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Calculation of traces of p-order replacement operators
over N-electron spin-adapted spaces
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We present here a simple method for the direct evaluation of traces of p-order replacement operators
(p-RO s) calculated in a finite-dimensional, antisymmetric, and spin-adapted ¹lectron space. The pro-
cedure is based on the reduction of the operator order together with a performance of the summations

through Slater determinants. Very useful and general formulas, which can be applied to RO's of any or-
der p ~ N, are then derived.

PACS number(s): 31.15.+q, 31.10.+z

I. INTRODUCTION II. THE DIMENSION OF THE FCI SPACE

The calculation of traces of p-order replacement opera-
tors (p-RO's) over finite ¹lectron spaces with definite
spin S plays an important role in some theoretical devel-
opments in physics and chemical physics. These traces
are needed in studies of spectral distribution both in
atomic and nuclear physics [1—7] as well as in the con-
struction of algorithms to describe the electronic struc-
ture of atoms and molecules. The development of the
spin-adapted reduced Hamiltonian theory [8—12] has re-
quired carrying out a systematic study of these traces due
to one of its steps, consisting of the evalution of spin-
adapted traces of products of replacement operators.

The summation of these kind of traces is performed
over the X-electron basis functions corresponding to the
spin quantum numbers S and M (eigenfunctions of S and
S, operators). In other words, these traces are taken over
the functions that constitute a basis set of a full
configuration-interaction (FCI) space corresponding to
the case of K orbitals, N electrons, and a spin S. In Refs.
[10,12] a rigorous study is reported that allows one to ex-
press the spin-adapted trace of an arbitrary p-RO in
terms of spin-adapted traces of diagonal p-RO's [6,7] (the
traces of products of the occupation number operators).
This paper tries to go beyond showing a simple algorithm
that leads to the direct evaluation of spin-adapted traces
of all p-RO's (diagonal and off-diagonal) by a progressive
reduction in the order of the p-RO's. The foundation of
the method consists of transforming the summations tak-
en over the eigenfunctions of S and S, operators into
those of the simpler eigenfunctions of S, operator. The
final results are expressed in terms of binomial
coefficients, which is useful for programming purposes.

In Secs. II and III, several aspects related with spin-
adapted traces of p-RO are considered. In Sec. IV, an ap-
propriate notation and a discussion of the different cases
that can occur are presented. Finally, the Appendix
shows some illustrative practical examples.

Let us consider an X-electron system and its spin func-
tions, the spin eigenfunctions of the (S,S, ) operators.
We will denote by S the spin quantum number and by M
the biggest eigenvalue of the S, operator for a determined
S. The spin function defined by the quantum numbers S
and M fulfills M =S =

—,'(N N&); N —=(N/2)+S and
N&=(N/2) S, where —N and N& are the number of a
and /3 electrons, respectively.

A. 2The dimension of the spin degeneracy for S eigenfunc-
tions, with spin quantum number S, is given by [13,14]

X N N
1V +1 Np Np —1

Note that although the parameters N and N& have a
clear physical meaning referring to the spin function with
the spin quantum numbers (S,M), formula (1) describes
the degeneracy of the S eigenfunctions, independently of
the eigenvalues of the S, operator.

In the left-hand side (lhs) of this equation the first and
second binomial coefficients mean the number of primi-
tive spin functions, (cr, (1)cr2(2) . o.~(N)) (with o, a or
P), that can be built having the quantum numbers M and
(M + 1), respectively.

It is well known that the Slater determinants, eigen-
functions of the S, operator, are formed by suitable linear
combinations of all the primitive spin functions corre-
sponding to a M value, and orbital functions. So, for a
given basis set of K orbital functions, the number of
Slater determinants corresponding to an eigenvalue M is

(& )(& ) and, consequently, the number of the wave func-
a P

tions having spin quantum number S, eigenfunctions of
(S,S, ) operators, is, according with formula (1)

+1 Xp —1

Obviously, a simple algebra shows that formula (2) is
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X +1

equivalent to the well-known Weyl-Paldus formula [15]

%+1 K+1
rC +1 (3)

turn number S, constructed with E orbitals (the basis set
of the FCI space). Closing both sides of a determined
operator given by formula (4), a matrix is obtained whose
(A, Q) elements are

III. SPIN-ADAPTED TRACKS OF p-RO

Expression (2) and the simple properties of the Slater
determinants are very useful in the calculation of spin-
adapted traces of p-order replacement operators (p-RO's).
The spin-free expression of these operators is [10,16—19]

il ' lPEPO ~ ~ Q~ ~ ~ ~ Q~b ~ ~ 4

J) ' ' J ~ ~ llo') l cJ J cT

0') 0
(4)

where b; and b are the fermion creation and an-
k k Jk k

nihilation operators. The RO's have also been called in
the literature [10—12] reduced density operators due to
the expectation values of these operators generating the
matrix elements of the p-order reduced density matrices.
For a given N-electron state IX & of a Hamiltonian 8, a
(i, . . . i,j, j~ ) element of the p-order reduced densi-
ty matrix is

which is commonly used in the literature. The interest of
the equivalent formula (2) is that the number of wave
functions with a S eigenvalue S'(S + 1) is calculated
through the number of the Slater determinants with ei-
genvalues M and (M + 1). Formulas (2) and (3) express
the dimension of the full configuration-interaction (FCI)
space [15].

&Al&E,".. .," In& (6)

and so, the trace of this matrix, labeled by (A, Q), is

y&AI'E,". ,'IA& . (7)

y&AIA&= y &,()'(M)lg(M)&
A E(M)

& S(M + 1 ) I

()'(M + 1 ) &, (8)
S(M+1)

where we denote by ()'(M) the Slater determinants corre-
sponding to a S, eigenvalue M.

Formula (8) can be easily generalized to any p-RO
without any difficulty. %'e will consider a simple example
to show the procedure. Using the identity

As has been previously reported [8], the value of this
trace does not depend on the value of the indices denot-
ing the orbitals but only on their ordering. The reason
for this is that the sum is carried out over the whole
space, therefore all the indices play equivalent roles.

The simplest case dealing with the calculation of these
l)kind of traces is when ~E. . . . p =—1. In this particularJ) ''Jp

case the trace is expressed, according to formula (2), as

~D. '. . . p= J I Jp

J) '''Jp pl
(5)

In the following, A, Q, . . . will be the eigenfunctions of
A.2(S,S, ) in the ¹lectron space, corresponding to a quan-

2ElJ
1J

J N(N —1)

formula (8) can be written

(9)

gg&AI'E, 'IA&= g &&@M)l'&/Jl+(M) &
— g g&&(M+1)I'E,'l&(M+1) & . (10)

A i,j S(M) i,j S(M+1) i,j
Some exact manipulations of this equation based on the possibilities that the indices are equal or different allow us to
write

g& Al'E(~ IA &~~ = g & &(M) I'E)21&(M) &)v tr
— g & +(M+1)I'E))221@M+I)&(vx

A S(M) g(M + 1)

and

&& AIA &(~,) (~, )
—g ™l&(M)&(~,) (~, )

— g &@M+1)IS(M+I) &(~ p) (~,),
A S(M) S(M+1)

(12)

where indices 1 and 2 in the E operator mean any pair of orbital functions of the basis set. This simplification derives
from the above-mentioned invariance of the traces with respect to the numbering of the orbitals [8]. The symbols
N, IC, (N —2), and (IC —1) as subscripts denote the parameters over which the eigenfunctions included in the summa-
tions are built.

The above example refers to the trace of a diagonal RO, but since the traces of off-diagonal operators can be ex-
pressed as simple linear combinations of the diagonal ones [10,12], we conclude that a general procedure to calculate
spin-adapted p-RO traces is

&&(M+1)l'Ej,'. . . ,"I@M+I)& .
A g(M) S(M+1)

(13)
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IV. CASKS, GRAPHS, AND FORMULAS

In the following we will use the angular brackets ( )N K as a shorthand notation for gA( I )N K, where IA) are
again the wave functions, eigenfunctions of (S,S, ) operators, constructed with K orbital functions in a spin-adapted
N-electron space, so that

(pE, '. . .,p
& =g& AIpE," j I )NK (14)

Since we have proposed the calculation of these kinds of traces through the difference of traces defined by Slater deter-
minants, we will denote

Ej . . . j IIN K: g (eV(M) Ej . . . j S(M))N 'K g (S(M+1)I E . . . 4(M+1))IN
S(M) S(M + 1)

(15)

where the superscripts N, K mean the number of n elec-
trons and functions employed in the construction of
Slater determinants. The same meaning is given to the
subscripts %&,K for the P electrons. So, Eq. (13) will be
written as

(16)

b,

(p 1)E
lo

I j2 J 1o I
0 I

=bf (P 1)E'2 'Pb
1 J2 Jp

1) 12

1

1, l2 '''l
pE)'j'. . . p =g . Qbt) . bt b

o I o

(18)

N , K N , K
NpK NpK N N

K
N +1 N —1P

il '''1
For the particular case of E '. . . ' = 1 we wi11 callJi '

Jp

(17)

1J2 j NK I J2 j [INpK

(p 1) i2 . i N, K+
II Ej2 j"

I (N& —1),(K —1) (19)

where 1 and 1 mean the spin functions 1 and 1~, respec-
tively. According to Eq. (15) and after applying the
b, , b„b1, and b-, operators, we have

The spin-adapted traces of p-RO are nil unless the
creation set (i „.. . , i ) contains identical indices to the
annihilation one Ij„.. . ,j ) [8]. So, the differences be-
tween al1 nonvanishing traces are established comparing
the permutations (i„.. . , i ) and (j„.. . , j„). The per-
mutation (1,2, . . . ,p) will be used as reference for the set
ti, , . . . , i I if it has no repetition of indices.

We will show that the spin-adapted trace of any p-RO
can be expressed in terms of traces of lower-order RO's,
so that finally the original trace is calculated as a function
of T expressions given by formula (17). The reduction
procedure presents several cases that can be represented
by simple graphs described as follows.

(a)

l2

which shows that the p order of the original trace has
been reduced in one unit.

Formula (19) can be generalized for q equal indices in
the same position whose graph is

1 2

1 2

which mean i, =j,=1, i2=j2=2, . . . , iq=jq=q, and

1(q+1)z ' ' z 1p ) ( j(q+1)z z Jpj'
The corresponding trace is

(pE ' ' 'q' (q+1) p )1,2, . . . , q, J( +]) J N, K
q Ij

22 2(» —i) 2»

q 'I
( ) z( +)) z (N —q+z) (K —q+z)

l J(q+ I ) Jp pi=0

(20)

which means i)=j1=1 and Ii2, . . . , ipI =Ijz, . . . , jpI.
We exclude any repetition of indices in any of the sets.

The corresponding operator is

An important application of Eq. (20) is the direct calcula-
tion of spin-adapted traces of diagonal p-RO's, so that,
when the graph is
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1 2 23

the trace is where l1=j2=1, i2= j1=2,
=

Ij, , . . . , j~ I. The p-RO is
and

(X —p+(), (X —p+i)
12, . . . ,p NK M ~

(N —i)(K—i)
i =0

(21) E ' ' '. . . ~ = —$~b~'p21j3 j 1 2 j3 j 2 1

which is very handy for computational purposes.
(b) In this case we again exclude any repetition of in-

dices in any of the sets. We refer to situations where the
equal indices do not have the same position; for example,
the graph

—b-'b-' 'p- 2)F."
1 2 J3' jp 2 1

(22)

and so, its trace calculated through the Slater deter-
minants is

(23)

This equation shows again the reduction of the order in the RO.
The procedure is also applied to the case of p-RO s having two blocks of equal indices, one with q indices and another

with (p —q) ones, for example {i),. . . , i I
= {ji, . . . ,j ] and {i( +i), . . . , i ] = {j( +i), . . . ,j I. The result is

(s'E' ' '~' ~+ ' ') ) =( —1) (ll I qE' + —'
ll'

' '+ll(i —eE' + ) (24)
Jl~ . . ~Jq~J(q+l)& Jp j( +1).. .j Np, K j( +1)

. - . j ([(Np —q), {K—q) j

where v is the number of permutations required to pass
from (ji, . . . , jq) to (i), . . . , iq).

In the particular case of only one block being formed
with the p indices, formula (24'} is transformed into

i
l

. . - i (N —p), (K —p) N, K
( E~~'. . . f ))vx =( —1) (T(v x' +T(~ i) (lc ) ) ),

(25)

which again allows a direct calculation of the trace.
(c) Finally, we briefiy refer to spin-adapted traces of

RO's having repeated indices. Since a direct procedure
has been reported to remove the repeated indices [10,12],
once those indices have been eliminated, we can apply
cases (a) or (b).

In conclusion, we have presented a straightforward
method for the calculation of spin-adapted traces of p-
RO. It carries out a reduction of p-RQ's to lower orders.
The final formulas are simple relationships between bino-

, K
mial coefficients T&"'z [see Eq. (17)] which is very useful

po

in a computational point of view. Some application exam-

ples are given in the Appendix.
Previous calculations of these kind of traces are based

on a classification of the corresponding p-RO [10,12]. In
a second step, the spin-adapted trace of a determined p-
RQ is expressed as a function of several traces of prod-
ucts of occupation number operators (the traces of the di-

agonal p-RO's) and, finally, the evaluation of the last

trace is carried out as described in Ref. [7]. The pro-
cedure that has been described above allows a simpler
classification and a direct evaluation of the spin-adapted
trace of any p-RO, diagonal or oA'-diagonal. This
simplifies the algorithms in those fields where these traces
are needed. In particular, in the spin-adapted reduced
Hamiltonian theory, p-RQ traces are required in the cal-
culation of the p-order spin-adapted reduced Hamiltonian
matrices. The eigenvectors of these matrices allow the
direct approximation of the p-order reduced density ma-

trix [12,20,21].
Furthermore, the method reported here is needed in

the calculation of traces of p-RQ's taken over wave func-

tions of spin and other symmetries, where the previous
procedure cannot be applied. That is the case for traces

yp «g I'E,",' l&s & and y, (&„I"EJ",
where A and A„are gerade and ungerade eigenfunctions
of (S,S, ) operators. A study of spin and gerade (or

ungerade) adapted traces are planned to be given else-

where [22].
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1 2 3 4 5 6

APPENDIX: EXAMPI.ES

Several spin-adapted traces of p-RO are given for the
system X =6,K = 10,S = 1 (N =4 and %&=2). We have 1 2 3 4 5 6

(6E1,2, 3, 4, 5, 6 ) 116E1,2, 3,4, 5, 6114, 10 T—2,4+6 T —1,5+ 15 T0,6+123456 610 II 12345,611210 210 19 ' 08

5 9 5 9
0 0 + 1 5

6 8 6 8

0 0 1

=9,
where, obviously, the binomial coefficients with negative indices are zero. We also have

(Al)

1 2

1 2

( E' ' ' ' ' ) 0=II E' ' ' ' '
I
2'Io=II E4' ' '

ll
' +2II E4' ' ' II1'9+II E4' ' '

II0'8

= —II'E"II" —II'E"II"—2I I'E"II"—2II'E" II" —II'E" II"—II'E" II' "

and

T —2,4+ T0,6+ T0,6+ T2, 8 +2T 1,5+271,7 + T0,6+ T2, 8
2, 10 0, 8 0, 8 —2, 6 1,9 —1,7 0, 8 —2, 6 (A2)

1 2 3 4 5 6

2 1 4 3 6 5

( 6E1,2, 3,4, 5, 6 ) II6E 1,2, 3,4, 5, 6 II4, 10 II4E1,2, 3, 4 II2, 8 II4E 1, 2, 3,4 II4, 10

II2E1,2 II0, 6 + II2E1,2 II2, 8+ II2E1,2 II2, 8+ II2E1,2 II4, 10

—II2E1,2II0, 6 +2I I2E1,2II2, 8 — 7—2, 4 70, 6 2T0, 6 2T2, 8

= —3.
(A3)
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