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For the Dirac equation in one space dimension with a potential of the Lorentz scalar type, we present
a complete solution for the problem of constructing a transparent potential. This is a relativistic exten-
sion of the Kay-Moses method which was developed for the nonrelativistic Schrédinger equation. There
is an infinite family of transparent potentials. The potentials are all related to solutions of a class of cou-
pled, nonlinear Dirac equations. In addition, it is argued that an admixture of a Lorentz vector com-

ponent in the potential impairs perfect transparency.
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I. INTRODUCTION

In their classic paper of 1956, Kay and Moses gave a
complete solution for the problem of finding all possible
transparent potentials for the Schrodinger equation in
one dimension [1]. In the present paper we are interested
in developing a relativistic version of the Kay-Moses
method [1], i.e., in finding all possible transparent poten-
tials for the Dirac equation in one dimension. The trans-
parent potentials for the Schriodinger equation later
found many interesting applications in nonlinear prob-
lems such as those in soliton physics. The relativistic ex-
tension of the Kay-Moses method may also find applica-
tions in nonlinear problems.

It is understood that the potentials are localized. A
potential is said to be transparent or reflectionless if a
wave of any shape incident on the potential, say, from the
left, is transmitted to the right without any reflection.
The shape of the wave may be altered through transmis-
sion. If the incident wave is a plane wave, the tran-
sparency should hold for any wave number or energy.
The phase of the wave may be shifted. In the relativistic
case negative-energy waves have to be included.

Let us define the problem more explicitly. We consider
the Dirac equation in one space dimension,

[ap +Bm +BS (x)+V(x)]¥(x)=E(x) , (1.1)
where ¢ =#=1 and p = —id /dx. We will be confined to
one space dimension throughout, hence we will not re-
peat the phrase “one dimension” hereafter. In the poten-
tial BS(x)+ V(x) that we assume, S is a Lorentz scalar
and V is the zeroth component of a Lorentz vector. It is
understood that S and V both vanish as x —-=+ow. The
relativistic energy E includes the rest mass m that we as-
sume to be nonzero. The wave function ¥ is a two-
component spinor. a and 3 are 2X2 Pauli matrices; we
use a=o, and B=o0,. The problem is to find
BS (x)+ V(x), which is transparent. As we will discuss in
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the last section there are reasons to suspect that V is not
allowed for a transparent potential. Therefore let us as-
sume that

V(x)=0, (1.2)

and focus on the Lorentz scalar type. In Ref. [2] we
found, in a heuristic manner, an example of S(x) that is
transparent. In the present paper we give a systematic
method for constructing such potentials. The method is
a complete one in the sense that it exhausts all possibili-
ties for the Lorentz scalar type.

It would facilitate having a perspective of the problem
if we present the basic idea that has guided us
throughout. Rather than directly dealing with Eq. (1.1),
consider bound-state solutions of the nonlinear Dirac
(NLD) equation,

N
ap+Bm —B S g;(8]Bs;) |¢:(x)=Epd,(x), (1.3)

j=1

where the subscript i (=1,2,...,N) refers to N un-
known wave functions, each of which is a two-component
spinor. The g;’s are positive constants. The ¢,’s are nor-
malized as

7 lgiax=1. (1.4)
When the ¢,’s are found, define S (x) by
N
Sx)=—3 g¢(x)Bs;(x) . (1.5)

i=1

We suspected that, when used in Eq. (1.1), S(x) of Eq.
(1.5) would be a transparent potential. Note that, unlike
Eq. (1.3), Eq. (1.1) is a linear equation for ¢ (with an
“external” potential S). Equation (1.1) with S(x) of Eq.
(1.5) has N bound-state solutions with eigenvalues Epg;
and eigenfunctions ¢;. For the transmission (scattering)
problem, energy E can be chosen at will (| E| > m).
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The above idea was hinted at by a similar situation for
the Schrodinger equation,

2
~ L @ Ly

I d? P(x)=¢ep(x) . (1.6)
x

All possible transparent potentials for the Schrodinger
equation can be constructed by the Kay-Moses method
[1]. Furthermore, there is one-to-one correspondence be-
tween the Kay-Moses transparent potentials and the
bound-state solutions of the nonlinear Schrodinger (NLS)
equation [3,4],

1 d2 N 2
2m dx 2 jzl gJ ¢]

¢,‘(X)=Ei¢i(x) , (1.7)

where ¢;(x) is normalized as f ® _#idx =1and

g, =2;/m , g=—k/2m . (1.8)

Any of the Kay-Moses potentials can be expressed as
[3-5]

N
Ux)=— 3 gi¢Hx) . (1.9)

i=1

Thus the problem of constructing a transparent potential
for Eq. (1.6) is exactly equivalent to solving Eq. (1.7).
There is an infinite variety of transparent potentials. The
positive integer N can be chosen arbitrarily. For each
value of N, there is a family of potentials with 2N param-
eters. In the present paper we will find exact parallelism
between the Dirac and the Schrodinger cases. What we
have done in Ref. [2] is to confirm this parallelism for the
case of N =1 through numerical calculations. In the pro-
cess off finding transparent potentials, we also find exact
solutions for the NLD equation (1.3) for any value of N.

In Sec. II we prove that S(x) defined by Eq. (1.5) is
indeed a transparent potential. We do this by relating the
NLD equation (1.3) to an auxiliary NLS equation. In
Sec. IIT we present a method for explicitly constructing
S (x) by means of solutions of the auxiliary NLS equa-
tion. In Sec. IV we argue that a transparent potential
cannot contain a Lorentz vector term. We also discuss
some features of the time-dependent NLD equation.

II. PROOF THAT S (x) OF EQ. (1.5)
IS A TRANSPARENT POTENTIAL

We are going to prove that S(x) of Eq. (1.5) is a trans-
parent potential. We begin by reducing the Dirac equa-
tion (with ¥ =0) to a Schrodinger equation. Equation
(1.1) can be written as

V. —(m+S)W,=—E¢_, (2.1)
V. +(m+SW_=Ey, , (2.2)

where ¥’ =dvy/dx and v, are related to the two com-
ponents of ¥=(¥) by

vi=utv . L3

When 9 is normalized, so is each of ¢, [6]. Equations
(2.1) and (2.2) can be reduced to

1 d? (E2—m?)
T omoax? U VT Y @4
where
Uy (x)=S+——(S2£S") . (2.5)
2m

Equation (2.4) is of the form of the Schrédinger equation
[7]. In the above, S can be any function of x. If S is a
transparent potential, then U are both transparent poten-
tials, and vice versa. This is because if ¥ and v are both
free from reflected waves, so are ¥, and ¢_. If Sis a
given external potential (independent of 1), we are deal-
ing with a linear equation for 3. In this case the two
equations for ¥ of Eq. (2.4) are decoupled.

Now let us turn to the NLD equation (1.3). We will
focus on the case of N =1. Extension to the general case
of N >1 is straightforward. When we emphasize the dis-
tinction between the linear and nonlinear situations, we
denote the solution for the linear case with ¥ and that for
the nonlinear case with ¢. In the NLD equation S is re-
lated to ¢ by

S(x)=—g¢'Bp=—gul—v)=—gd,¢_, (2.6

where ¢=(}). We are using the same notation, u and v,
for both ¢ and ¢, but this should not be very confusing.
The NLD equation has a bound-state solution with [2]

E=Ez=m[1+(g?/4)]7 2. 2.7)

Another form of Eq. (2.7) is where
k=(m?—E})'"2.
Equations (2.1)-(2.5) also hold for the NLD equation.

For example, the nonlinear version of Eq. (2.4) is

2K:gEB>

1 d? K2
-+ % .y =_ K .
2m dx? + P 2 ¢s 2.8)

where U are now related to S of Eq. (2.6), or more gen-
erally to S of Eq. (1.5), through Eq. (2.5). When we em-
phasize the linkage between the NLD equation and Eq.
(2.8), we refer to the latter as the auxiliary NLS equation.
Note that S of Eq. (2.6) and hence each of U, depends on
both of ¢.. In this sense the auxiliary NLS equations for
¢ are coupled. In the bound-state problem, however, we
will show that U are related to ¢ by

E
Ui:_g B
m

2
Pr=—2"g% (2.9)

Hence the coupling mentioned above is only deceptive.
Now the crucial point is that, according to Refs. [3,4],
U, of the form of Eq. (2.9) are both transparent poten-
tials for the Schrédinger equation. This proves that .S (x)
of Eq. (2.6) is a transparent potential for the Dirac equa-
tion.

Equation (2.9) can be derived as follows. By operating
d /dx on both sides of Eq. (2.6) and using Egs. (2.1) and
(2.2), we find

S'=—Epg(¢% —¢2) .
Combining this with Eq. (2.5), we thus obtain

(2.10)
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E
U,—-U_= =—g~m”~(¢i—¢{). (2.11)

m

Next, start with another equation implied by Eq. (2.5),
i.e.,

2
i

U,+U_=2
+ 2m

. (2.12)

Operating d /dx on both sides of Eq. (2.12) and using
Egs. (2.1), (2.2), and (2.10), we find

8Ey
m

d

U, +U_+
dx +

(% +¢2) |=0. (2.13)

This means that the quantity in the square brackets is a
constant. Since U, and ¢, all vanish as x —+ o, the
constant must be zero. This result combined with Eq.
(2.11) leads to Eq. (2.9). Let us emphasize that this
feature of decoupling between ¢, and ¢_ is peculiar to
the S of the form of ¢TB¢. It does not hold, for example,
if we add a term like (¢'B¢)2.

In order to have a feel for what we have done, it would
be useful to see how the results found in Ref. [2] fit into
this scheme. In Ref. [2] we solved the NLD equation
(1.3) for N =1 directly, found ¢ explicitly with E of Eq.
(2.7), and derived

S(x)= —2 (2.14)
m +Egcosh(2kx) )
By substituting this S into Eq. (2.5), we obtained
2k2E [ Eg +m cosh(2kx) F k sinh(2kx)]
U,=— . (2.19)

. m [m + Egcosh(2kx)]?

Note that U (x)=U_(—x). We left U, as such in Ref.
[2], but they can be reduced to the following simple form
[8]:

2

U,(x)= —-%sechz(xx 1), (2.16)
where
e?=(m +«)/Ey . 2.17)

The U of Eq. (2.16) belong to the two-parameter family
(N =1) of the Kay-Moses potentials. Normalized solu-
tions ¢ of Eq. (2.8) are given by

é.=(Vk/2)sech(kx+A) ,

which satisfy Eq. (2.9). The ¢ of Eq. (2.18) satisfy Egs.
(2.1) and (2.2) together with S (x) of Eq. (2.14).

Now let us consider the general case of N >1. The
proof given above can easily be extended. All that we
have to do is to implement 3, in the expressions for S
and U, . Equations (2.6) and (2.9), respectively, become

S(x)=—2g5¢i+¢i_ (2.19)

and

1 2
U= T ;giEBi‘p?i: Tm ;Kid’?i .

(2.18)

(2.20)

Again, according to Refs. [3,4], the above U, are trans-
parent potentials, which proves that S of Eq. (2.19) or
equivalently Eq. (1.5) is a transparent potential for the
Dirac equation.

III. EXPLICIT CONSTRUCTION OF S (x)

The solutions ¢;, of the auxiliary equations (2.8) can
be obtained as in Refs. [2—4]. Once ¢, are determined,
S(x) can be constructed by means of Eq. (2.19). As ex-
plained below, however, there is a crucial, subtle point in
determining ¢;,. Again, let us first illustrate the pro-
cedure for the case of N=1. Start with the two-
parameter Kay-Moses wave functions,

==V A e™/[14(A™/20)], G-

where 4, and « are positive constants [9]. « is common
between ¢, and ¢ _. Each of the auxiliary equations (2.8)
combined with Eq. (2.9) is satisfied by each ¢, of Eq.
(3.1). This is so irrespective of the values of 4, and «.
Since k is essentially the ‘“‘coupling constant” g in the
sense that 2k=gEp =gm [1+(g*/4)] /2, let us regard «
as a predetermined parameter.

As far as each of the auxiliary equations (2.8) combined
with Eq. (2.9) is concerned, each of the 4, of Eq. (3.1)
can be chosen arbitrarily. This is so because the equa-
tions (2.8) for ¢.. are decoupled as we pointed out below
Eq. (2.9). In the Dirac equation for ¢, i.e., Egs. (2.1) and
(2.2) with ¢, replaced by ¢, however, ¢, and ¢_ are
coupled. In fact, in order for ¢, of Eq. (3.1) to satisfy the
Dirac equation, 4 have to be chosen such that

VA /A_=(m+k)/Ep . (3.2)

In this sense the ¢, are not totally dissociated from each
other. This is the crucial, subtle point that we mentioned
above Eq. (3.1). This can be seen as follows. When
x — 0, ¢, behave like ¢, ~—e **/1/ A,. On the oth-
er hand, Eq. (2.1) with S(x)=0 requires
¢'. —m¢ ,=—Ezd_, which leads to Eq. (3.2). Equation
(2.2) leads to the same. If we write 4. as

A, = Ae*? (3.3)

Eq. (3.2) leads to Eq. (2.17). The remaining parameter A4
is related to the choice of the origin (x =0). With
A =2k, we obtain Eq. (2.18). Now that the ¢, are
known, we know S =g¢ ¢ _. Let us note that, irrespec-
tive of the value of A, the ¢ of Eq. (2.18) satisfy Eq. (2.8)
with Uy of Eq. (2.16). However, they do not satisfy Egs.
(2.1) and (2.2) unless A is chosen according to Eq. (2.17).
Let us briefly examine the transmission problem. Start
with Eq. (2.4) with U, of Eq. (2.16). Note that U, in
this case is a given potential and is not related to the
transmission wave function. Equation (2.4) is satisfied by

e ikx

ik +«
where k?=E?—m?. Equation (3.4) is essentially the
same as Eq. (4.9) of Ref. [2]. Each f,(k,x) represents a

situation such that the incident wave (for x — — ) is
e and  the  transmission  amplitude is

flk,x)= [ik —k tanh(kx£A)], (3.4)
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T =(ik —«)/(ik +«). It is tempting to take f, for ¥,
but this is incorrect. The correct ¥, are given by

Yok, x)=cyfi(f,x), (3.5)
where ¢ are phase factors such that
cy/c_=(m—+ik)/E . (3.6)

This can be seen again by examining the asymptotic be-
havior of ¥,. The ¥, satisfy the Dirac equation but f
do not.

Next let us turn to the case of N =2. The Kay-Moses
wave functions for N =2 are given by

¢,+=N,./D., i=lor2, (3.7)

where

x

Nli: —2\/A11K1(K1+K2)ekl
X[AZi(Kl—KZ)eZK2x+2K2(K1+K2)] , (3.8)

Ny =N,; with (122) (3.9)

20Ky +xy)x
= 2 1752
D,=A,, A, (k;—kK,)%e

+ 20k, [ A ke T Ay ke 20 p0,]
(3.10)

Again, by examining the asymptotic behavior of the wave
functions we find that 4;, and A4, _ are related:

= (m +x,)/Ep; .

A=A i | e 3.11)
We regard «; and k, as predetermined parameters. A,
and A4, can be chosen arbitrarily. The number of the pa-
rameters is the same as that of the corresponding Kay-
Moses case.

We can write S(x) in terms of the ¢,, that we found.
With the S so constructed, we have confirmed that the
NLD equation (1.3) for N =2 is indeed satisfied. We
have done this by means of the symbolic computation
software MAPLE. We have also checked the consistency
among S, U,, and Eq. (2.5). An interesting special
choice of the parameter set is

K=Kk, K,=2k, A, =6k, A,=12k . (3.12)
In this case, S'(x) is an even function of x and, in the non-
relativistic limit where Ez;,—m and A;—0, this S(x) is
reduced to the N =2 case of the potential of the Pdschl-

Teller type [10],

Vix)=—N(N +1)(«*/2m)sech®(xx) . (3.13)

For arbitrarily chosen values of 4, and 4,, S(x) is not
an even function of x in general, and U, (x)#U_(—x).
Extension to the cases of N >2 should be obvious.
There are 2N parameters, k;’s and 4;’s. Equation (3.11)
holds as such. We confirmed, by means of symbolic com-
putation, that the extension works. Thus the exact paral-
lelism between the Dirac case and the Schrodinger case
has been established. Let us add that the relativistic
counterpart of the N =3 case of Eq. (3.13) is obtained by

choosing k, =k, k,=2«, k3=3k, A;=12k, A,=60k, and
A;=060k.

Finally, let us point out that we have exhausted all pos-
sibilities for the transparent potential S'(x) of the Lorentz
scalar type. Suppose there is a transparent potential S (x)
which may not belong to Eq. (1.5). Equations (2.1)-(2.5)
hold and the Dirac equation with the S can be reduced to
Eq. (2.4) with U of Eq. (2.5). Since the S is transparent,
U, must both be transparent. Recall that the Kay-
Moses method exhausts all possible transparent poten-
tials for the Schrodinger equation. Hence U, must be
those of the Kay-Moses type and, according to Refs.
[3,4], U, are of the form of Eq. (2.20) in which ¢, are
the corresponding Kay-Moses wave functions. The
method described in this section then allows us to con-
struct S of Eq. (2.19). The so-constructed S together with
U, satisfy Eq. (2.5), and hence this S is identical with the
S that we started with. Therefore, any transparent poten-
tial S can be identified with one of those given by Eq.
(2.19) or (1.5). In this connection let us note two aspects
of Eq. (2.5). (i) When U, (or U_) is given, Eq. (2.5) with
U, (U_) can be regarded as a differential equation for S.
For a specified boundary condition, S—0 as x —+ o in
our case, S is determined uniquely. (ii) When Eq. (3.11) is
implemented in defining U, the two equations of Eq.
(2.5), one with U, and the other with U_, lead to the
same S.

IV. DISCUSSIONS

So far we have assumed that the potential of Eq. (1.1) is
a pure Lorentz scalar, i.e., ¥ =0. In this case there is
symmetry between positive- and negative-energy states.
This is because, if ¢ is a solution with eigenvalue E, then
afy is a solution with —E. If S is transparent for posi-
tive energies, it is also transparent for negative energies.
Let us emphasize the relevance of the negative-energy
states. Imagine that the incident wave is in the form of a
wave packet. In order to express the wave packet as a su-
perposition of plane waves, we need to include negative-
energy states.

If V0, the symmetry between positive- and negative-
energy states is broken. This probably impairs perfect
transparency. Recall that a transparent nonrelativistic
potential for the Schrodinger equation must have a bound
state at threshold [2,11]. For the Dirac equation, it can
be shown that a transparent potential must have a bound
state at E =m and also at E =—m. This requirement
severely restricts the choice of V. Furthermore, since
effects of V on positive- and negative-energy states are
asymmetric, it is extremely unlikely that a potential with
V would give the same transmission probability for E and
—E, and that for all values of E. The symmetry between
positive- and negative-energy states in the absence of V is
related to the supersymmetry exhibited through Egs. (2.4)
and (2.5) [7]. This supersymmetry disappears if V0.
We will discuss supersymmetry aspects of the Dirac
equation with a pure Lorentz scalar interaction in a
separate paper [12].

In Ref. [2] w examined the ¥V (x) constructed through

Vix)=—g,¢'(x)p(x) . 4.1)
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Here ¢ is the bound-state solution of the NLD equation
with S + V, where S is that of Eq. (1.5) with N =1 and V
is that of Eq. (4.1). We found that this BS+V is not
transparent.

Having completed the time-independent problem, we
are naturally interested in the more difficult time-
dependent problem. For the time-dependent NLS equa-
tion,

39, 1 32

—= —_——zgj|¢j!2 ¢i(x,1), 4.2)
J

at N 2m 3x?

soliton solutions can easily be constructed as shown in
Refs. [3,4]. The solitons that appear in those solutions
are true solitons in the following sense. When they col-
lide, they come out with the same shape and speed with
which they entered. There is no inelastic collision.

We attempted to solve the time-dependent NLD equa-
tion with the Lorentz scalar interaction,

19 — o +Bm —gB(' B b(x, 1) . 4.3)

ot

Here we are considering the N =1 case for simplicity. A
solution of the form of a single solitary wave can be ob-
tained by ‘“Lorentz-boosting” the stationary solution for
N =1, but this is not particularly interesting. We tried to
obtain, in a manner similar to that of Refs. [3,4], solu-
tions which describe collisions of two solitary waves, but
we quickly realized that this is not possible. The time-
dependent version of Eq. (2.8) is

3?2 d?
3t ax?

Fmit2mU, ¢i(x,t)=—i%—f¢¢, (4.4)

where U, are related to S=—g¢'Bo
=—(g/2) (¢4 ¢d_+¢*¢,) through Eq. (2.5). Unlike in
Eq. (2.8), ¢, and ¢_ are directly coupled through the
term with 3S /3dt. Moreover, Eq. (4.4) is of the form of
the Klein-Gordon equation rather than the Schrodinger
equation. For these reasons the method of Refs. [3,4]
fails for Eq. (4.4). The parallelism that we have found be-
tween the Dirac and Schrédinger models seems to be re-
stricted to the time-independent case.

Alvarez and Carreras carried out numerical experi-
ments for Eq. (4.3) [13]. They found a number of in-
teresting features in the collision process of two solitary
waves. When the collision speed is relatively large, the
collision is elastic. For a smaller speed, however, various
inelastic processes take place. In particular, the two soli-
tary waves can merge to form a quasibound state, which
undergoes breathing oscillations and eventually decays.
As Alvarez and Carreras noted, these complex phenome-
na indicate that the time-dependent NLD equation de-
scribes a nonintegrable system. This would mean that
the time-dependent NLD and NLS systems are intrinsi-
cally different. This would be so even at very “low ener-
gies” for which relativistic effects are normally thought
to be unimportant.
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