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Theory of the light-force technique for measuring polarizabilities
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The theory of a method to measure electric-dipole polarizabilities is presented. The method uses
two-stage laser ablation to produce a pulsed beam of atoms from a solid target. A pair of slits makes
the velocity distribution of the atomic beam nonuniform in a way that is well characterized. The light-
force technique uses the polarization forces experienced by an atom in the intense, inhomogeneous
electromagnetic Beld of a standing-wave laser to change the velocity distribution of the atomic beam.
The large forces cause measurable Doppler shifts in the resonant frequency of the atoms. These
frequency shifts change the amount of absorption of resonant light, yielding information about
the change in the velocity distribution of the atoms. The detailed shape of the final absorption
distribution is polarizability dependent. In the classical picture of the light force, the standing-wave
electric Geld induces a time-varying dipole moment in each atom. Each atom then experiences a
Lorentz force due to coherent interaction of the oscillating dipole moment with the time-varying
magnetic Geld. The quantum-mechanical picture corresponds to the Kapitza-Dirac efI'ect for atoms:
an atom absorbs a photon from one of the two beams which form the standing wave, and is then
stimulated to emit this photon by the other, counterpropagating beam. This paper provides a
classical treatment of the light force experienced by an atom in a standing-wave light Geld; the
polarizability is treated quantum mechanically. The theory presented here can be applied to atoms
with a scalar polarizability, such as rubidium, and to atoms with significant tensor components, such
as uranium. Experimental results from application of the light-force technique to a measurement of
the polarizability of rubidium are also presented.

PACS number(s): 35.10.Di, 42.50.Vk, 35.80 + s

I. INTRODUCTION

The polarizability is a measure of the size of the charge
separation that results when an atom or molecule is
placed in an electric field. If an atom is placed in a static
electric field E, the nucleus will be displaced from the
center of charge of the electrons, and the atom will ac-
quire an electric-dipole moment p. If the field is not too
large, and the response of the atom is isotropic, the in-
duced dipole moment will be proportional to the electric
field, and one can write

p = &ATE.

The constant of proportionality a is called the polariz-
ability of the atom. The polarizability is a fundamental
property of atoms that characterizes the lowest-order re-
sponse of an atom to an applied electric field. In cgs
units, the polarizability has the units of volume and is of
the same order of magnitude as the volume of the atom
(= 10 cms).

The polarizability determines the values of Inany im-
portant physical properties of atoms and molecules such
as ion-atom charge-exchange cross sections, van der
Waals constants, ion mobilities in gases, and refractive
indices (dielectric constants). A number of methods have
been developed for measuring polarizabilities including
beam deflection [1],refractive index [2], the E Hgradient-
balance technique [3], and others [4]. However, for most
elements in the Periodic Table (75Fo), the electric-dipole
polarizability remains unmeasured. The strengths and

limitations of the traditional methods mentioned above
have been discussed in the excellent review articles by
Miller and Bederson [5, 6]. It is particularly difficult to
measure the polarizability of refractory-metal atoms due
to the diKculty of producing beams and due to the com-
plexity in making a gas cell of uniform density. Detec-
tion of most refractory-metal atoms is also a significant
problem [6]. This paper discusses a method called the
light-force technique, which is specifically designed to
address the problems of determining polarizabilities of
refractory-metal atoms. It has been used to measure the
polarizability of rubidium [7] and experiments are cur-
rently underway to determine the polarizability of an im-
portant refractory-metal element: uranium. The theory
presented here can be applied to an atom with a scalar
polarizability, for example, rubidium, and to atoms that
have significant tensor components, such as uranium.

Presently, we briefly describe the light-force technique.
For now consider the simple picture of an atom with a
scalar polarizability n located in a static electric field E.
If the electric field is a function of position, then an atom
will experience a conservative force that is the negative
gradient of a potential energy

(2)

The conservative force F, is given by

Fc = —&U = o.&&E
Thus atoms in regions with large fields and large Beld
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gradients experience large forces. In the light-force tech-
nique a beam of atoms is sent through a standing wave
formed by an intense, pulsed Nd: YAG laser (where YAG
denotes yttrium aluminum garnet). Forming a standing
wave with the light from a low-frequency laser produces
stationary (cycle-averaged) potentials that vary spatially
from zero to a maximum value over regions the size of
a half-wavelength of light. Atoms traversing an intense
standing-wave field will experience a range of forces from
zero to very large (accelerations ) 10s g's where g is the
acceleration due to gravity at the surface of the Earth),
depending on their position in the field. The experi-
mental sketch given in Fig. 1 reflects this physical sit-
uation. Here, two of the three atoms traverse regions
of large EV'E and receive significant deflections. The
other atom shown traverses an antinode of the standing-
wave field and is not deflected. Deflected atoms have
their resonant frequencies Doppler shifted with respect
to undeflected atoms. The light force is detected by ob-
serving the change in absorption of light tuned near res-
onance. Deflected atoms are Doppler detuned from the
frequency of light provided by a probe laser that inter-
sects the atomic beam downstream from the light-force
region. As a result of these Doppler detunings, the trans-
mitted light is increased —see Fig. 1. A measurement of
the change in transmitted light and a measurement of the
unidirectional fluence (energy per area) of the standing-
wave laser provide enough information to determine a
value of the polarizability of the atoms traversing the
standing wave.

The technique has a number of salient features:
(i) The technique takes advantage of the large fields

that modern pulsed lasers are capable of producing.
(ii) The field gradients are large because the field varies

over distances of a wavelength of light.
(iii) The atomic beam is pulsed, a natural match to the

pulsed light-force laser. Laser ablation produced a pulsed
beam with an atomic density larger than that achievable
with traditional beam sources. Pulsing the atomic beam
reduces the amount of material consumed and it obvi-
ates the need for the large pumps required for supersonic
nozzle beams.

(iv) The technique relies on an accurate measurement

of the laser fluence and of the absorption of a probe laser
beam as a function of the mean atom velocity. The light-
force technique provides an absolute measurement of the
polarizability. It does not rely on a relative measurement
which is referenced to a calibration atom.

(v) The technique could be used to measure radicals
and other short-lived species.

The theory presented here treats the atomic polariz-
abilities quantum mechanically, while the light force is
treated classically. The quantum picture of the light
force is that of the off-resonant Kapitza-Dirac effect. The
standing-wave light field is composed of propagating and
counterpropagating light beams. An atom in such a field
can absorb a photon from one beam and be stimulated
to emit a photon by the other beam. This results in
momentum changes to the atom that are integer mul-
tiples of 2hk, where k is the wave vector of a photon
in the beam. Since the quantized nature of the stimu-
lated scattering is not observed in these experiments and
a classical treatment is adequate to explain our results, a
fully quantum treatment is not presented here. A quan-
tum treatment for the near-resonant case has been given
to explain observations that did resolve the quantized
nature of the stimulated scattering in the Kapitza-Dirac
effect for atoms [8].

Our approach is straightforward: we first present a the-
oretical description of the light force and discuss its effect
on the distribution of atoms in phase space. The next
section quantitatively describes detection of the effects
of the light force. We then give a detailed description
of the application of the technique to rubidium. The fi-
nal section provides a summary and conclusions. In each
section, we have taken care to discuss limitations of the
technique, both from a physical standpoint and from a
technical standpoint.

II. THEORY OF THE LIGHT FORCE

A. The light force
To understand the light-force technique, it is useful to

study the equations of motion for atoms that traverse
a given region of the standing-wave field. The force on
an atom is due to the ac fields acting on the induced
dipole, since ac fields will have, on average, no effect on
a permanent electric or magnetic dipole. To sketch a
derivation of the force, consider an atom located in the
harmonic electric Geld

atomic
beam

1-
E(x, t) = — Ep(x)e '"'+ c.c. (4)

mirror
1F

transmitted photons scattered
(to detector) photon

FIG. 1. The change in the velocity distribution due to
the standing-wave laser may be measured by observing the
absorption of resonant light just downstream of the standing-
wave region. Atoms that receive significant velocity kicks are
Doppler detuned from resonance and scatter fewer photons.
Atoms that experience no net force remain tuned on resonance
and continue to scatter photons at a high rate.

where a is the angular frequency of the oscillating field
and c.c. refers to the complex conjugate. If the atom has
been in the field for a suFiciently long time it will acquire
a steady-state dipole moment that is also harmonic in
time and follows the field:

1-
p(x, t) = — pp(x)e ' '+ c.c. ,

where the amplitude pp(x) of the oscillating dipole rno-
ment is proportional to the amplitude Ep(x) of the oscil-
lating field.
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F(x, t) = p(x, t) VE(x, t) + — ' x B(x, t),
1 Bp(x, t)
C

(9)

If the atomic electrons have a net angular momentum
1 ) 1/2 in the ground state of the atom, the induced
dipole moment will depend on the spin polarization of the
atoms and can be anisotropic. That is, the polarization
of the atom will be proportional to the external field,
but the direction of the induced dipole moment may not
be the same as the direction of the applied field. We
must then describe the dipole moment induced in the
atom with a polarizability tensor n,~ where the indices
label the axes of a Cartesian coordinate system. The
ith component of the amplitude of the oscillating electric
dipole moment is

pp, (x) = ) n;, Ep~(x),
2

or equivalently

pp(x) = n Ep(x).

Both the dipole moment and the polarizability should be
thought of as expectation values, which depend on the
spin polarization of the atoms in their ground state. For
example, n;~ = Tr (pn, ~), where p is the density matrix
of the polarized atoms, 6;z is the polarizability tensor op-
erator, and the trace operation extends over all spin sub-
levels of the atom. However, for the light-force technique
it is useful to consider the diagonal matrix elements of
the polarizability tensor operator (m~n;~ ~m) = o.,~(m),
where m is an eigenvalue of the operator J„which is
the projection of the angular momentum on the axis of
quantization.

The frequency-dependent polarizability tensor n(u) =
n'(~) + in"(ur) is the sum of a Hermitian part n'(cu)
and an anti-Hermitian part i'm" (u). The anti-Hermitian
part of the polarizability tensor accounts for the dissipa-
tion of the incident field by the absorption of light. It
reaches maximum values at atomic resonances (where n'
is zero). When the frequency of the field is far from all
resonances the anti-Hermitian part of the polarizability is
negligible (n" « n') This is the. case for the theory and
experiments presented here. Henceforth, we shall only
consider the Hermitian part of the polarizability and for
convenience we shall presume n = o.'. The polarizability
tensor is discussed more extensively in the Appendix.

An atom in an oscillating field that is far from any
atomic resonances experiences a time-averaged force that
is conservative. This conservative dipole force is the neg-
ative gradient of a time-averaged potential and is given
by

(1
(F) = —V(U) = —V

I

—Ep
&4

'
where the angular brackets imply a time average over an
optical cycle. The above result can be derived from the
Lorentz force on an atom at position x.

In an oscillating Geld the total force on an atom to
lowest order in d/A, where d is the "diameter" of an atom
and A is the wavelength of light, is given by

where c is the speed of light and B(x, t) is the magnetic
field at position x and at time t. The first term in Eq. (9)
is the force on an electric dipole in an electric-field gradi-
ent. It is the lowest-order nonvanishing force on an atom
in a nonuniform static electric Geld. The second term rep-
resents the magnetic force on the moving charges inside
the atom. In a plane traveling-wave or plane standing-
wave field the first term is zero; only the second term
contributes to the force. The time-varying force on an
atom in an electromagnetic standing wave is illustrated
in Fig. 2.

For completeness, we mention that the light force man-
ifests itself as the negative gradient of the expectation
value of the light-shift operator. The light-shift operator
M corresponds to the Hermitian part of the light-atom
interaction Hamiltonian and is given by [9]

bt = — (a" n s+e n~ s'),
8

(10)

where i is the polarization vector of the applied electric
field and the cL's are operators. The light-shift operator
and observations of its behavior in optically-pumped sys-
tems have been extensively discussed elsewhere [9, 10]. A
major difference between our experiments and investiga-
tions of others that also utilized the light-shift operator
is that we use standing waves, not traveling waves. This
produces significant and predictable small-scale spatial
structiire on the operator. The presence of this spatial

+B=O

YC» )

B=O ( «OX
E

(At =3'/2

FIG. 2. An atom in an electromagnetic standing wave, at
four instants of time. For illustration: the atom has a real
scalar polarizability; the incident plane wave has an electric
field E=Eoz cos (—kx —art); and the mirror is the plane x = 0
with a complex reflectivity of —1. The standing-wave field is
then E=—280z sin kx sin ut, B= 280y cos kx cos cut. It follows
that p V'E = 0 so that the force on the atom is due entirely
to the term (1/c)p x B in Eq. (9).
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Ec~'~ = —Zoz exp(ikz),

so that the total electric field above the mirror is

(12)

Eo = —2iZO z sin(kx) .

The time-averaged polarization potential is therefore [see
Eq. (8)l

(U) = Foa.„sin (kx),

with a resulting force of

(F) = kFoa„sin(2k2:)x.

(14)

The force on the atom depends linearly on o;„,the com-
ponent of the polarizability tensor selected by the polar-
ization of the incident laser. The force is along x, normal
to the surface of the mirror, and is periodic in 2; with a
spatial frequency of 2k. Hence the spatial period of the
force is A = A/2. The magnitude of the force is propor-
tional to the wave number A: of the standing wave and to
its intensity @$0/(8ir)

In a real experiment these results must be modified
to incorporate the temporal and spatial structure that
is present on the laser beam. Since the laser beam has
spatial structure, the force on an atom will depend on
its location within the beam. The force on an atom will
also vary in time since the laser beam is pulsed. A more
realistic expression for the applied incident electric field
1S

(8~X(y, z)f(t) l '"
c

s exp( —ikx —iut)

where

C
oo

P(y, z) = E'(x, t) dt (17)

is the fluence (energy per area) of the laser pulse and s is
the polarization vector of the incident electric field [11].
The quantity f(t) is the slowly varying, time-dependent
envelope of the laser pulse. The envelope function is cho-
sen to be normalized over a single pulse so that

f(t)dt =1. (18)

structure is the key to the light-force technique.
For simplicity, consider a standing-wave field produced

by retroreflecting a uniform, monochromatic plane wave
using a mirror at 2: = 0 that causes no change in the phase
of the electric field upon reflection and has a reflectivity
of —1. Assume the wave is linearly polarized along z
and propagating in the x—direction. The electric-field
amplitude of the incident plane wave is

Eo' = fozexp( —ikx),(i) =
where 8'o is real. The laser is reflected in the +x direction
with a field amplitude of

The time-averaged force Eq. (8) now becomes

8m
(F) = kX(y, z)f(t) (8' n ~) sin(2k')x.c (19)

The force only affects the motion along one dimension
(along x). The equation of motion for an atom can be
written

d x
2

= V(y, z)f(t) sin(2kx),
dt2

where the characteristic velocity V is

(20)

16m
U(y, z) = P(y, z) (s' n s),

MA, „C

where A, is the wavelength of the standing wave laser
and M is the mass of the atom. Physically, the charac-
teristic velocity corresponds to the maximum kick that
can be given to an atom by the light force. Since we have
no need to refer to the (total) atomic velocity, we use the
term "velocity" to refer to the x component of the veloc-
ity of the atom, and label v as v. The motion in x of an
atom affected by the light force can be expressed by the
pair of first-order differential equations

dx
dt

=v)

(22)
dv—= V(y, z)f(t) sin(2kx).
dt

It is important to note that if the total angular mo-
mentum of the atoms is such that J ) 1/2, then the
atoms will experience different forces depending on their
magnetic sublevel, even if the electric field and field gra-
dient at the location of each atom is identical. The Stern-
Gerlach experiment serves as a good analogy to the light-
force experiment in the case of an atomic species with a
tensor polarizability (J & 1/2) —see Fig. 3. For sim-
plicity, consider the case where each atom traverses a
region with a given electric field and electric-field gradi-
ent. The electric field is assumed to be linearly polarized
along the quantization axis, i.e. , s = z. It is then clear
from Eqs. (20) and (21) that the characteristic velocity
of an atom, and hence the force on an atom, will depend
on the a„component of the polarizability tensor. Prom
the Appendix, this component of the polarizability ten-
sor depends on the magnetic sublevel of the atom —see
Eq. (A9). Thus atoms in difFerent magnetic sublevels
will experience different forces, resulting in space and
velocity separation of the atomic beam as in the clas-
sic Stern-Gerlach experiment. The similarities and dif-
ferences between the Stern-Gerlach experiment and the
light-force experiment are illustrated in Fig. 3 for the case
of an atom with J = 3/2. The major difference between
the two experiments is that the light force is usually in-
dependent of the sign of the magnetic sublevel quantum
number m. Another difference is that the distinct separa-
tion of the ~rn~ sublevels is washed out in the light-force
experiments because the atomic beam samples several
hundred spatial periods of the standing wave. Hence the
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FIG. 3. (a) In the Stern-Gerlach experiment, an inhomo-
geneous magnetic field provides the force that splits an atomic
beam into 2J+ I beams. (b) In the light-force experiment, an
inhomogeneous electromagnetic field produced by a standing
wave of light provides the force that splits an atomic beam
into J + I/2 beams for half-integral J, or into J + 1 beams
for integral J.

atomic beam samples a continuous distribution of electric
fields and electric-field gradients, resulting in a continu-
ous distribution of final velocity and position states. The
light force will only depend on the sign of m (the vec-
tor part of the polarizability tensor —see the Appendix)
in the case of circularly polarized light and for frequen-
cies that are not small compared to atomic frequencies.
Hereafter, any contribution from the vector part of the
polarizability tensor is neglected.

In general, the light-shift operator shifts the energy of
each magnetic sublevel. However, the light-shift opera-
tor can also cause transitions between sublevels. Such
transitions will only occur when the population distri-
bution among the ground-state magnetic sublevels is
anisotropic. Here the density matrix evolves according
to

p(t) = exp (

—— 6Edt'
~ p(tp)

~

— 6E'dt'
) && ~. )' (23)

where the light-shift operator bE is given by Eq. (10).
The general case of arbitrary population distribution and
light polarization is quite complicated and we do not con-
sider it further here. Instead we consider the case where
the initial atomic population has a statistical distribution
among the magnetic sublevels with

(Jm~ p(tp) ~
Jm) = V m.

Then the populations of the different sublevels will re-
main unchanged, regardless of the polarization properties
of the light. This choice is also practical since it matches
our experimental conditions.

B. Limitations to the light force

Vr « A. (25)

The maximum size of the force is also limited for technical
reasons. For example, the retroreflecting standing-wave
mirror has a damage threshold that limits the maximum
fluence that can be applied to the atoms. The best di-
electric mirrors cannot withstand intensities in excess of
5 —10 GW/cm .

C. The Liouville theorem and atomic phase space

To detect a measurable effect due to the light force,
the atoms must be prepared in a nonuniform distribution
in phase space since the force is conservative. From Li-
ouville's theorem, the density of particles in phase space
cannot change in a conservative system, and hence a uni-
form distribution of particles will remain so under the
action of a conservative potential [12]. Atoms are pre-
pared in a nonuniform distribution by phase-space fil-

tering the atomic beam with a pair of slits (see Fig. 4).
After passing through a pair of slits, the atoms traverse
the standing-wave region, where the polarization force re-
distributes the atoms in phase space. The effects of the
force can be detected by measuring the redistribution of
atoms in configuration space and/or by measuring the re-
distribution of atoms in velocity space. We measure the
redistribution in velocity space by measuring the change
in absorption of resonant light that occurs due to the
Doppler shift that results when an atom is given a mo-
mentum kick by the light force —see Fig. l.

In evaluating the density of points in the phase space

It is important to discuss factors that limit the mag-
nitude of the force in the light-force technique. The size
of the light force depends linearly on the magnitude of
the electric field Ep and on its gradient Ep/A. Therefore,
best results would occur for maximum values of these
quantities. Both of these quantities increase with in-
creasing laser fluence. However, physical processes such
as linear excitation, nonlinear excitation, and ionization
will eventually dominate at high enough fiuences. These
processes depend on the laser wavelength as well. Al-
though shorter wavelengths produce larger field gradi-
ents, the wavelength must remain far enough away from
resonances that the conservative part of the light inter-
action dominates the dissipative part. Additionally, the
coherence length of the light-force laser is important in
achieving high field gradients. The visibility of the light
fringes is directly determined by the coherence length.
The coherence length must at least be on the order of
a centimeter to ensure that the interaction region of the
laser and atoms is well away from the retroreflecting mir-
ror. This limits the temporal pulse width w of the light-
force laser to a few picoseconds (or longer). Also, the
temporal pulse width cannot be so long that individual
atoms given velocity kicks by the force have time to sam-
ple several standing-wave fringes. This would essentially
average out to a net force of zero. This physical condition
can be expressed quantitatively as
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(x, v) we follow the trajectory of atoms which start at
some position (y, z) and have y and z velocities v& and
v, [13]. For example, the phase-space distribution pro-
duced by a pair of matched slits, each having width m,
is shown in Fig. 4. Figure 5 illustrates the redistribu-
tion of atoms in phase space due to application of the
light force from a standing-wave laser located just down-
stream of the second slit. These plots, which show the
evolution of the phase-space distribution over time during
a laser pulse, were generated by numerically integrating
the equations of motion Eq. (22). The time dependence
of the laser was chosen to be Gaussian, a good approxi-
mation in these experiments:

f(t) = exp
r+2vr 2 gr) (26)

Here 2r g2 ln 2 is the full width at half maximum
(FWHM) of the standing-wave-laser pulse.

In these experiments, we are interested in the x-
velocity distribution of the atoms, characterized by the
velocity probability density p(v), where p(v)dv is the
probability of finding an atom in the velocity range be-
tween v and v+ dv. To find the final probability density
p(vf) of the atoms after the standing-wave pulse, the
equations of motion Eq. (22) must be solved.
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FIG. 5. Evolution of the distribution of atoms in (x, v)
under the action of a standing-wave laser. The four instants of
time shown are equally spaced from t —t, = —3r to t —t,
+3r for a Gaussian shaped laser pulse [see Eq. (26)]. The
initial distribution is that formed by a pair of slits which limit
the motion of atoms in 2:. For illustration, the first slit has
been chosen to be much narrower than the second and V~ =
A/(2m). The final distribution in phase space has a periodic
structure due to the standing-wave laser. The structure is less
pronounced at large values of ~v~ since the motion of these
atoms causes them to average over the force which changes
sign every A/2.

The simplest case for which the equations of motion
can be solved analytically is the impulse approximation.
In this limit, the laser pulse is so short (r ~ 0) that the
atoms remain stationary during the pulse. From Eq. (22),
the velocity increment given to an atom in this case will

e

Vf —
V& = dv

dt
dt = V sin(2—kx), (27)

s10pe=1/t„

7

where v, and vy are the velocities of the atom before
and after interaction with the standing wave. Analytical
solutions for the final velocity probability density p(vy)
exist for at 1east two initial velocity probability densities
p(v, ) in the impulse approximation. The simplest case, a
b function density centered at v = v, , gives [see Fig. 6(a)]

FIG. 4. The phase-space distribution in (x, v) due to a
pair of slits of equal width which limit the motion of an atom
in x. We follow only those atoms which at time t = 0 are
located at z = zo and which have a z velocity v, . The dis-
tribution in (x, v) is assumed to be independent of y and
v„. (a) The atoms reach the first slit at t = (z, i —zo)/v
(where z = z, i is the first slit plane). The distribution of
atoms in (x, v) is assumed to be uniform before the atoms
reach the first slit which passes only those atoms in the re-
gion (x: ~x~ & ur/2). (b) The atoms encounter the second slit
after an additional time t„= z„/v, has elapsed (where z„
is the longitudinal separation of the slits). Only those atoms
in the region (x: ~x —x„~ & iv/2) are allowed to pass. The
resulting velocity distribution is triangular.

1 1
(v, ) = 6(v, —v, ) ~ p(vf) =-

& +V —(vf —v )

(28)

The matched pair of slits in our experiments produces
an initial probability density that is triangular, and the
final velocity probability density has a long functional
form involving inverse trigonometric functions and square
roots. Due to its length, we do not reproduce the solution
here (see Ref. [ll]). However, this case is graphically
presented in Fig. 6(b).

In general, the equations of motion, Eq. (22), must
be solved numerically. However, in the experiment the
standing-wave-laser pulse is so short (r= 3 ns) that the
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error introduced by the impulse approximation is negli-
gibly small compared to other error contributions. For
an atom with a tensor polarizability, magnetic sublevels
with difFering values of ~m~ will have different polarizabil-
ities. This implies the existence of J + 1 (J integral) or
J+1/2 (J half-integral) different characteristic velocities
for the magnetic sublevels. An equal number of equations
of motion must be solved.
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probe
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III. DETECTION OF THE LIGHT FORCE

To detect the effect of the light force, we measure the
change in the velocity probability density p(v). The
velocity states of the atoms are probed using a cw
laser tuned near resonance —typically within a natu-
ral linewidth. The probe laser beam intersects the atoms
just downstream from the standing-wave laser beam-
see Fig. 7. Atoms that received velocity kicks due to
the light force are Doppler shifted into or out of reso-
nance, thereby increasing or decreasing the absorption of
light from the probe laser, respectively. For example, if
the matched pair of slits prepared the atoms so that the
mean value of the initial transverse velocity distribution
was v, = v~, then the light Force would Doppler detune
atoms out of resonance. (The velocity v~ corresponds to
the transverse velocity required to tune atoms into res-

atoms

X

Side View mirror
~

to detector

FIG. 7. A sketch of the experimental apparatus for mea-
suring atomic polarizabilities. The atoms are produced at
time t = 0 at the ablation plate. The atoms pass through
two slits which limit motion in the x direction. At time t,
the standing-wave laser fires, imprinting a change in the dis-
tribution of atoms in (2:,v) phase space which depends on
the position of the atoms with respect to "hot spots" in the
standing-wave laser. The structure imprinted on the atoms
is carried to the probe laser by the motion of the atoms in z.
The probe laser sees a time-dependent velocity distribution
due to the fluence distribution of the standing-wave laser.

h (v,—v;)

onance with the probe laser, whose frequency is slightly
detuned from the rest-atom resonance frequency. ) The
probe light transmission would therefore increase, as is
shown in the data plotted in Fig. 8. Since the standing-
wave laser pulse is of short duration, only a small slice
of atoms in the atomic beam are affected by it. As
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FIG. 6. (a) The initial and final velocity distributions for

the 6-function initial velocity distribution of a perfectly colli-
mated atomic beam. (b) The initial and final velocity distri-
butions for the triangular initial velocity distribution formed
by passing an atomic beam through a pair of slits of equal
widths. The final velocity distribution is plotted here with
V = 4&v, . In the limit V/Av, ~ oo the final velocity distri-
bution approaches that of (a).

time (p.s)

FIG. 8. A plot of the raw data for rubidium showing the
transmittance of the probe laser as a function of time. In-
creased transmittance of the probe laser is visible as the broad
feature with three peaks that occurs slightly later than the
standing-wave pulse (the sharp spike at time=81. 2 ps). This
region is expanded in a plot in the lower left-hand corner.
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a result, the probe laser light transmitted through the
atomic beam has the temporal shape given in Fig. 8, The
broad, large absorption feature is simply the absorption
of the probe laser light as the atomic beam pulse passes
through it. Within that feature is the sharp spike denot-
ing when the standing-wave laser pulse was present. The
feature that appears just after the standing-wave laser
pulse spike is caused by the atoms that received velocity
kicks from the light force. The transmittance increases
after the standing-wave pulse because atoms have been
shifted oK resonance by the velocity kick supplied by the
polarization force.

A. Absorption of the probe light

a(~„) = nl a (~p, v)p(v)dv, (30)

where the column density of atoms is given by

nl = n(x)dx.

The quantity n(z) is the number density (cm s) of atoms
at position z. The integral in Eq. (30) serves to weight
the cross section for atoms moving at the velocity v by
their probability density in the beam. The absorption
cross section cr(a„, v) for an atom moving with velocity
'U 1s

0pI'vr
0 (Ldp, V) = gl (4J„,V).

2 (32)

Here oo is the on-resonance cross section, I is the FWHM
hnewidth of the probe transition, and gl, (u„, v) is the
normalized, Doppler-shifted Lorentzian line shape, that
ls

The ratio of the transmitted probe intensity I„ to the
incident intensity Io is related to the absorption coeK-
cient

a(~„) = —ln I„(cu„)5
Io )'

where cu„ is the angular frequency of the probe light.
In terms of the Doppler-shifted absorption cross section
a (cu„, v) this coefficient can be written

dependence on V is a direct result of the light force. The
probability density can now be written p(v; 8;, V), and
with the help of Eqs. (30), (32), and (33) we can write
the absorption coefBcient for light at cu„as

a(8, , V) =nl
2

LV(v; 8, , V)I'/2~]dv
(u„+ wov/c —wo) + I /4' (34)

The absorption coefficient [Eq. (34)] is simply a con-
volution of the velocity distribution p(v; v, , V) and a
Lorentzian function of V. The absorption coefBcient de-
pends on the polarizability a through the characteristic
velocity V.

B. Determining the polarizability n

The polarizability is found by measuring the absorp-
tion coefficient a(8;, V) as a function of the mean velocity
of the atoms 8, under conditions of nearly fixed V. Plots
of the velocity distributions for various values of V are
provided in Fig. 9. In Fig. 10 the absorption coeFicient
a(8, , V) is plotted as a function of 8, . Both the char-
acteristic velocity V and the mean velocity 8, are given
in units of the FWHM of the initial velocity distribution
Av;. These absorption coefficient curves correspond to
convolutions of a Lorentzian function of velocity with the
final velocity distributions given in Fig. 9.

The absorption coefficient Eq. (34) depends linearly on
column density nl. Experimentally, the column density
fluctuates due to pulse-to-pulse variations in the atomic
beam density and so it is essential to form a quantity
which is independent of the column density. We define
the "signal" S as

S(8,, V) = I— o,(8, , V)
a 6, , V=O

gl (Cd~, v) = (33)(u)„—~p + k„v)2 + I'2/4'

where wo is the resonant frequency and k„ is the mag-
nitude of the probe laser wave vector. Note that we
choose the direction of the probe laser wave vector to
be k„= —X..

We introduce some notation to express the absorption
coeKcient in a form that is useful for interpreting exper-
imental results. Since the probe laser frequency is Axed
by locking the probe laser to an atomic line using satu-
rated absorption or by locking the laser to an external
Fabry-Perot cavity, we shall no longer explicitly indicate
the dependence of the absorption on uz. We express the
velocity probability density not only as a function of ve-
locity v, but also as a function of its mean initial velocity
v, and as a function of the characteristic velocity V. The

0—5 —4 —3 —2 —1 0 1 2 3 4 5

V —V~ V~

FIG. 9. The velocity distribution (in the impulse approxi-
mation) for an initial velocity distribution which is triangular,
centered at 6, with a FWHM of Av, . The characteristic ve-
locity V is proportional to the polarizability of the atoms and
to the fluence of the standing-wave laser [see Eq. (21)].
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FIG. 10. The absorption distribution of atoms for the set
of velocity distri u ions s owd' 'b t' hown in Fig. 9. For illustration we

ave chosen the PWHM width of the Lorentzian I' and t ehave c osen e
width of the initial velocity distribution Ae; to e eq

'. to be e uivalent:
I'~' ——Av where ~ is the frequency of the probe laser.

The absorption a in this plot is normalized wit respec o
(8; —uo)/Av;.

Several other quantities which are independent of the col-
umn density can e ord 't b formed from the measured absorption
coefficients. Three characteristics of S motivated us to
choose to evaluate this particular combination of absorp-
tion coeKcients:

(i) S is linear in a(8;, V), the absorption coefficient
of atoms which have been affected by the standing-wave
laser.

(ii) S = 0 when the standing-wave laser has no effect.
(iii) S & 0 when the initial (field-free) absorption is

a maximum. This occurs when 8, = ii~ as is shown
F' . ll. The effect of the standing-wave laser is to

b d th velocity distribution. As a result,
of thesorption is decreased at 8, = vLi by the effect o e

standing wave, so that S & 0.
The signal 8 is plotted in Fig. 11 for the same values of
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FIG. 11. e sign pTh ' al S lotted under the same conditions
as the absorption distribution in Fig. 10.

the characteristic velocity V as the plots of the absorption
coeKcient in Fig. 10.

Since the signal S is the quantity which is measured in
order to determine the polarizability, it is important t
note the dependence of S on physical parameters of the
experiment. The characteristic velocity depends linear y
on the polarizability n and on the standing-wave aser
fluence X, and hence the signal also depends on these
fundamental quantities. Since the standing-wave laser
fluence depends on the (y, z) position of the atoms within
the laser beam, the signal will also depend on these co-
ordinates. The probe laser area is restricted through the
use of an aperture so that the measured absorption cor-
responds to atoms that are located in a narrow region
centered at the position of maximum fluence (see Fig. 7).
We assume that during the time of the laser pulse the
motion of an atom along y or z is small enough that the
a om ast has experienced a uniform fluence, that is, a given

laseratom does not sample difFerent fluence regions of the aser
beam, Even though this position remains axed through-
out the experiments, the Quence at this position varies
from shot to shot due to overall changes in the pulse en-
ergy and spatial distribution. Hence the fluence at this
fixed position is measured for each shot. Most of the pa-
rameters on which the signal depends remain fixed during
the experiments. These include u, , 7, wo, I',0

the position of the atoms within the standing-wave laser
beam (y, z). The signal S is therefore a function of two
parameters which vary for a set of data: the character-
istic velocity V and mean initial velocity 8,. The most
physically meaningful way to express the signal is

a(8;, n, P)S = S(8;,a, P) = i—

where the dependence on characteristic velocity has been
split up to indicate the explicit dependence of S on
the atomic polarizability n and on the laser fluence X.
Data are taken by selecting an initial mean velocity vi,
and by simultaneously measuring three quantities: (i)
E~ „, the fluence at the position of maximum fluence,
(") ( P ) the absorption coefficient for atoms(ll) 6 Vi& A& mex

~ ~ ~ ~ ~affected by the light force at the same position; and
a(8, , a, 0), the absorption coefficient for the same atoms
in the absence of the light force, deduced by extrapo ating
field-free regions of the absorption curve. The polariz-
ability is found by fitting the signal versus mean velocity
data with the polarizability n as a parameter that is var-
ied to obtain the hest fit to the theory. An example of
this procedure will be presented in Sec. IV for the case
of rubidium.

The mean atomic velocity is determined by the posi-
tion of the second slit relative to the first slit as shown in
Fi . 12. The slit position can be accurately transformed
in o a mean
' t ean transverse velocity 8; in the following way.

slitDefine the distance from the first slit to the second s i
(parallel to the atomic beam propagation axis) as z»—
see Fig. 12. Define the longitudinal velocity of the atoms
to be v, . From geometry, the mean transverse ve ocity v,.
of the atoms passing through a slit displaced a distance
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first slit second slit C. ModiAcations for measuring
a tensor polarizability

atoms

Ak
k yXl $$

$$

)kx

Y Q Z

FIG. 12. Geometry of the atomic beam slits.

z» from the centerline position of the atomic beam is

&i ss
Vz Zss

Av,

~SS

From this and Eq. (37) the following result can be de-
rived:

'Ui ss
Av, u)

' (39)

Hence all plots of the absorption coeKcient versus mean
transverse velocity (or slit position) are scaled by Av; (or
by u)).

Thus the slit position is related to the mean transverse
velocity by a constant factor that can be easily and accu-
rately measured. For convenience, the abscissa (velocity
axis) of the absorption coefficient curves is scaled to a
physical velocity that is determined by the initial veloc-
ity distribution. The FWHM of the initial, triangular
velocity probability density Ev; is determined by the slit
width iit. Again from geometry, it can be shown that

[3m' —J(J + 1)]
o.„(m) = o.0+F2 (40)

The polarizability depends on the square of the magnetic
sublevel quantization number, i.e. , a„(m) = o;(lml).
This dependence of a. on lml will cause the light force
to produce either J + 1 (J integral) or J + 1/2 (J
half-integral) final velocity distributions. Sublevels with
larger n's will experience larger kicks and hence their fi-
nal velocity distributions will be broader and shallower
than sublevels with smaller values of a. However, de-
pending on the transitions used by the probe light, some
of the sublevels might not contribute to the absorption.
For example, if the probe laser is linearly polarized along
z and the upper level angular momentum J' = J —1,
then the m = 6J sublevels of the ground state will not
be probed, since Am=0 for transitions involving light po-
larized along the quantization axis. Thus the absorption
coefBcient for a multilevel atom will have a form corre-
sponding to the sum of expressions similar to Eq. (34),
that is

Thus far we have only considered detection of atoms
with a scalar polarizability. For atoms with angular mo-
mentum J ) 1/2, the polarizability is a tensor and dif-
ferent magnetic sublevels will have difFerent values of the
polarizability —see the Appendix. In general, three
quantities completely specify the polarizability tensor of
an atom: the scalar polarizability no, the vector polariz-
ability ai, and the tensor polarizability n2. However, if
linearly polarized light is used for the light force, only two
components no and az are important. These are also the
only components measurable using static fields. For ex-
ample, defining the polarization axis of the standing-wave
laser as the quantization axis, it is the a„component of
the polarizability tensor that is important in the light
force —see Eq. (A9). Using this equation, the diagonal
terms of this component of the polarizability tensor for
an atom of angular momentum J in sublevel m can be
written

+J

m= —J
o(I l)lJ(v ' &(I l))1'/2 ]d

(4)~ + (dov/c —ldp) + I /4

This expression assumes that ~RT && 1, where ~R is the
Rabi flopping frequency of the probe laser-atom system
and T is the time an atom spends in the laser probe beam.
This condition ensures that optical pumping effects due
to the probe laser beam are ignorable. If optical pumping
were significant, then the absorption coefBcient expres-
sion Eq. (41) would have to be modified to account for
the different populations of the various sublevels. This
expression also assumes that the probe laser intensity is
less than the saturation intensity

l

where ~ is the lifetime of the upper level of the atomic
transition and o is the absorption cross section. At the
saturation intensity the excitation rate equals the decay
rate of the upper level. This avoids the added compli-
cation of having to account for the dependence of the
linewidth I' on intensity I and on magnetic sublevel m.
The expression Eq. (41) assumes a statistical distribution
of the atoms among the magnetic sublevels.

D. Limitations of absorption for detection

hw&
ISat =

2cT7 ~
(42) There are several limitations to absorption as a method

for detecting the light force. One limitation is the probe
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laser intensity must be limited to prevent line broaden-
ing efFects in the absorption line shape and to prevent
optical pumping effects that can modify the probability
distribution. This means that the probe laser intensity
must be kept below the saturation intensity of the tran-
sition used to measure the absorption. Two limitations
occur if the probe transition is weak: the absorption will
be small, reducing the signal-to-noise ratio; and the line
will be narrow, so locking the probe laser frequency on
resonance will be more technically challenging. A third
limitation can occur if there are several levels that lie
below the upper level of the selected probe transition.
Then atoms can branch into lower levels other than the
ground state. However, this limitation is unimportant as
long as the probability that an atom scatters light is low.
This condition implies cuRT (& l. If an atom with sig-
nificant tensor polarizability components has hyperfine
structure, this complicates the analysis of the absorption
coefficient Eq. (41). A full treatment of the light force for
isotopes that fall into this category awaits future analy-
sis. In Sec. 5 of the Appendix there is a brief discussion
on the tensor polarizability when hyperfine structure is
present. As already noted, atoms with scalar polariz-
abilities in the absence of hyperfine structure will remain
scalar to a very good approximation due to the small
size of the hyperfine interaction. The alkali-metal atoms
are an excellent example of this class of atoms. Another
limitation to the absorption probe is that most atoms
have principal lines in the ultraviolet region, which is
technically more difficult to access with lasers. Although
nonlinear optical techniques have made this region very
accessible for pulsed laser sources, tunable cw lasers are
not intense enough to obtain good nonlinear conversion
efficiency from the visible to the ultraviolet.

IV. APPLICATION TO RUBIDIUM

To establish the viability and accuracy of our tech-
nique [7], we applied it to rubidium, whose polarizability
has been accurately measured by the E-H gradient bal-
ance technique [3]. Rubidium has a scalar polarizability
that dominates the other terms of the polarizability ten-
sor by seven orders of magnitude. The small tensor com-
ponent o,2, which arises from the small energy differences
that result from the hyperfine interaction, has also been
measured [14].

The experimental setup was as follows. A beam of
rubidium atoms was produced using two-stage laser-
ablation [15] of a solid Na-Rb target with Nd: YAG laser
pulses of energy E=100 mJ and of duration Aw = 10
ns. The target was composed of roughly equal parts of
sodium and rubidium. The purpose of the sodium in the
target was to form a rubidium mixture whose oxidized
surface would not continually dissolve into the metal tar-
get during preparation. The atomic beam was produced
at a repetition rate of 0.4 Hz (12 ablation pulses were
used in first-stage loading of the target). The first slit
was located 13 cm from the target and the second slit
was downstream 13 cm from the first slit. Both slits were
identical, commercially made slits of width 280 pm. The

mean longitudinal velocity of the beam was 3.6x 10s cm js
and the beam pulse was of 50 ps duration. The standing-
wave laser was an injection-seeded Nd: YAG laser with a
peak fluence of 3 J/cmz, a FWHM pulse duration of 7
ns, and a coherence length of 2 m —close to the Fourier
transform limit. The laser beam was oriented so that
its (linear) polarization axis was parallel to the z axis.
The center of the standing-wave laser was located 4 cm
downstream from the second slit. The probe laser was a
single-mode diode laser that utilized an external-grating
cavity to tune it close to resonance. It produced 1 mW
of light with a linewidth of 1 MHz. This laser was
detuned vd = (~„—~0)/27r = 5.0 MHz from the I'=3
to 4 transition of the D2 line of Rb. The diode laser
was locked at this frequency using a saturated absorption
setup with a cell of rubidium atoms. The probe laser in-
tersected the atomic beam 0.6 cm downstream from the
standing-wave laser. The diode laser light was linearly
polarized parallel to the standing-wave polarization axis.

The probe laser light detected by the photodetector
sampled only those atoms that traversed the region of
maximum fluence. Achieving this condition was not triv-
ial due to the shot-to-shot pointing variations in the
standing-wave laser. We selected only those pulses whose
position stayed within 150 pm of the "best" position,
i,e., the position corresponding to the center of the Bu-
ence maximum lining up with the center of the probe
aperture. The distance 150 pm corresponds to half the
radius of the probe aperture. This was accomplished by
directing a small fraction of the standing-wave beam on
each pulse to a quad-cell photodetector. A digital os-
cilloscope was only triggered, and data accepted, if the
quad-cell photodetector indicated the shot was within the
acceptable range of pointing directions. Roughly half the
shots were accepted using this technique, although small
adjustments (( 1mrad) of the direction of the standing-
wave beam were required during data runs.

The raw data consisted of the probe transmittance ver-
sus time —see Fig. 8. These plots represent the average
of 20 pulses, taken with a digital oscilloscope. Two pieces
of data were extracted from each curve. First, the absorp-
tion coefBcient was measured at the time the light force
was a maximum —label this a(8, , n, P „)—:a(P „).
Second, the absorption coefficient in the field-free regime
was measured at the time of the occurrence of the light
force maximum —label this a(8, , a. , 0)—:a(0). The field-
free absorption a(0) at the time of the light-force peak
was deduced by interpolating the field-free portions of
the curve. Both absorption quantities are functions of
the slit position and they both gradually fall to zero as
the slit is translated to allow higher transverse velocities
through. A figure of merit for the size of the force is the
ratio a(X „)/a(0), which reached a maximum value of
0.5. This implies that the polarization force gave half
the atoms a velocity kick large enough to Doppler shift
their resonant frequencies away from their stationary-
atom values.

Many curves similar to Fig. 8 were taken for various
slit positions, which correspond to difFerent values for the
mean velocity 8, . Data for the absorptions a(X „) and
a(0) as a function of mean transverse velocity 8, /Av, for
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FIG. 13. Experimentally measured values of the absorp-

tion, normalized by a reference absorption probe in order to
remove fluctuations in the atomic beam density. The initial
velocity distribution is fit by varying the center and verti-
cal scale of the curve. The final velocity distribution is fit
with values of these parameters fixed at the values used to fit
the initial velocity distribution. A quantity proportional to
the polarizability is the only parameter varied in order to fit
the normalized absorption for atoms a6'ected by the stand-
ing wave. On the figure the abbreviation "SW" means the
standing-wave beam was present and "No SW" means it was
absent.

(MAc) V Au;

I,16vr') (43)

The terms in parentheses constitute an accurately known
constant. The FWHM of the velocity distribution Ev; is
determined from the geometry of the slits and by measur-
ing the longitudinal velocity of the atoms at the position
of the standing-wave laser. The quantity V' is obtained
from the fit like that shown in Fig. 14. It corresponds to

rubidium are given in Fig. 13. Also included are best-
fit curves for both sets of data. As discussed in Sec.
III, these curves physically correspond to the transverse
velocity distributions convoluted with a Lorentzian line
shape. The first curve displays the field-free absorption
distribution, which corresponds to a convolution of a tri-
angle distribution with a Lorentzian line shape. It is clear
that the agreement between the data and the theoretical
curve is quite good. This plot of absorption coefficients
versus mean velocity 8, has had each point normalized
for number density variations by the signal generated by
intersecting a small amount of the probe laser light with
the atoms just before the atoms encounter the second
slit. Without this normalization, the data are much nois-
ier [ll]. A better normalization procedure is to generate
the signal S as discussed earlier. A plot of S versus mean
velocity 8, for rubidium is given in Fig. 14. The curve
through the data points represents a best fit of the theory
to the data. We obtain a value for the polarizability from
our fit to the signal data (S versus 8,). The expression
used to obtain a value of n from the measured quantities
1s

FIG. 14. The experimentally determined signal S vs mean
initial velocity 8, , and the fit to this data. There are only two
fit parameters: the center of the curve and a parameter which
is proportional to the polarizability.

e' fi()= „( „,) ~ (44)

This expression applies at large detunings from all atomic

the scaled characteristic velocity, i.e. , V' = V/Av, .
The fluence of the standing-wave laser and the trans-

mittance of the probe laser are measured simultaneously.
A small amount of light is diverted from the standing-
wave laser beam to an energy meter. The standing-wave
laser beam has significant spatial structure (see Fig. 15).
Therefore an aperture of area A is inserted in front of
the energy meter to select the region of maximum Hu-

ence. An identical aperture is inserted into the path
of the probe laser after it has propagated through the
atomic beam, in order to select atoms which have tra-
versed the region of maximum Huence. Both apertures
are scanned for maximum signal to locate their positions.
We define T to be the ratio of the fluence at the energy
meter aperture to the fluence at the standing-wave laser
mirror. We then calculate the Huence as X = E/(AT),
where E is the energy deposited on the energy meter.

The best fit to the data shown in Fig. 14 gives a value
for the polarizability of n(u) = 114 + 9 As. The quoted
error is an estimate of the standard deviation uncertainty
in our value of n(cu) based on error in the quantities P
(7.6%), V' (2.2%), and Av, (1.6%). The major factors
contributing to the Huence error are the uncertainty in
the location of the energy meter aperture with respect to
the peak Huence region of the standing-wave laser beam
(6%) and the uncertainty in the location of the probe
laser aperture with respect to atoms that traversed the
peak fluence region (4%).

To find the static polarizability ng„a value for the
ratio r = n(cu)/nd, must be determined —see the Ap-
pendix. A simple and convenient expression for the
frequency-dependent polarizability in terms of oscillator
strengths can be derived [see Eq. (A10)]
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FIG. 15. Three-dimensional plot of the Huence distribu-
tion of the standing-wave laser. The mean atomic velocity is
in the +z direction and the standing-wave mirror normal is
in the +x direction ("up" in this figure).

resonance frequencies. The symbol S indicates sum-
mation over discrete states and integration over con-
tinuum states —see the Appendix. This expression
gives the value r = 2.12 using the rubidium oscillator
strengths published by Shabanova and Khlyustalov [16]
and the continuum cross sections published by Marr and
Creek [17]. Scaling our measured value for the polariz-
ability at u by this ratio gives an estimate for the static
polarizability of o; = 54 + 4 As, where the error does not
include any error in the value of r This v. alue is within
15% of the accepted value of n = 47.3+0.9 A. (2o), mea-
sured by Molof et al. [3]. It is possible, though unlikely,
that our value is too high compared to the accepted value
due to the inaccuracy of the ac correction, r. The Ap-
pendix discusses the insensitivity of r to the values used
for the oscillator strengths in Eq. (44).

In general, the need to convert an ac polarizability to
a static polarizability using a calculated value for r is not
a significant limitation to the light-force technique. Most
atoms require much smaller corrections since their reso-
nance lines are much farther detuned from the Nd: YAG
frequency than those of rubidium. Also, using standing-
wave lasers at two different frequencies would allow bet-
ter extrapolation of the measured ac polarizability to the
dc value. Alternatively, the light-force technique could be
applied using a C02 laser, whose wavelength (A = 10.6
pm) is a factor of 10 longer than that of Nd: YAG. For
rubidium the correction would then be r = 1.005.

One other experimental result is worth examining. In
Fig. 16, the transmittance of the laser probe is plotted
versus time for two different situations. In this case the
second slit was adjustable; the first slit was fixed at a
gap of mq ——250 p,m. For the upper curve, the second
slit width was mg = 250 pm, and the data show the ex-
pected increase in transmittance present in the case of
the axed slits. However, for the lower curve the second
slit was opened to tu2 ——1000 p,m, and the transmittance

FIG. 16. Raw data showing the efFect of widening the sec-
ond slit. The two curves shown above were taken a few min-
utes apart. In the upper curve, the first and second slits have
a width of 250 p. In the lower curve, the second slit has been
opened to 1000 p. The origin of time is chosen to be when the
standing-wave laser fires. The vertical scale has been adjusted
so that the height of the sharp peak, observed when the stand-
ing wave is present, is the same for both curves. (The sharp
peak is proportional to the initial absorption. ) The vertical
displacement between the curves is arbitrary.

was not affected by the light force that was present when
the standing-wave laser was fired. This is simply a result
of Liouville's theorem, where the wider slit has essen-
tially made the atomic phase space uniformly dense and
so the conservative light force cannot affect the phase-
space distribution. This result also confirms that the in-
creased transmittance present in the upper curve is due
to the light force and not due to ionization or excitation
of atoms out of the ground state.

V. CONCLUSION

This paper has discussed a method called the light-
force technique, which was specifically designed to deter-
mine electric-dipole polarizabilities for refractory-metal
atoms. Expressions for the light force have been derived
and discussed in detail. The effect of the light force on
atoms that have significant polarizability tensor compo-
nents has also been presented. The light force, which
produces a redistribution of atoms in phase space, is de-
tected by measuring the absorption of a probe laser beam
tuned to an atomic resonance. The detection of the light
force by absorption has been thoroughly discussed. Fi-
nally, successful application of the technique to a mea-
surement of the polarizability of rubidium has also been
reviewed.

The technique is limited in several ways. The size
of the light force is limited by the need to keep the
standing-wave laser intensity low enough to avoid exci-
tation and ionization of the atoms. Also, the need to
maintain coherence lengths of 1 cm or more limit the
temporal pulsewidth of the standing-wave laser to times
larger than a few picoseconds. Since absorption of cw
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laser light by the atoms is used to detect the light force,
the intensity of the cw laser light must be limited to min-
imize line broadening and optical pumping effects.

The technique takes advantage of the large fields and
field gradients that modern pulsed lasers are capable of
producing. Also, the atomic beam is pulsed in order
to naturally match the light-force laser and to increase
the atomic density over that achievable with traditional
beam sources. The light-force technique provides an ab
solute measurement of the polarizability. The measured
polarizability is the atomic polarizability at the frequency
of the standing-wave laser. In many cases the correction
required to determine the static polarizability is small
and may be easily and accurately calculated using pub-
lished values of oscillator strengths and transition fre-
quencies.
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APPENDIX: THE POLARIZABILITY a

quencies will therefore be very nearly a real, symmetric
tensor.

The complex coefficients a; in Eq. (Al) do not de-
pend on the particular magnetic sublevel m of the ground
state, since the dependence of a,~ on geometry is given
by the angular momentum operators explicit in Eq. (Al).
Expressions for these coefficients can be found using first-
order time-dependent perturbation theory [18]. In the
limit of large detuning from resonance, these coefficients
have the following values

1 1

J(2J —1) "' J(J+ l)(2J —1)
1

~JI, , J+1)J+1 A( 3)

3IigJ &AP tdi &
—Cd

flgg &v 8 id' —id

3&gg A/i

where gd ——2J+ 1 is the degeneracy of the ground state
and the functions P;(J, JA;) are defined as follows

4o(J, JA:) = 4„z-i+~a. ,z+ ~z. , z+r,

1. Genera1 properties

The frequency-dependent polarizability ean be de-
scribed in terms of three complex functions of frequency:
the scalar polarizability ao, which describes the index
of refraction of a vapor of atoms with randomly oriented
spin directions; the vector polarizability ai, which can be
nonzero if J ) 0 and which describes physical phenomena
like the paramagnetic Faraday rotation of plane polar-
ized light by spin polarized atomic vapors; and the ten-
sor polarizability n2, which can be nonzero for J ) 1/2
and which describes the birefringence of a vapor of spin-
aligned atoms. The frequency-dependent polarizability
operator can be written in terms of the electronic angu-
lar momentum operators J, of the atom as

A A A A

a,~
= aors;z —ar(J, J~ —J~ J,)

z(J,J, + J,J,) —J(J+1)6,,
J(2J —1)

Here the indices ij refer to Cartesian components as dis-
cussed in Sec. II and b,~

= 6;~I, where b,~ is the Kronecker
delta function and I is the identity operator.

In the case of atoms with degenerate ground states
we note that ai —+ 0 as ~d ~ 0 (see the expression for
ar below), so the vector polarizability will be negligi-
ble compared to the scalar and tensor polarizabilities at
suKciently low oscillation frequencies u. It is also true
that the anti-Hermitian part of n(cd) approaches zero as
the frequency goes to zero. The polarizability at low fre-

Here the 6's are Kronecker delta functions. The sym-
bol S denotes summation over discrete states and inte-
gration over continuum states; this symbol is used in
standard physics texts [19] as well as in discussions of
polarizabilities (see Dalgarno [20]). In the ground-state
wave functions ~p~ J) the quantity p„represents a set of
ground-state quantum numbers (including, for example,
the energy) and J is the ground-state angular momen-
tum. Excited-state wave functions are similarly written
~py Jk), where pA; represents a set of excited-state quan-
tum numbers and JA, is the total angular momentum of
the kth excited state. The operator p in the matrix ele-
ments above corresponds to the magnitude of the eleetric-
dipole operator

p=) eri,
l=1

(A4)

where r~ is the position operator of the lth electron in
the atom. The frequencies wk& correspond to differences
in the Bohr frequencies of the excited and ground states:

~dy„= (Ei, —E„)/h,

where E; is the energy of the ith atomic level. The ma-
trix elements ~(p„J~]@~~pi,Ji, ) ~

are the usual reduced ma-
trix elements associated with the Wigner-Eckart theo-
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l(ws Jllpll»J~)I' = rj(J Ji)(2J+1)l(AI&IA)I' (A7)

where the factor i1(J, JI, ) is given by

g( J, JA, ) = bg i Jz J(2J —1) + bJ gz J(J + 1)
+b&+i &„(2J+3)(J+ 1). (As)

In addition, the notation adopted here is slightly differ-
ent from that of Miller and Bederson [5]. In their no-
tation, the scalar polarizability ao is labeled the average
polarizability a to reHect the physical fact that the scalar
polarizability is simply the average of the polarizability
tensor over the magnetic sublevels m. In their notation
the tensor polarizability nz is labeled nq.

The diagonal terms of the polarizability operator
Eq. (Al) in the large detuning limit are given by

(Jmln, , l
Jm) = np6;, —imnis'„v6k,

[3m& —J(J+ 1)],
J(2J 1)

rem. According to the Wigner-Eckart theorem, the ma-
trix element of a tensor operator, e.g. , the qth component
of the vector operator p, can be written as the prod-
uct of a reduced matrix element and a geometric factor
(Clebsch-Gordan coefficient or 3-j symbol)

(w~ Jmlp,'irk Jam') =
2J

' i,i, (&v Jll&ll»J~)(Jkmg, lq] JM)

(A6)

Here the quantity (JA, mA, , lql JM) is a Clebsch-
Gordan coefficient [21]. The reduced matrix elements

(pp Jllpl l»Ji, ) are related to the matrix elements used iil
the expressions of Miller and Bederson [5] ](gplplg|, ) l

in
the following way:

Here f„i, is the absorption oscillator strength of the p, ~
k transition

fwI = 3~',","IhpJllpll»Ji)l' (All)

and the lower limit on the integral corresponds to the
Bohr frequency of the ionization potential. The contin-
uum oscillator strength at the frequency w is related to
the photoionization cross section at the same frequency
cr(cu) in the following way [22]:

;~(~)~e (A12)

where c is the speed of light. In Eq. (A10) the shift in res-
onant frequency due to the motion of the atom has been
ignored. This result is the same as the expression given in
Eq. (A2) for the coefficient np, except that this form uti-
lizes the oscillator strengths f„~ of electric-dipole-allowed
transitions with the ground state. This expression is an
excellent approximation for the scalar polarizability for
light at the Nd: YAG frequency. For example, for one of
the worst cases —cesium —the Nd: YAG detuning from
the nearest resonance is 55 THz.

To extract a value for the static or dc scalar polar-
izability np(dc) in the light-force experiments, the ratio
rp = np(~, )/np(dc) must be known, where ~, is the
Nd: YAG frequency. For the alkali metals, e.g. , rubidium,
the polarizability is a scalar and only the ratio rp is rel-
evant. For rubidium the ratio is calculated to be 2.12.
The frequency-dependent polarizability calculated from
Eq. (A10) gives a value for rubidium of 47.2 A.s, which
agrees within experimental error with the value measured
by Molof et aL [3]. This estimate of the polarizability
was made using the oscillator strengths of Shabanova and
Khlyustalov [16] and the photoionization cross sections
of Marr and Creek [17].

where z;~A, is the Levi-Civita antisymmetric tensor de-
Gned by

1 if ijk is cyclic in xyz
0 otherwise.

~ ~

In the dc limit, the coefficients n, substituted into ex-
pression Eq. (A9) reproduce the results given by Miller
and Bederson [5].

2. The scalar polarizability cxo

When the laser frequency is much smaller than any of
the resonant frequencies, the scalar polarizability can be
approximated by the expression

3. The tensor polarizability nq

We can write the tensor part of the polarizability using
expressions similar to those provided in the preceding
section for the scalar polarizability. We concentrate on
expressions that apply at large detunings. In terms of
oscillator strengths, the tensor part of the polarizability
n2 can be written [see Eq. (A2)]

(A13)

where the angular momentum factor &P2( J, JA, ) is given in
Eq. (A3). To extract a value for the static or dc tensor
polarizability nq(dc) in the light-force experiments, the
ratio rz = n2(u, ~)/n2(dc) must be evaluated.

(df /eke') d~'

(A10)

4. The sensitivity of the ratio r
to oscillator strength values

The light-force technique relies on a knowledge of the
ratios r, to convert the measured ac components of the
polarizability to their dc values. In turn, these ra-
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tios depend on a knowledge of the absorption oscillator
strengths f„i, for transitions from the ground state to ex-
cited levels, as well as a knowledge of the photoionization
cross section o(u). The ratios r, are not as sensitive to
the values used for the oscillator strengths and photoion-
ization cross sections as one might expect. For example,
the ratios are nearly independent of a(cu) and the f„i,'s
if a few lines dominate, as is the case for the alkali-metal
atoms. Note that it is the accuracy of relative, not abso-
lute, oscillator strengths that matters: if cr(cu) and all the
f„i,'s were scaled by the same factor, the ratios r, would
remain unchanged.

For a sufficiently long-wavelength laser, we may as-
sume that the contribution of the continuum to the po-
larizability will be the same at the frequency u as at dc.
An estimate for the rms error 8„,. of the ratio r; is then

2 2

s„, =)
l

'
I sf „+(1—r, ) I

" I, (A14)

where sf„„ is the rms uncertainty in the value of the kth
oscillator strength, and s~., is the rms uncertainty of the
contribution of the continuum to the a;th component of
the polarizability of the atom. This expression assumes
the uncertainties in n, and the f„i,'s are uncorrelated.
For example, using this expression to estimate the error
in the value of ro for rubidium gives s« ——1.4 x 10
For the alkali metals, like rubidium, the sensitivity of r to
the large uncertainties (roughly 20%) in the continuum
oscillator strengths is weak. However, for other atoms,
such as the inert gases, where a significant fraction of the
polarizability is contributed by continuum transitions, a
good estimate of the ratio r requires good data on the
photoionization cross section as a function of frequency.
When accurate data are not available, accurate measure-
ments of r can still be made at long wavelengths, where
r = 1 and (1 —r) 2 (( l.

5. Atomic polarizability and hyperfine structure

For atoms that have nonzero nuclear spin I, the hy-
perfine interaction must be accounted for in the zeroth-
order Hamiltonian, i.e. , when there is no external electric
field. Here, the total angular momentum F = J + I and

the projection of the total angular momentum along the
quantization axis F, = J, + I, are good quantum num-
bers and the eigenvectors can be labeled IpFM~).

The frequency-dependent polarizability operator can
be written in terms of the total angular momentum op-
erators F, of the atom as

Jl A A A A

~'& = o'eb''& —o i (F'F& —Fs F')

2 (F,F~ + F~ F,) —F(F + 1)6,s'
F(2F —1)

(A15)

The expressions for the coefficients 0,, are exactly identi-
cal to those given in Eqs. (A2) and (A3) with the trans-
formations J —+ F and JA, —+ FI, .

When the hyperfine interaction is weak, then I and J
are good quantum numbers along with F and m~. The
polarizability coefficients a,o and n2 can be related to the
absorption oscillator strengths defined earlier. To obtain
the appropriate result, it is important to use the fact that
the reduced matrix elements of the dipole operator p can
be written

1(&~~IFII~II&i ~i IFi) I =e~s'~. J I F

& Ih'phyll&llvi ~i) I' (A16)

e'gg S 4o(FFi)f t J I F
m A;gp ~2 FA; 1 J

(A17)

e'a~ S 4'2(F Fi)fbi
m Iyp ~2 —~2 ~" Fk 1 Jg

(A18)

where we have ignored the small energy shifts in ~k„ that
occur due to the hyperfine interaction.

where the object defined by the large curly brackets is a
6-j symbol [21]. Then, using this relation, the polariz-
ability coefficients can be expressed in terms of the oscil-
lator strengths Eq. (All) as follows:
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