.,
Figs. 3(a), 3(b), 3(d), and 3(g)-3(j) and the normaliza-
tion, get an extra contribution of only 0.089 when the
Dirac-Fock basis set is replaced by the Dirac-Fock-Breit
basis set, as can be seen on the seventh line in Table II.
The large contributions for individual diagrams are an
artifact due to the use of non-normalized wave functions;
cf. (29). The diagrams Figs. 3(c), 3(f), and 3(k)-3(n) are
due to the inclusion of the Breit interaction in the per-
turbation expansion. The contributions from different

9;(K)* g;(Rb)’

9;%). " and % S:b) as reviewed by Arimondo,

classes of diagrams are summarized in Table II.

For both Li and Be* around 95% of the final result
is given by the sum of the Dirac-Fock value and the di-
agrams illustrated in Fig. 3(e), which are dominated by
RPA-like diagrams. The entries “first order” and “higher
orders” correspond to the first and second diagram in
Fig. 4b. Correlation beyond the RPA-like diagrams con-
tribute with 3% and 1.5%, respectively, and the total
effect of the Breit interaction is 1.6% for Li and 2.3% for
Bet. For Bat the situation is very different. The lowest-
order result even shows the wrong sign. After inclusion of
the RPA chains, which are completely dominated by the
polarization of the 5p orbitals, the result is 20% above the
experimental result. The remaining contributions come
from the Breit interaction and the correlation due to the
Coulomb interaction which contribute with 10% each of
the final result.

The theoretical uncertainties are estimated contribu-
tions from radiative corrections, which are probably less
than 1% as discussed in Sec. II C, the pure numerical un-
certainty and the uncertainty caused by the truncation of
the spherical expansion of the two-particle interactions,
discussed in Sec. IIT A. For Li and Bet the latter is small
since all contributions with kmax < 6 were included. The
lowest-order result is in addition the dominant contri-
bution and higher-order effects show a stable behavior.
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Contributions to the bound-state corrections to the g; factor from different classes

of diagrams. The corrections are relative to the free-electron value g, = —2.002 319 304 377(9) and
obtained as g = g; — gs. The results are displayed as 10°6g.

Correction Li Bet Ba™t
Lowest order, Dirac-Fock 1.470 4.932 5.539

A Dirac-Fock-Breit —0.050 —0.124 0.708
RPA-like diagrams 0.207 0.477 —26.455

A Dirac-Fock-Breit —-0.014 —0.023 0.462
Breit RPA-like diagrams 0.149 0.351 0.824
Coulomb correlation 0.055 0.090 1.985

A Dirac-Fock-Breit —0.003 —0.004 0.089
Breit correlation —0.042 —0.046 —0.330
Total 1.7724+0.020 5.653+0.050 —17.18+0.3
Experiment 1.831+0.064* 5.694+0.033° —17.13+0.12°

2Derived from measurements of the quotas %ﬁ%, 9; (RB)

Inguscio, and Violino in [38].
®Wineland, Bollinger, and Itano [41].
°Knab et al. [2].

An estimated uncertainty of a few percent in the many-
body part of the calculation gives an overall uncertainty
of around 0.1%. Thus an estimated error of 1% should
not be too optimistic. The behavior of Bat is consider-
ably less stable. The lowest-order result has the wrong
sign and the situation is restored only after inclusion of
RPA effects. Since Bat is a rather large system it was
necessary to use some approximations as was discussed in
Sec. III A. We assume that the overall uncertainty due
to numerical uncertainties and truncations in the CCSD
scheme could lead to an error of around 1%. To account
also for possible radiative contributions we estimate the
total error to 2%.

V. CONCLUSIONS

The present calculation shows that the CCSD ap-
proach can give accurate results for the bound-state cor-
rections to atomic g; factors. The importance of corre-
lation as well as effects due to the Breit interaction are

X ond 3-75(:—1)) as reviewed by Arimondo,

demonstrated, particularly for the heavy many-electron
system Ba*. At present the experimental accuracy is on
the limit to probe bound-state radiative contributions.
The theoretical treatment of these contributions will be
an interesting challenge for the future.
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