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A direct (nonvariational) solution of the Schrodinger equation for the ground state of the positronium
negative ion is obtained with the correlation-function hyperspherical-harmonic (CFHH) method. Cxiven

the proper correlation function chosen from physical considerations, the CFHH method generates wave
functions accurate in the whole range of interparticle distances that lead, in turn, to precise estimates of
the expectation values of the Hamiltonian and of different functions of interparticle distances. The
correlation function used was chosen to have proper electron-positron and electron-electron cusps as
well as asymptotic behavior. The inclusion of 225 hyperspherical functions yields the nonextrapolated
ground-state energy value of 0.262005 058 atomic units, which is lower than the nonextrapolated energy
values 0.262004 895 and 0.262005 056 calculated in works of Ho [J. Phys. B 16, 1503 (1983)] and Bhatia
and Drachman [Phys. Rev. A 28, 2523 (1983)] but higher than the best variational value 0.262005069
obtained by Petenlenz and Smith [Phys. Rev. A 36, 5125 (1987)]. The accuracy of our value of
2.08610+0.00006 nsec for the two-photon annihilation rate is higher by an order of magnitude than
obtained in the previous literature.

PACS number{s): 31.15.+q, 31.20.—d, 36.10.Dr

The correlation-function hyperspherical-harmonic
(CFHH) method, unifying the correlation-function ap-
proach [1] with the hyperspherical-harmonic method [2],
was introduced a few years ago by Haftel and Man-
delzweig [3—9]. The method provides a very accurate
direct (nonvariational) solution of the Schrodinger equa-
tion for different three-body systems and cures the main
pitfall of the variational method —the necessity of guess-
ing the mathematical form of the wave function, which
can result in a low-quality wave function even in cases
where hundreds of variational parameters generate ex-
tremely precise energies [10]. Given the proper correla-
tion function, chosen from physical considerations, the
CFHH method yields wave functions accurate in the
whole range of interparticle distances [8,9]. This leads, in
turn, to precise estimates of the expectation values of the
Hamiltonian and of different functions of interparticle
distances [4—7,9]. Variational wave functions, on the
other hand, are often accurate only in the region where
the probability density is high. The Green s-function
Monte Carlo method, which is applied, for example, to
calculate the ground state of the three-body mesomolecu-
lar dt's system [11],does not have these limitations, but
its extension to the excited states is very dificult because
any small admixture of the ground state in the impor-

tance function will eventually dominate the numerical
simulation.

In the CFHH method, which is elaborated in detail in
Ref. [6], one writes the wave function as a product of two
factors,

g=exp(f ), f= y(r, +r2) —5r3— (3)

with parameters y and 5 chosen for each given system
from physical considerations, was employed, yielding

where y is the "correlation factor" and P is expanded in
the usual hyperspherical-harmonic (HH) functions. If
the correlation factor g is chosen to describe the singular
features of g (like cusps), the HH expansion for P should
be rapid. The solution for t() proceeds as in the usual HH
method, except that the potential V is replaced by an
effective velocity-dependent potential V',

V'= V —— —((t' 1ny)V',
1 Vy

(2)
2 X

where V is the six-dimensional gradient operator and Vin
our case is the sum of the pair Coulomb potentials. In
the previous calculations [3—9], the simplest spatially
symmetric correlation factor
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surprisingly accurate wave function for ground and excit-
ed states of considered three-body Coulomb systems
[2—9]. We denote by M, Z the ratios of masses and
charges of the nonidentical particle 3 to those of like par-
ticles 1,2, whose mass and charge are set to unity. The
interparticle distances r; are in the odd-man-out notation.
The usual choice [2—9] of parameters y, 5 was based on
the requirement of the absence of the Coulomb singulari-
ties in the effective potential [cusp parametrization
y=MZ/(M+1), 5= —0.5] or on their partial absence
[y is chosen to be MZ/(M+1) to remove the Coulomb
singularities between particles 1,3 and 2,3, while 5 is tak-
en to be zero —uncorrelated cusp parametrization] or
some positive number (cusp-asymptotic parametrization)
to make the correlation function fall off at large distances
between particles 1 and 2 in order to facilitate the correct
asymptotic behavior of the wave function [7].

To date the accuracy of the CFHH method has been
verified for ground (1 'S) and excited (2 'S, 3 'S, 4 'S, and
5 'S) states of the helium atom [3,4,6,8,9], for the ground
state of mesomolecular ppp, , ddt, and ttp systems [7],
and for the ground state of the positronium negative ion
e+e e (also denoted Ps ) [5,8]. These calculations
demonstrate the utility of the method for systems with
different mass ratios.

The direct (nonvariational) ground-state solution [3—8)
of the Schrodinger equation obtained by the CFHH
method has precision comparable to that obtained previ-
ously only by elaborate variation calculations. For exam-
ple, for the maximum global moInentum K =48, up to
nine significant figure precision is obtained for the
ground-state energy of the helium atom [4,6] and seven
significant figure accuracy for the positronium ion [5].
The wave functions for the whole range of the interparti-
cle distances, and different expectation values for these
systems, have about six and five significant figure pre-
cision, respectively. The overall and local quality of the
corresponding wave function, which is determined by
computation of the absolute value of the relative local de-
viation b, =(HQ/EP) —1 (which defines the quality of the
wave function [12])and of its averages ( ~b,

~ ), respective-
ly, is very high [6,8].

The results of excited-state helium calculations [6—9]
show that the simplest correlation factor (3) works very
well also for excited states. Indeed, the comparison of
the results for K =48 and 56 shows that the precision of
the expectation values of the Hamiltonian is eight
significant figures and of other expectation values five
significant figures. The obtained energy values are better
than those obtained in variational calculations of Accad,
Pekeris, and Schiff [13]with the Hylleraas-type variation-
al wave functions, and in generator-coordinate computa-
tions of Thakkar and Smith [14]. They agree weH with
the most sophisticated variational calculations of Drake
[15] and Kono and Hattori [16], who use trial functions
constructed with two groups of basis functions, as well as
with the results of Frankowsky [17] and Baker, Hill, and
Morgan [18], whose basis functions incorporate logarith-
mic terms. Both of these modifications of the Hylleraas
expansion yield more rapidly convergent variational ener-
gies.

I =2+a 1 —a 17
12 +g, (5(r, ))

which, in nsec ', has the form

I = 100.938(0.996 824+F3)(5(r, ) ) . (4)

Here (5(r, )) is the probability of an electron and the
positron being at the same point. The number in the
parentheses on the right-hand side accounts for radiative
and three-photon annihilation corrections [21,22], and i)3
for bound-state and relativistic effects, which have not yet
been calculated in the literature and should be found
from the comparison with experiment [20]. The experi-
ment currently gives 2.09+0.09 nsec ' and its accuracy
could in principle be improved by an order of magnitude.
The density (5(ri) ) of the electron at the positron was
calculated variationally by Ho [23] and Bhatia and
Drachman [24], but the obtained values of 0.020 713 (Ref.
[23]) and 0.020 730 and 0.020 733 (Ref. [24]) varied
strongly not only from work to work, but even in the

Improvements in the correlation function used in the
CFHH calculation are nevertheless desirable. One can-
not simultaneously build in both a satisfactory asymptot-
ic and cusp behavior with the symmetric linear correla-
tion function f, Eq. (3), used in Refs. [3—9]. As a result
one has to choose between the inclusion of the cusp be-
havior, which yields a better short-distance description of
the wave function, and the asymptotic behavior, which
produces better results for large distances. For example,
as one can see from the comparison of Table III of Ref.
[4] and Table I of Ref. [9], the convergence of the expec-
tation values of the operator 5(ri2), which stresses very
small electron-electron distances, in the cusp parametriz-
ation y=2, 5= —0.5 of Ref. [9] (which includes the
electron-electron cusp but produces completely wrong
asymptotic behavior when r, 2 is going to infinity) is
significantly better than in the uncorrelated cusp parame-
trization y =2, 5=0 of Ref. [4] (where this cusp is omit-
ted, in order to improve the asymptotic behavior in r i2).
The convergence of the expectation values of T &2 defined
by large electron-electron distances, is worse.

On the whole, the inability of the correlation factor (3)
to include the cusp and asymptotic behaviors simultane-
ously leads to lower quality of the wave functions (higher
values of the local deviation b, ) at small or large interpar-
ticle distance [8,9], which in turn leads to less accurate
expectation values of the Hamiltonian and of different
functions of interparticle distances.

The purpose of this work is to employ a more sophisti-
cated correlation factor y, in which f is a nonlinear func-
tion of interparticle distances, chosen to simultaneously
describe both the cusps and the asymptotic behavior. %'e
will utilize it for the calculation of the energy and of the
two-photon electron-positron annihilation rate in the
ground state of the positronium negative ion Ps
(e+e e ), a system whose binding energy and decay
rate were measured by Mills [19,20] a few years ago.

Theoretically [21,22] in the lowest order the two-
photon decay rate of this system in atomic units (a.u. ) is
given by the equation
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framework of the same computation.
In order to calculate the two-photon decay rate in the

positronium negative ion more reliably, a few years ago
the CFHH method was used [5]. The wave function
computed by this method converges to the true solution
at every point in an absolute and uniform fashion [6,8],
and not "on the average, " as in variational calculations.
In addition, the CFHH wave function [2—9], in which the
triple and double coalescent points can be taken into ac-
count exactly by the proper choice of the correlation fac-
tor g, and in which the radial dependence of the function
P is given analytically by a logarithmic —power-series ex-
pansion, which results from the direct solution of the
Schrodinger equation, has a correct analytic structure.
This is especially important for estimating the electron
density at the positron which defines the decay rate and
which demands a precise knowledge of the wave function
at the singularity of the Coulomb potential. The CFHH
computation [5], which used the simple correlation func-
tion (3) with y =0.5, 5=0, including only electron-
positron cusps, produced the same value of 0.020730 for
the electron density (5(r, )) at the positron as was ob-
tained earlier in variational calculations of Bhatia and
Drachman [24] under the restriction of the correlation
factor being symmetric under interchange of two elec-
trons. However, the CFHH and variational values of
electron density (5(r3) & at the electron, 0.000 180 15 and
0.000 171 29, as well as the CFHH and variational energy
values, 0.262004 857 and 0.2620050445, respectively,

were somewhat different, which could mean a genuine
disagreement between the CFHH and variational wave
functions or reflect the imprecision of the CFHH wave
function due to the neglect of the electron-electron
Coulomb singularity. To check this point, and especially
to increase the precision of the two-photon decay rate es-
timate in view of future experiments, we perform here a
CFHH calculation of the positronium negative ion, this
time using the correlation factor y with the nonlinear
function f,

3f= g [a;+(b; —a;)exp( —c, r, )]r, , . (5)

so parameters b; have to be chosen to describe the cusp
singularities, while at r, ~~ it has the form

3f= pa, r, ,

geared to reproduce both all the cusps and the asymptot-
ic behavior of the wave function, guaranteeing smooth-
ness of the factor P in (1) and correspondingly a fast con-
vergence of the hyperspherical expansion also at very
small and very large interparticle distances r;. Indeed, at
r; ~0f has the form

3

f=gb, r, ,

TABLE I. Calculated energy eigenvalue E and the expectation values of the Hamiltonian (H ) and of ditferent functions of the
positron-electron (r, ) and electron-electron (r3) distances, respectively, in atomic units (a.u. ) for values a, =0, n =5 of the adjustable
parameters. K is the maximum global angular momentum and N is the number of hyperspherical functions included. The number
of digits indicates the numerical precision of calculated values. The last lines of the table contain the results of the previous CFHH
calculations [5] with the uncorrelated cusp parametrization and of the most sophisticated variational computations [23—26] where
the asterisk indicates extrapolated values.

24
32
40
48
56
Ref. [5]
Ref. [23]
Ref. [24]
Ref. [26]

K

49
81
121
169
225

0.036 183 59
0.036 057 68
0.036 036 35
0.036 030 50
0.036 025 79
0.036 034 51

0.156 105 48
0.155 744 1

0.155 677 1

0.155 657 7
0.155 643 6
0.155 654 3
0.155 6

0.155 631 90

(6(r, ) &

0.000 171 876 39
0.000 171 169 2
0.000 171062 8
0.000 171037 4
0.000 171013 1

0.000 180 151 7
0.000 171 29
0.000 171 5

(5(r, ) )

8.495 075
8.533 38
8.542 34
8.545 29
8.546 99
8.546 11129
8.547 6

8.548 580 8

(r2 )

91.461 2
92.642
92.955
93.064
93.121
93.100 697 0
93.128 3
93.171 4
93.178 633

0.261 964 578 562
0.262 002 448 391
0.262 004 084 833
0.262 003 669 659
0.262 004 672 711

49
81
121
169
225

Ref. [26]

24
32
40
48
56
Ref. [5]
Ref. [23]
Refs. [24,25]

0.279 365
0.279 353
0.279 338
0.279 328
0.279 328
0.279 309 7

0.340 077 8
0.339 888 8
0.339 848 3
0.339 835 3
0.339 827 8
0.339 831 3
0.339 8

0.339 821 02

0.020 723 584
0.020 733 39
0.020 733 56
0.020 732 42
0.020 733 02
0.020 730 3
0.020 713
0.020 730
0.020 733

5.461 943
5.481 76
5.486 41
5.487 93
5.488 81
5.488 352
5.489 1

5.489 633 3

47.550 2
48.147
48.306
48.361
48.390
48.379 317
48.393 6
48.415 2

48.418 936

0.262 002 53
0.262 004 68
0.262 004 99
0.262 005 04
0.262 005 058
0.262 004 857
0.262 004 895
0.262 005 045
0.262 005 056
0.262 005 065*
0.262 005 069
0.262 005 070
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0.2615 particles are in the S state. We have, therefore, in this
case the following asymptotic form of the wave function:

g = exp [ —Q —', ( E —
—,
' )rk ],

whose comparison with Eq. (7) gives

(10)

0.2620—
24

-+

a;r; +a~rj+akrk=(aj+ak )rk = —Q —,'(E —
~ )rk

or, if we identify Ii,j,k] with I1,2, 3],
a3= —

—, c—
—,
' —

a& .

0.2625—

t

10

FIG. 1. Dependence of the eigenvalue E, the solution of the
CFHHM system of coupled differential equations, on the free
parameter n, for two values of the free parameter a&, and
different maximum values of the global angular momentum K
Full lines, a& =0; dashed lines, a& = —0.2. Curves are labeled
by the values of K . Atomic units (a.u. ) are used in all figures. 2.6200 I— 24

The comparison of the asymptotic form of the wave func-
tion corresponding to the configuration (ii) of two elec-
trons and a distant positron with Eq. (7) does not put any
restriction on parameters a, and a3, since the energy of
two electrons lying in the continuous spectrum is arbi-
trary and so is the positron energy. We define, therefore,
a& as an arbitrary parameter whose optimal value will be
found in the process of the computation.

The choice of parameters b; is straightforward: com-
parison with Eq. (3) for the positronium ion immediately
gives b, =b~ = —y= —0.5, b, = —5=0.5. The choice of
parameters c; is more complicated, since the definition of
the asymptotic region is somewhat arbitrary. Under the
intuitive assumption that the asymptotic region in r,.
starts when an interparticle distance is of the order of

and parameters a; have to provide a proper asymptotic
description. Parameters c; determine the start of an
asymptotic region. In view of the space symmetry of the
wave function a

&
=a&, bi =bz, and c& =cz.

In the limit of interparticle distance rk being much
larger than r, (in which case. r =rl, ) the positronium neg-
ative ion Ps separates in one of two possible
configurations (i) or (ii), consisting either of the bound
e e+ (positronium) cluster and a distant electron, or the
unbound system of two electrons, interacting with a dis-
tant positron, respectively. In configuration (i) the energy
of the distant particle is fixed by the binding energy c; of
the two-particle cluster and by the binding energy c. of
the positronium ion and the asymptotic behavior of the
Ps wave function for rI, ~~ (rk ))r;) is given by

/=exp( t/ 2p; e, r, )—exp[ —+2M;(E —c,; )rk ]

=exp[ —+2M, (E—E, )rk] .

Here

CO

X

32 +

40
2.62005— 48

/

/
/

/
/

/
/

/'

40

32

mjPlkp;= =
—,
' and M;=

mj+f71k

m;(m +mk)
rn;+m +mk

=2
3

are the reduced masses of the cluster constituents and of
the cluster and the distant particle, respectively. Equa-
tion (8) is written under the assumption that the clustered

FIG. 2. Dependence of the expectation value of the Hamil-
tonian on the free parameter n for two values of the free param-
eter a&. Notation is as in Fig. l. Error bars reflect a conserva-
tive estimate of the intrinsic accuracy of the calculations. The
main source of inaccuracy is the degree of fatness of the plateau
in the dependence of the quadrature on the upper limit of the p
integration.
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5.50—
I I ! I I I I

I
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I
I I I I I I I

I
I

+

0.26195—

0.26200—

I
/

I
I

I
/

/

/

I

5.45 -+
0 26205 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56
Km

FIG. 3. Dependence of the eigenvalue E on the rnaximurn

global angular momentum K for two combinations of the free
parameters a& and n. Full line, a&=0, n=5; dashed line,
a, = —0.2, n =3. Also shown is the result of Ref. [5] in which
the uncorrelated cusp parametrization was used (dotted line).

FIG. 5. Dependence of the expectation value of the distance
between an electron and the positron (r, ) on K (a.u. l. The
notation is as in Fig. 3.

I I Ill I'I I
I

I I I I I I I I I I I I I I I
I

I I I I I I I

I
I I I I I

I
I I I I I I I

I
I I I I I I I

I

I I I I I I I
I

I

2.62003— 0.27935—

X

2.62004 0.27930—

2.62005 0.27925—

I I I! I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56

FIG. 4. Dependence of the expectation value of the Harnil-
tonian operator on K . The notation is as in Fig. 3.

:I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56
Km

FICx. 6. Dependence of (r, ) on K . The notation is as in

Fig. 3.
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two to ten times larger than its average value ( r; ) (taken,
for example, from Ref. [5]), we set c;=1/(n (r, ) ), and
find the optimal value of n, providing the fastest conver-
gence, in the process of the computation.

The results of the calculations with a, =0 and n =5 are
given in Table I. The inhuence of the choice of parame-
ters a& and n is illustrated in Figs. 1 —8. Before calculat-
ing the dependence of the eigenvalue E on the parameter
n (Fig. l), it was necessary to check that the matrix
power-series expansion of the effective potential 8'in the
variable p converged numerically at the largest values of
p used in solving the system of coupled differential equa-
tions. In the arithmetic with about 16 digit precision, it
was found in the case a& =0, n =4, that at p=100 the
leading element of 8'converges to about 7 digits with the
maximum power 52, and at p =50 to 10 digits with the
maximum power 35. With n =5, the result is 10 digits
and 12 digits, with maximum powers 48 and 35, respec-
tively. With a& = —0.2, n =4, the result is 8 and 11 di-

gits, with maximum powers 56 and 38, respectively. The
maximum p used in the solution was of the order of 80.
However, even for much larger maximum p the results
are not affected at all by the breakdown of the power
series because of the nature of the method of solution,
and the small weight large values of p carry in the deter-
mination of the wave function. The value of p at which
numerical breakdown of the series occurs is roughly pro-
portional to n, which is apparent from the expression for
the correlation function f.

In the large-n limit, the cusp parametrization is

recovered. However, the cusp parametrization, as op-
posed to the uncorrelated cusp parametrization of Ref.
[5], cannot be used at small K because the asymptotic
constant in the solution for K =0, K+ and K, as
defined in Ref. [9], are complex. This is refiected in the
case of the nonlinear correlation function f in the fact
that large n, for small K, causes the ground-state energy
to be driven toward more binding, making it practically
disappear in the limit n going to infinity. As is apparent
from Figs. 1 and 2, this problem is avoided in the present
calculation since the optimum values of n are small. The
figures also show that the dependence on a

&
and n dimin-

ishes as K increases.
The optimum values of the parameter ak are close to

zero, i.e., much smaller in absolute value than the cusp
parameters bk. This is to be expected, since in this way,
the terms dominant near the coalescence points [propor-
tional to (bk —ak )] of the correlation function are multi-
plied by exponential functions which render them small
in the asymptotic regions, with the necessary small
corrections by the terms proportional to a&, which ensure
the proper asymptotic behavior.

One immediate gain of the nonlinear correlation func-
tion is the increased stability of calculations with respect
to the maximum p used in the solution of the system of
differential equations. At small K (K =20), the eigen-
value E was stable to 13 digits at maximum p about 80;
for the linear f (uncorrelated cusp parametrization), E
was stable to only 6 digits even for maximum p of the or-
der of 500, and the stability set in only at larger K

0.02074C—
I I I I I I I 'f t. I I I I I I

i
I I I I I I I

i

I I I I I I I
f

I

O.i85—

0.02073C—

0.180—

0.020720—
I

I

0.175

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56
Km

0)70 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

24 32 40 48 56
Km

FIG. 7. Dependence of the expectation value of the 6 func-
tion of the electron-positron distance on K . The notation is as
in Fig. 3.

FIG. 8. Dependence of the expectation value of the 6 func-
tion of the electron-electron distance on E . The notation is as
in Fig. 3.
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Without the need to include very large values of p, one
stays within the numerical convergence radius of the ma-
trix power series for the effective potential 8'.

From Fig. 4 it is apparent that to reach the same accu-
racy of the expectation value of the Hamiltonian opera-
tor, E =36 with the nonlinear correlation function
equivalent to E =48 with uncorrelated cusp parametriz-
ation, the number of coupled equations being 100 and
169, respectively.

Figure 5 shows that the correlation function (5) pro-
duces rather smooth convergence patterns with increas-
ing E for the expectation value of the distance between
an electron and the positron. The convergence curve for
this expectation value calculated in Ref. [5] with the
linear correlation function shows less smooth behavior.
The same distinction between linear and nonlinear corre-
lation function calculations is even more apparent in Fig.
6, showing the convergence of the inverse-square inter-
particle distances, and in Fig. 7, showing the convergence
of the 6-function operator in interparticle distance, which
are especially sensitive to the values of the wave function
at double coalescence points. The expectation values of
other powers of the distance between an electron and the
positron as well as of various powers of the distances be-
tween two electrons show a very similar pattern. In addi-
tion Fig. 8 shows the sensitivity of the wave function to
the inclusion of the repulsive cusp behavior between the
two electrons. Moreover, Figs. 3—8 illustrate the superi-
or convergence properties of the present calculations us-
ing the correlation function (5) over the earlier calcula-
tions which used the linear version [5].

Summing up, in this paper we show that the use of a
general nonlinear correlation function (5) for the posi-
tronium negative ion improves significantly the accuracy
of the CFHH method. This is our first application of the

nonlinear correlations. In order to improve the accuracy
of the calculations we also increase here the value of max-
imum global momentum up to E =56. This increases
from 169 to 225 the number of basis hyperspherical har-
monic functions and the corresponding coupled equation.
The inclusion of 225 hyperspherical functions together
with the correlation factor (5) yields the ground-state en-
ergy of 0.262005058 a.u. The substitution of our value
of (5(r3)) =0.0207330+0.0000006 (where an error
evaluation follows from the comparison of the results for
K =40, 48, and 56) into Eq. (4) gives a value of
(2.086 10+2.092 75g3)+0.000 06 nsec ' for the two-
photon annihilation rate. The neglect of the g3 correc-
tion, expected to be very small, yields 2.086 10+0.00006
nsec

From Table I one can see that our nonextrapolated
E =56 energy value 0.262005058 is lower than the
nonextrapolated energy values 0.262 004 895 and
0.262005056 calculated in works of Ho [23] and Bhatia
and Drachman [24] but higher in the eighth significant
figure than the best variational value 0.262005069 ob-
tained by Petelenz and Smith [26]. This is in agreement
with the result of a comparison of values of (H) for
E =56 and for E =48 which indicates that the accura-
cy of our present direct calculation of the energy is at
least eight significant figures. The previously obtained
nonvariational energy values of 0.2620 and 0.2620217
a.u. calculated, respectively, by the direct solution of the
Schrodinger equation with the help of the hyperspherical
coordinates method [27,28] and by the orthogonal colla-
tion method of numerical solution of the Faddeev equa-
tions [29], have an accuracy of four sigmficant figures.
The accuracy of the present estimate of the decay rate is
higher by an order of magnitude than that obtained in
the literature until now.
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