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Rayleigh-Schrodinger perturbation theory at large order for
radial Klein-Gordon equations
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The relativistic hypervirial and Hellmann-Feynman theorems for the Klein-Gordon (KG) equation
are used to construct Rayleigh-Schrodinger (RS) perturbation expansions to arbitrary order. The
method is applied to the KG equation for a particle in an attractive Coulomb-type vector potential with
perturbing vector or scalar potentials of the form A.r, k =1,2, . . . . In the scalar case, such potentials
are confining and the RS expansions exhibit Stieltjes behavior for k ~1 and Fade summability for
k= 1,2.

PACS number(s): 03.65.Ge, 11.10.Qr, 02.90.+p, 14.20.Kp

I. INTRODUCTION eigenvalue

This paper is concerned with Rayleigh-Schrodinger
(RS) perturbation expansions of three-dimensional
Klein-Gordon (KG) equations with radially symmetric
potentials. If f(r) denotes the wave function of the KG
particle, a separation of variables g(r)=r 'R(r)Y(8, $)
yields the following radial equation (in units fi= c = 1):

d2FR(r)= — + +[m+ W(r)]
dl 1

—[E—V(r)] R(r)=0,

where D =—d /dr, E is the energy, L is the angular
momentum, V(r ) is the vector potential, and W(r ) is the'

scalar potential. Dirac and Klein-Gordon equations with
vector and/or scalar potentials have received attention as
possible models of quark confinement.

In particular, we shall focus on perturbations of a
Klein-Gordon particle in a Coulomb-type vector poten-
tial, i.e., W(r) =0 and V(r ) = Z/r, wh—ere Z represents
an effective field strength. This solution to this problem,
the so-called sr mesonic -atom [1], is well known: the ei-
genvalues are given by [2]

E—E(O)
NL

Z2
—1/2

j[N + ~ ]+[(L+ ~ )& Z&]&~&]&

(1.2)

where %„L=0, 1,2, . . . , are the radial and angular
quantum numbers, respectively, and X=2V, +L + 1 is the
principal quantum number. (In this paper, uppercase in-
dices will be reserved for quantum numbers. ) The pertur-
bations to the above potentials will have the form A,r",
k = 1,2, . . . , where k represents the perturbation param-
eter. The relativistic hypervirial (HV) and Hellmann-
Feynman (HF) theorems for the KG equation will then
be used to generate RS perturbation expansions for the

ENL(~) X +NL~
n=0

(1.3)

The large-order behavior of the RS coefficients as well as
the summability properties of the series in (1.3) will be of
interest.

The use of nonrelativistic HV and HF theorems to gen-
erate quantum-mechanical perturbation expansions is
well known [3,4] (see Ref. [5] for a comprehensive re-
view). There are several advantages to this method: no
wave functions or matrix elements need to be calculated
and in the case of hydrogenic perturbation problems,
difficulties due to the presence of the unperturbed contin-
uum states are avoided. The relativistic versions of the
HV and HF theorems for Dirac and Klein-Gordon equa-
tions have been known for some time [6—9]. However,
their application to perturbed relativistic problems,
namely the Dirac case, has been reported only quite re-
cently [10]. This paper represents the completion of our
study of relativistic problems. (A similar situation exists
for the classical HV and HF theorems. It was recently
shown [11] that these theorems may also be used to gen-
erate perturbation expansions for classical periodic orbits
of integrable systems. The expansions which are ob-
tained coincide with the results of canonical or
Poincare —von Zeipel perturbation theory. )

A number of other perturbation methods have been
developed for the KG equation, including logarithmic
perturbation theory [12] and I/N expansions [13]. For
radial potentials, the KG equation may also be rewritten
in terms of the elements of an so(2, 1) Lie algebra [14]
and, as in the nonrelativistic case [15], a perturbation
theory may be formulated. However, this method is ex-
tremely tedious for relativistic problems [16]. In compar-
ison, the HVHF method will be seen to yield an extreme-
ly simple perturbation method.

It is interesting to note that a closed-form solution to
the KG equation also exists in the case that both V(r)
and W'(r) in (1.1) are attractive Coulomb-type potentials.
Such explicit solutions are known for the Dirac equation
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II. HYPERVIRIAL AND HELLMANN-FEYNMAN
THEOREMS FOR THE KG EQUATION AND

PERTURBATION THEORY AT LARGE ORDER

In this section, we review the HV and HF theorems for
the KG equation and introduce the associated HVHF
perturbation method. The HVHF method involves ex-
pectation values of operators. Since only radially sym-
metric problems are considered here, all relevant opera-
tors will act only on the radial coordinate r. Given a ra-
dial operator 0, its expectation value with respect to the
radial wave function R (r) will be denoted as

(0):—f R(r)OR(r)dr .
0

(2.1)

As such, we consider the operator 0 [as well as F in (1.1)]
to be self-adjoint on the Hilbert space &=L ( [0, cc ),dr ).

I

[17, Sec. 3.4] but, to the best of our knowledge, have not
been reported for the KG equation. We include a brief
derivation of this simple result in the Appendix.

In Sec. II, the hypervirial and Hellmann-Feynman
theorems for the KG equation are presented along with a
description of the HVHF perturbative method. In Sec.
III, the method is applied to radial vector and scalar per-
turbations of the m.-mesonic atom described above. Alge-
braic computations have been performed using the
computer-algebra language MAPLE [18].

Because of the quadratic nature of the KG equation in
(1.1), the HV and HF relations for specific problems are
more complicated than their nonrelativistic counterparts.

([O,F])=0. (2.2)

where [ A, B ]= AB BA-.
If we now choose 0 = r "D, k HZ, where D =d /dr, a

set of recursion relations involving the expectation values
(r")= f Rr "R dr is obtained. These are known as the

.0
hyperuirial relations. The following relations are needed
for the evaluation of the commutator in (2.2):

2I.
[D,F)= — +2E(DV) 2V(D—V),3

(2.3a)

[r,F]=2kr" 'D+k(k —1)r",k EZ, (2.3b)

where (D V ) =d V/dr. Using the identity
[r"D,F)=r [D,P]+[r",F]D, all appearances of D and
D are eljmjnated. Takin. g expectat ion values with
respect to the radial solution R with corresponding ener-

gy E yields the HV relations.
For the KG equation in (1.1), the HV relations are

given by

A. KG hypervirial theorem [9]

Assume that P=r 'R(r)Y'(8, $) is a solution to Eq.
(1.1) and that 0 is self-adjoint on &. Then

k[L ——'(k —1)](r" ~)+E(rk+'(DV)) +m (r +'(D~) )+ (rk+'IV(DP')) —(rk+' V(DV) )

+2(k+1)E(r"V)+2(k+1)m(r" IV) +( &+1)( m E)(r")—+(@+1)(r"W ) —(@+1)(r"V ) =0 . (2.4)

For the particular case of an attractive Coulombic-type
scalar potential, i.e., the vr-mesonic atom, V(r)= Z/r, —
the HV relations yield a recursion relation for the expec-
tation values (r"):

tained in the potentials V and O'. Furthermore, consider
the energy E to be an implicit function of A.. Then, from
Eq. (2.6),

(k+1)[E —m ](r")
=k[L(L+1)—Z ——'(k —1)](r" ) (

1m+ IV) —(E—V) —
)
=0

BA, BA, Bk
(2.7)

—(2k+ 1 )ZE(r" '), (2.5)

where E is given in Eq. (1.2). This is the result obtained
by Epstein [Ref. [9], Eq. (6)]. Equation (2.5) can also be
rearranged to compute (nonsingular) expectation values
of inverse powers of r as well. Some expectation values
are given in Table I.

B. KG Hellmann-Feynman theorem [9]

Assume that the KG operator F in Eq. (1.1) contains a
scalar parameter A, and that the operator t)P/t)A, is also
self-adjoint in &. Then, for a solution f,

(2.6)

Now assume that the explicit A, dependence of F is con-

TABLE I. Some expectation values (r") for the solutions of
the unperturbed Klein-Gordon equation (1.1) for the ~-mesonic
atom, with 8 (r) =0 and V(r) = —Z/r. Here K =L(L+ 1) and
the energy E is given in Eq. (1.2).

(rk)

—1 — (E —m )ZE
0 1

(K E —~ K —2Z K~E
2ZE

+m ZK+ZE —m Z+3ZE )

2 —'(4K —8Z K +4Z —3+5K E —5m K6—10Z K E +10m Z K +5Z E —5m Z +15Z E )
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or those of the series coefficients E'"', as we brieAy review
below.

For many standard perturbation problems, e.g. , anhar-
monic oscillators, the RS coefficients E'"' in Eq. (2.9a)
behave asymptotically as

+E —V =0. 28 E'"' —(
—I )"+'A I (mn+a )b" as n —+ ao, (2.13)

C. HVHF perturbative method

For perturbation problems where the potentials con-
tain a perturbation parameter k, the HV relations will
necessarily include powers of A, . As in the nonrelativistic
case, the essence of the HVHF perturbative method is to
assume the following perturbation expansions for a given
state g with energy E (for simplicity of notation, quan-
tum number indices will be suppressed):

E = y E'"'X",
n=0

(2.9a)

( k ) y C(n)gn
n=O

The normalization condition (r ) =1 implies that

(2.9b)

C' '=1 C"=0 n &1 (2.10)

Substitution of these expansions into the HV relations
and collection of terms in X' yields a set of relations in-
volving the coefficients E"and Ck'. However, the HV
relations themselves are not closed. The Hellmann-
Feynman theorem provides the relationship between the
Ck"' and the E "'. [In most cases, the RS perturbation
series for E(A, ) is at least asymptotic over an appropriate
sector of the complex-X plane, and termwise
differentiation is permitted. ] As in the nonrelativistic
case, the C array is generally calculated columnwise,
starting with the unperturbed column Ck ' which, as in
standard perturbation theory, is assumed to be known. A
knowledge of the nth column of the table permits the
computation of E'+ ".

In addition to the RS expansions for these problems,
we also consider their continued-fraction (CF) representa-
tions [19]which have the form

where 3, B, a, and b are constants, with m = 1,2, 3, . . . .
In addition, these RS expansions are typically negative
Stieltjes for n 1 [21], which implies that C(A, ) in Eq.
(2.12) is an S fraction, i.e., all coefficients c„are positive.
When such Stieltjes series coefficients behave asymptoti-
cally as in Eq. (2.13), the large-order behavior of the CF
coefficients c„ is given by [20]

c„=O(n ) as n~~ . (2.14)

III. SPECIFIC APPLICATION
TO PERTURBED HYDROGENIC PROBLEMS

In this section we examine the expansions associated
with radial perturbations of the hydrogenic, or n-mesonic
atom, whose unperturbed energies are given in Eq. (1.2).

A. Perturbed vector potential

Typically, the [c„}sequence is composed of the two
subsequences, [c„„,„} and [c„,dd}, which exhibit the
same dominant behavior but have subdominant correc-
tions with different coefficients. For Stieltjes series, the
two (Pade) sequences [w2„(z)} and [wz„+, (z)} provide,
respectively, lower and upper bounds to E(z). If the
series is Pade summable [which is guaranteed for m ~ 2 in
(2.14)], then these sequences converge to E (z) in the limit
n —+ 00.

In Ref. [10], the RS expansions for Dirac hydrogenic
atoms with radial scalar and vector perturbations were
studied along with their CF representations. In the case
of scalar perturbations of the form IV(r ) =Xr q,

q = 1,2, . . . , the RS series exhibit Stieltjes behavior.
Furthermore, for q =1,2, the series are Pade summable.
A similar behavior is observed for perturbed Klein-
Gordon equations, as will be shown in the next section.

E(A, )=E' '+AC(A, ), (2.1 1) We first consider radial perturbations of the vector
Coulombic potential

where

ci cpA, c3A,
CA, =

1+ 1+ 1+ (2.12)

By setting c„+i=0, n =1,2, . . . , in Eq. (2.12), one ob-
tains the convergents w„(z) of C(z). The convergents
w~„(z) and w2„+ i (z) are, respectively, the [N —1,N ] and
[N, N] Pade approximants [22] to the series for E(z). It
is computationally advantageous to generate these diago-
nal Pade sequences by means of CF's. In many cases,
however, there also exists an important relationship [20]
between the asymptotics of the CF coefficients c„and

V(r )= ——+Arl', p =1,2, . . . ,
z
r

(3.1)

revealing that R (r) is oscillatory.
The hypervirial relations associated with these prob-

lems are given by

and W(r)=0. Such potentials are not confining poten-
tials: if a Carlini-Liouville-Green-type expansion (see Ref.
[23], p. 80) having the form R (r )-e~'"' as r~ ~ is as-
sumed, then
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k[L(L+1)—Z ——'(k —1)](r" ) —(2k+1)ZE(r" ')+(k+1)(m —E )(r")
+AZ(p+2k+1)(r"+~ ')+A(2k+p+2)E(r"+~) —

A, (k+p+1)(r" ~) =0, kEZ, (3.2)

and may be compared with their unperturbed counterparts in Eq. (2.5). From Eq. (2.8), the Hellmann-Feynman rela-
tions become

A, (r'~)+E +Z (r ')-—E(r~) —k (r~) —Z(r~-') =0 .
aA, aA.

" ' a~" (3.3)

The HF relations provide the following connection between the expansion coefficients for the energy and expectation
values (for simplicity of notation, we omit quantum number indices):

E(n +1) 1

(n +1)(E' '+ZC' 'i )

C(n —1)+ ~ (i+1)E(i)C(n —i)
2p

i=0

n —1

+ZC "ii —g (i+1)E( +1)(E("—i)+ZC(" ) ), n =0, 1,2, . . .
i=O

(3.4)

It now remains to find the recursion relations for the C&"'. Substitution of the expansions in Eq. (2.6) into Eq. (3.2)
followed by a rearrangement yields

(k +1)[(E' ') —m )Cg"'=kCg"'2 [L(L+ I )
—Z ——'(k —1)]—(k+p+ 1)Cq" +~

n —1—Z(2k+1) g E"C'" +(2k+ +2) g E"C'"
i=0 i=0

+ZC„'" ",(2k+p+1) —(k+1) g g E'J'E' i'C„'"
i=lj=O

(3.5)

Equation (3.5) may be used to compute the C table columnwise from the unperturbed column Ck ' [cf. Eq. (2.5) and
Table I]. From Eqs. (3.4) and (3.5), it is clear that the expression for (r ) is also required. A rearrangement of Eq.
(3.5), with k =0, allows the CI "I column to be computed separately as follows:

( (n) 1

zE(O)

n —1

i=0 j=0
—Z g E"C'"i '+Z(p+1)C'":i'' —(p+1)Ciq" '+(p+2) g E"C'" ' '' —g E'J'E'"

(3.6)

For the case p =1, i.e., a linear perturbing potential, the
first three RS coefficients for the energy E are given in
Table II.

For the two cases p =1,2, the RS coefficients E'"' as
well as their CF counterparts c, have been computed nu-
merically to large order (i.e., n —100) for a number of
physically allowable values of Z (the mass has been set to
m =1). In all cases, numerical ratio tests show that the
perturbation series are divergent. As well, the c„begin to
grow in a regular fashion but eventually exhibit "erup-
tions" where large positive and negative values are as-
sumed, followed by regions of rather regular monotonic
behavior. The negativity of at least one CF coefficient in-
dicates that the RS series is not Stieltjes. (Note that these
eruptions are not due to numerical roundoff errors. The
computations were performed using no less than 50 digits
of accuracy in MAPLE. ) In Table III are listed the first 35
CF coefficients c„ for the particular case Z =0.5, I = 1,
N„=O, and L =0 as well as the estimates of E(A, ) for
A, =0.5 provided by the CF convergents w„(A, ). For
n & 28, the c„are positive and the convergents are behav-
ing in a "Stieltjes fashion, " i.e. , w2„(A, )(w2k+, (A, ) for
k ~ 13. As well, the estimates provided by the sequences

[ w„,dd j and I w„,„,„] appear to be converging from
above and below, respectively, to a common limit. How-
ever, at n =29, due to the eruption of the c„, these se-
quences cross and the roles of odd and even convergents
become reversed. For n )35, a temporary convergence is
again observed until the next eruption of the c„at n =48.
Apart from these occasional eruptions, the convergents

TABLE II. Rayleigh-Schrodinger coefficients E'"' for the
KG m.-mesonic atom with perturbed scalar potential, i.e.,
V(r)= —Z/r+A, r and 8'(r)=0. Here K =I.{I+1) and the
unperturbed energy EQ =E' ' is given in Eq. (1.2).

E(n)

0 EQ
0E (3m 2Z2 m ZK2+K 2Ez )0

2Zm (m —EQ )

(3m KE —KE + ZE8m'Z'{ m' —E')'
2 —6m K Z +12m Z +2m Z —2m K

—6m K Z EQ —5m Z E —3m Z EQ+12m K Z E )
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w„(A, ) are generally hovering about a fixed value. In
Table IV are listed the convergents w39(A, ) and tozo(A, ) for
a variety of Z and k values. Since the potential is not
confining, we expect that these values are estimates of the
real part of E(A, ): perturbation theory will not detect the
imaginary part which probably vanishes exponentially
rapidly as k —+0+.

TABLE III. Coefficients c„of the continued-fraction repre-
sentation of the RS perturbation series for the ground-state
(N„=L =0) KG ~-mesonic atom with V(r ) = —Z/r+kr, with
Z =0.5. The non-Stieltjes nature of the series is revealed by an
"eruption" of the c„at n =28, 29, 30. The final column lists esti-
mates to E(A, ) for A, =0.5, as yielded by the corresponding con-
vergents, i.e., E' '+A, w„(A, ).

ZV(r)= ——,W(r)=Ar~, q=1, 2, . . . .
f'

(3.7)

These scalar potentials are confining: a Carlini-Liouville-
Green-type expansion R (r)-e '"' as r ~ ac yields

p+ 1

S(r)-+ as r —+ ~,p+1

which indicates that a decaying solution indeed exists.
The perturbation method proceeds in a fashion analo-

gous to that of Sec. III A. The hypervirial relations asso-
ciated with these problems are given by

k[L(L+ 1)—Z —
—,'(k —1)](r" )

—(2k+1)ZE(r" ')+(k+1)[m E](r")—
+Am(q+2k+2)(r"+~)+A, (k+q+1)(r"+ ~) =0

(3.8)

and the Hellmann-Feynman theorem yields

m(r~)+A(r q) E —Z (r —')=0. (3.9)

The HF relations imply the following connection between
expansion coefficients:

B. Perturbed scalar potential —"perturbed mass"

We now consider the ~-mesonic atom with radial per-
turbations to the mass term, i.e.,

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Cn

1.060 660 171 7
2.750 000 000 0
6.022 727 272 7
8.164065 180 1

9.590 147 553 2
11.827 893 854 2
12.890 443 970 4
15.490 381 344 3
16.164 980 389 9
19.250 788 577 9
19.336 352 616 7
23.155 434 534 5

22.347 168 645 0
27.281 251 477 2
25.111712 740 2
31.749 537 416 1

27.500 569 558 4
36.765 257 740 3
29.301 518 038 3
42.709 535 968 7
30.129 900 775 0
50.407 771 616 1

29.163 332 062 6
62.169 107 914 5

24. 104 854 342 3
88.520 951 344 4
4.448 752 384 2

557.432 793 353 6
—457.747 124 069 6

—6.225 894 564 9
112.672 803 584 5

28.777 375 411 8
84.489 886 818 9
43.280 637 201 5

76.863 452 669 2

E' '+0.5w„(0.5)

1.237 436 867 0
0.930403 659 5

1.102 057 246 0
0.991 711 061 1

1.061 378 088 0
1.013 617 701 4
1.045 598 323 3
1.022 603 627 9
1.038 568 501 2
1.026 652 926 4
1.035 116929 2
1.028 597 018 3
1.033 288 807 9
1.029 569 469 9
1.032 256 349 8
1.030 066 423 0
1.031 638 283 4
1.030 320 434 0
1.031 246 945 4
1.030 446 638 7
1.030 984 727 8
1.030 504 760 4
1.030 798 335 6
1.030 527 219 7
1.030 657 279 3
1.030 532 632 5
1.030 543 193 9
1.030 532 673 7
1.030 444 239 5
1.030 535 800 8

1.030 351 943 2
1.030 549 415 6
1.030 259 158 2
1.030 581 075 5
1.030 158 305 3

TABLE IV. Pade-CF sums of the RS expansions for the energy E(A, ) of the ground-state (N„=L =0)
Klein-cordon ~-mesonic atom with perturbed scalar potential, i.e., V(r) = —Zlr+A. r in Eq (3.7), for
various values of Z and X. Each entry is the convergent w39(A. ) of the Stieltjes continued-fraction repre-
sentation (equivalently, the [19,19] Pade approximant) of the RS perturbation series. The convergent
w40(k) ([19,20] Pade) is obtained by replacing the final k digits of each entry with the k digits in
parentheses.

0.5 0.4 0.3 0.2

0.0
0.01
0.05
0.1

0.2
0.3

0.707 106 781 186 54
0.717444 184 465 64
0.754 810427 923 84
0.795 714 744 277(07)
0.866 135 31(67)
0.926 9(68)

0.894 427 190999 91
0.919049 561 873 04
0.997 350 23(19)
1.075 966 6(05)
1.204 88(59)
1.313 8(20)

0.948 683 298 050 51
0.984379 5380 (78)
1.086 12(08)
1.183 98(08)
1.345(34)
1.487(52)

0.978 906 312 930 70
1.027 622 (19)
1 ~ 152(48)
1.277(48)
1.50(37)
1.73(45)
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n —1
E[n+1) C'" "+mC'"' —y (i.+1)E"+ "(ZC("-')+E( —))

(n+1)(zc'", +E(") (3.10)

The following recursion relations follow from the HV equations:

(k+1)[(E(0))2 m ]( =k[L, (1 +1) Z —(k 1)]( " +(k+ +1)C"

C(n) 1

ZE"'

+m(q+2k+2)C'" "—Z(2k+1) g E"C'"
i=O

n i—(k+1) g g E(J)E' J'C„'"
i=lj=O

Z y E(i)( (n —i) y E(i) E(n —i)+( + 1)( (n —2)+ ( +2)( (n —I)

i=O

(3.11)

(3.12)

(The case q =0, which implies a constant shift A, in the
mass term and whose solution is hence known, provides a
useful check on the validity of the perturbation method. )

For the case q = 1, the first three RS corrections are given
in Table V. For the two cases q=1,2, the RS coefficients
E'n' as well as the CF coefficients c„have been computed
numerically to large order (n —50) for a variety of values
of Z (again with m =1). In all cases, the c„are positive.
As well, difference tables show that the coe%cients exhib-
it a regular growth of the form c„O(n ~-). On the basis
of this numerical evidence, we conjecture that this
asymptotic behavior exists for q =1,2, . . . and the RS
series is Fade summable for q =1,2. For the case q =1,
estimates of the energy E(A, ) afForded by the CF conver-
gents for various Z values are presented in Table VI.

The Pade-CF estimates of Tables V were checked by
numerical integration of the radial eigenvalue problem.
The NAG library subroutine D02KDF, which is designed to
treat singular eigenvalue problems, was used: the Klein-
Gordon equation is singular at r =0 due to the presence
of the Coulomb-type potential as well as any angular
momentum terms. In general, the results agreed with the
Pade sums. The results afforded by numerical integration
were extremely sensitive to the choice of the cutoff"
point ro )0, a point chosen to be as close as possible to
the singular point r =0 where the boundary conditions
are imposed and the actual numerical integration begins.
As ro was allowed to approach zero, the values obtained

TABLE V. Rayleigh-Schrodinger perturbation coefficients
E'"' for the KG ~-mesonic atom with perturbed mass, i.e.,
V(r ) = —Z/r and 8 (r ) = A,r. Here K =L(L+ 1) and the un-
perturbed energy Eo =E' ' is given in Eq. (1.2).

E(n)

Eo
mZ —mK+2ZE +KE

2Zm(m —Eo )

(6m 2Z 4E2 —3m 4K4+ 3m 4Z~
8m Z (m —E )

+9 Z — ZE +6 KE
—6Z K Eo —8Z Eo —2Z Eo

3K Eo 6m Z K + 12m Z K E )

I

by D02KDF were seen to approach the Pade values. In
comparison, much less computational effort is involved in
the Pade-CF approach. In addition, a measure of the ac-
curacy of the perturbation method is provided by the
upper and lower bounds yielded by successive conver-
gents.

IV. CONCLUDING REMARKS

In this paper, relativistic hypervirial and Hellmann-
Feynman theorems have been used to generate perturba-
tion expansions for the energies of radially perturbed
Klein-Gordon equations. As in the Dirac case, an
analysis of the continued fraction representations of these
series reveals Stieltjes behavior for the perturbing scalar
case.

It would be straightforward to extend the HVHF per-
turbative method to treat KG particles in screened
Coulombic-type potentials of the form

ZV(r)=— (4.1)

as has been done for the Dirac equation [10] and for the
nonrelativistic case [24].

The conjectures about the large-order behavior and
summability properties of the perturbation expansions for
Dirac and Klein-Gordon equations are based on numeri-
cal evidence. It would now be extremely desirable to de-
velop a theoretical treatment of the large-order behavior
of perturbation theory for these problems, perhaps analo-
gous to the Bender-Wu WKB analysis for nonrelativistic
anharmonic oscillators [24,21].
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APPENDIX: KG EQUATION
WITH ATTRACTIVE COULOMBIC SCALAR

AND VECTOR POTENTIALS

We consider the three-dimensional Klein-Gordon
equation having the form (R =c = 1)
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TABLE VI. Upper and lower bounds to energies E of Klein-Gordon m-mesonic atom (N„=L =0)
with perturbed mass, i.e., V(r ) = —Z/r and 8'(r ) =A,r in Eq. (3.7), for various values of Z and k. Each
entry is the convergent m39(k) of the Stieltjes continued-fraction representation (equivalently, the
[19,19] Pade approximant) of the RS perturbation series, and represents an upper bound. The lower
bound wgp(A ) ([19,20] Pade) is obtained by replacing the final k digits of each entry with the k digits in
parentheses.

0.5 0.4 0.3 0.2

0.0
0.01
0.05
0.1

0.2
0.3

0.707 106 781 186 54
0.716 815 172 269 24
0.751 435 153 778 99
0.788 775 203 61(59)
0.852 303 690(62)
0.906 822 3(16)

0.894 427 190999 91
0.918077 922 706 81
0.991 505 0(49)
1.063 490(84)
1.179 1(88)
1.275 5(37)

0.948 683 298 050 51
0.983 411 945 0(49)
1.079 797(62)
1.170(69)
1.316(05)
1.443(09)

0.978 906 312 930 70
1.026 683 9(09)
1.145 795(48)
1.263(34)
1.47(34)
1.68(41)

Z.
'

V' + E+ Z,
'

g(r) =0, (A 1) g (p)=,F, ( —A, +S+1,2S+2,p) . (A6)

where Z, and Z, denote the coupling constants for the
vector and scalar potentials, respectively. After a separa-
tion of variables, g(r)=r 'R(r)Y(8, $), one obtains the
radial equation

A,
—S—1=%„=0,1,2, . . . . (A7)

The condition that P(p)~0 as p —+De implies that the
confluent hypergeometric function in Eq. (A6) be a poly-
nomial, i.e., that

L(L+1)—Z, +Z,
di 2

p
2

2(Z, E+Z, m )
From the relation S(S+1)=A, we choose the positive
root

+(m E) R(r—) =0 . (A2)
S=——'+[(L+—') —Z +Z ]'~ (A8)

d A A, 1+ ——+—P(p)=0,
dp' p' p 4

where

A =L(L+1)—Z +Z—

2/3 '(Z, E+Z—,m ) )0 .

The solution to Eq. (A3) is given by

P(p)=p +'W(p)e

(A3)

(A4a)

(A4b)

(A5)

where W(p) is given by a confluent hypergeometric func-
tion,

As in standard treatments of the vector-Coulombic prob-
lem [1],we set p=f3r, where P =4(m E) to obt—ain the
modified radial equation

From Eq. (A4b), we obtain the energy E of this system,
—Z Z +[Z Z —m (Z —

A, )(Z +A, )]'

Z. +: (A9)

where A, =X„+S+1.

The HV recursion relations for this problem are

(k+1)[E —m ](r")
=k[L(L+1)—Z, +Z, —

—,'(k —1)](r" )

—(2k+1)(Z„E+Z,m )(r" '), (A 10)

which may be compared to the vector Coulomb case, Eq.
(2.5). Radial scalar and/or vector perturbations of this
system may now be studied in a manner analogous to that
reported in Sec. III.
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