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One-logarithmic recoil correction in muonium hyperfine splitting
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A source of recoil corrections to muonium hyperfine splitting which are linear in the logarithm of the
electron-muon mass ratio is detected. The contribution is induced by the simultaneous insertion of
muon and electron polarization loops in the external photon lines. This contribution is calculated
analytically and is given by the numerical result 8E=(a’Za/m)E;{0.6455[m /M]In[M /m]

+0.9212[m /M]}=0.01137 kHz.

PACS number(s): 36.10.Dr, 35.10.Fk

Current theoretical work on corrections to muonium
hyperfine splitting is concentrated on the calculation of
contributions of order a*ZaEy. Nonrecoil corrections of
this order are produced by the six gauge-invariant sets of
diagrams in Fig. 1 considered in the external field approx-
imation [1], where the shaded block in Fig. 1(c) desig-
nates the sum of all one-loop renormalized dressings of
two-photon emissions from the electron line, and the
shaded block in Fig. 1(f) designates dressing by two radia-
tive photons. All these diagrams may be obtained by
different dressings from the skeleton diagram, which con-
tains two exchanged photons between electron and muon
lines. Contributions induced by polarization-operator in-
sertions in external photon lines (we call exchanged pho-
tons external if the diagram is calculated in the positive-
energy muon-pole approximation) and by the simultane-
ous insertion of a radiative photon in the electron line
and a one-loop polarization operator in the external pho-
ton line have been calculated in analytic form [1].
Corrections produced by electron-loop polarization-
operator insertions in radiative photons have been calcu-
lated in semianalytic form as a one-dimensional integral,
where the integrand is itself a complete elliptic integral
[2]. Penultimate nonrecoil contributions induced by
light-scattering insertions were recently obtained numeri-
cally [3], and work on the last, as yet uncalculated, set of
diagrams is now in progress.

Leading recoil contributions to hyperfine splitting of
order aXZa)m/M)E r» which are parametrically
suppressed by the small mass ratio m /M, contain loga-
rithms of the electron-muon mass ratio and are produced
by the same six gauge-invariant sets of graphs in Fig. 1,
but this time not in the external-field approximation.
Logarithm-cubed and logarithm-squared recoil terms
were also obtained previously [4]. Although they are of
negligible phenomenological importance for contem-
porary experiments, these terms have some nice theoreti-
cal features. Logarithm-cubed terms are simply given by
the effective charge renormalization in QED and thus
may be obtained without calculation. Logarithm-squared
contributions induced by diagrams of the type presented
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in Fig. 1(c) are connected with the high-frequency asymp-
tote of the one-loop electron factor in electrodynamics
with massless electrons, and illustrate nicely the
nonsmooth nature of the transition between theory with
massive and massless electrons. The logarithm-squared
term connected with the light-scattering insertion be-
tween exchanged photons is also rather interesting from
the theoretical point of view. It has been shown in [5]
that this term directly measures anomalous renormaliza-
tion of the axial current and may be easily deduced from
Adler’s classical result [6]. Hence one can, at least in
principle, check the anomalous axial-current renormal-
ization by simply measuring the ground-state muonium
hyperfine splitting. There have been no attempts previ-
ously to attack the calculation of one-logarithm recoil
contributions, which are contained abundantly in the
nonpole contributions induced by the diagrams in Fig. 1.
However, it has been a common belief that there are no
recoil logarithms in the external-field approximation.

We would like to demonstrate below that the external-
field contribution also contains recoil one-logarithm
terms, and we will present an analytic calculation of the
coefficient before this logarithm. The contribution to
hyperfine splitting produced by the muon-pole residue in
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FIG. 1. All gauge-invariant sets of diagrams that generate

corrections of order a’(Za)Er to the hyperfine splitting of
muonium.
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any diagram in Fig. 1 is given by the expression [1,7]
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where k=|k| is the spatial momentum of the external

photons, E is the Fermi hyperfine splitting energy, and
the function F(k) describes radiative insertions that are
specific for each set of diagrams in Fig. 1. We are going
to consider diagrams with polarization insertions in Fig.
1, and our main point is to perform insertions, not only of
electron loops, but also of muon loops. First we want to
mention that if one inserts two loops of the same nature
in Fig. 1(a) (i.e., both loops are simultaneously electronic
or muonic), or both electron and muon loops in Fig. 1(b),
then all recoil factors cancel in the sum of muon and
electron-loop contributions exactly. One can easily
deduce this with the help of a simple argument of dimen-
sional nature. Really, each polarization insertion in Figs.
1(a) and 1(b) is described by the replacement in the in-
tegrand in Eq. (1)

F(k)
k2

— |I(k,m;), (2)

where m; is either the electron or muon mass, and (k) is
the respective one- or two-loop polarization operator.
(For the explicit formula for one-loop polarization, see
below.) The cancelation is based on the simple observa-
tion that the polarization operator is a second-degree
homogeneous function of momentum, and one may get
rid of all dimensional factors in the integrand by simply
scaling all momenta by the respective (electron or muon)
mass. Then the integral (1) with electron-loop insertions
acquires a factor 1/m, and the integral (1) with muon-
loop insertions acquires a factor 1/M. These factors are
exactly the ones that are needed to cancel the factor
m /(1+m /M) in Eq. (1). We should like to mention that
the direct proof of this statement, connected with the cal-
culation of all integrals without scaling of the integration
variable, is also accessible, but much more difficult. It
can easily be seen that this argument works for any inser-
tion in external photon lines where we first put the elec-
tron in all bubbles, and then the muon in all bubbles, and
add to obtain the total contribution.

Our main observation is connected with the simultane-
ous insertion of an electron and a muon loop in Fig. 1(a).
In this situation, one cannot make a simple scaling of the
integration variable anymore because there are two scales
in the problem. Moreover, it turns out that there is a re-
gion of integration over momentum when the electron
loop enters into the asymptotic regime. The polarization
operator contains a logarithm of the integration momen-
tum in this region, and it leads to a logarithm of the mass
ratio in the contribution to the energy shift.

Let us consider the calculation of the mixed bubble
contribution. It is given by Eq. (1), where the following
replacement is performed:

F(k)
k2

2
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where
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and where m is the electron mass and M is the muon

mass.
After a tedious calculation, we obtain
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where Li, is the dilogarithm, and
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and so
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sE=229) g 10 6455 n | M |+o0.9212 ﬂ”
T m M
=0.01137 kHz .

In conclusion, we would like to emphasize that, besides
the unexpected recoil logarithm obtained above, there are
a number of recoil one-logarithm terms produced by the
graphs in Fig. 1 in the recoil regime. We hope to report
on their contribution to muonium hyperfine splitting in
the near future.
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