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Tunneling-time probability distribution
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Localized wave-packet tunneling through a one-dimensional potential barrier is investigated with

respect to the distribution of tunneling times. Specifically, we construct a quantity —termed the "tun-
neled flux —which has properties of a tunneling-time probability distribution. The tunneled flux is
determined completely in terms of the time evolution of an initially localized wave packet. The tunneled
flux and the corresponding tunneling-time distributions are investigated analytically via a semiclassical
approximation. Additionally, numerical' studies are performed with both the semiclassical and quantal
versions of the tunneled flux. The semiclassical calculation qualitatively reproduces numerical tunneled
fluxes, converging quantitatively as A —+0. It also provides a wealth of insight into the nature of tunnel-

ing processes. Our principle conclusions are as follows: (i) There is an essential disparity between the
time- and energy-domain pictures of wave-packet tunneling; (ii) the tunneling-time distribution can be
modeled as an exponential of a skewed Lorentzian function, with a width governed primarily by the
phase-space asymmetry of the initial wave packet; and (iii) tunneling is faster than simple classical
motion from one side of the barrier to another, even assuming an instantaneous transit between the turn-

ing points. Effectively, the barrier acts as a filter for the high-momentum components of the initial wave

packet.

PACS number(s): 05.60.+w, 73.40.Gk, 03.65.—w

I. INTRODUCTION

Along with providing utterly accurate predictions re-
garding the behavior of the physical world, quantum
theory has raised many conceptual difficulties, most of
which center on reconciling quantum phenomenology
with classical sensibilities. While the founders of quan-
tum mechanics resolved many of these issues, some, such
as the "quantum-measurement problem, " continue to in-
vite debate and investigation to the present day. This pa-
per examines another such long-standing conundrum, the
paradoxical "tunneling time" for classically forbidden
quantum process. In recent years the definition of tun-
neling time has received considerable theoretical atten-
tion [I], without any clear consensus arising [la]. Thus,
the question may be regarded as open, and a reexamina-
tion seems particularly appropriate in light of new (and
ongoing) experimental efforts in this area [2] which could
eventually provide a criterion for resolving this vexing is-
sue.

As with many of the other conceptual questions of
quantum mechanics, much of the difficulty on the subject
of tunneling time concerns formulating a clear impression
of exactly what physical quantity is sought. It is thus
worthwhile to begin with a caricature of the underlying
experimental process. To wit, given a situation (i.e., ei-
ther below-barrier scattering or a metastable state) in
which particles will (at some time) tunnel, it is in theory
possible to measure that a tunneling event has occurred
and to record the time at which it does so. Repeating
this process a large number of times will yield some prob-
ability distribution of "tunneling times. " This is a con-
crete form of the simple but subtle question which has
been the focus of much current attention to tunneling.
Simply stated, the question takes the following form:

(A) How much time does a tunneling particle spend un-
der the barrier?

Quantum mechanically, question (A), which seeks a
"dwell time" for the underbarrier region, has no meaning
as it requires the simultaneous measurement of incompa-
tible observables. Specifically, one asks (i) did the particle
tunnel? (ii) If so, how long did it take to traverse the bar-
rier region? As is demonstrated below, the two observ-
ables in question are associated with noncommuting
operators and, as a result, a joint probability distribution
for the pair of eigenvalues does not exist. Thus, we be-
lieve that this form of the tunneling-time question is
unanswerable.

However, the prototypical experiment described above
also invites a somewhat more general question about the
tunneling process:

(B) What is the distribution of the measured tunneling
times?

The purpose of this paper is to demonstrate that ques-
tion (B) can indeed be answered in a physically meaning-
ful way [3]. In particular, we present a "transit-time"
operator which generates a probability distribution of
"arrival times" for particles on the far side of the barrier
(i.e. , for particles which must have tunneled). This opera-
tor is entirely developed within the quantum formalism,
but the corresponding semiclassical quantity is easily
evaluated via a steepest-descent approximation and the
results compare favorably. In particular, there is close
agreement between the semiclassical and quantum distri-
butions as to what constitutes the "most probable" tun-
neling time.

The semiclassical analysis also provides insight into the
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nature of tunneling processes and the tunneling-time dis-
tribution. Two features of particular interest are the
"quantum-speed-up effect" in which tunneling particles
actually "travel faster" than the corresponding classical
ones, and the imaginary part of the "tunneling time"
which enters as a parameter in the steepest-descent calcu-
lation [4]. We demonstrate that the quantum speed-up
occurs generically in tunneling processes because the bar-
rier acts as a "filter" for the high-momentum components
of the wave function. Similar conclusions have been
drawn previously from both theoretical [5] and experi-
mental [6] viewpoints. The imaginary part of the tunnel-
ing time plays a related role, as it contributes to the
"shift" to higher energies of the classical particle, which
allows the particle to surmount the barrier and arrive
sooner on the far side. The imaginary time also plays a
role in the width of the tunneling-time distribution.

Those familiar with recent treatments of tunneling
time will no doubt be aware that there are two "schools
of thought" on this subject [7]. One casts itself in the en-
ergy domain of quantum mechanics and focuses on tun-
neling at specific energies [8], while the other approach
utilizes the time domain and is based on wave-packet
propagation [9]. Our method falls squarely in the second
camp, and is particularly inAuenced by the previous work
of Pollok [10]. In the course of our investigation we find
there is an essential disparity between the time- and
energy-domain pictures of wave-packet tunneling.

We proceed as follows: Section II explicitly demon-
strates the noncommutativity of the "transit or dwell-
time" and "tunneling-Aag" operators, and thus shows
that question (A) is unanswerable. Rather than providing
a completely null result, this analysis suggests examining
a new quantity, the "forward-transit-time" operator,
which is developed in Sec. III and results in a quantity
with the properties of a tunneling-time-distribution
operator. Section IV utilizes a steepest-descent approxi-
mation to develop the corresponding semiclassical
tunneling-time distribution. As is well known, the semi-
classical mechanics of tunneling generates various nonin-
tuitive quantities such as complex position, time, and/or
momenta. Similarly, these quantities arise in the
steepest-descent approximation to the tunneling-time
operator, and Sec. V is devoted to delineating the nature
of these various quantities, as well as presenting numeri-
cal studies of both the quantum and semiclassical
tunneling-time distributions. Section VI summarizes our
findings and discusses the goals of future work.

II. NONEXISTENCE OF THE
JOINT PROBABILITY DISTRIBUTION

The formalism of time-dependent quantum mechanics
provides a straightforward means of addressing question

(A) above. First, a simple transit-time operator, r, can be
associated with any fixed interval of space D = [a,b ] [11],
where the eigenvalues of v. represent the possible times a
particle can spend in D. An explicit form for ~ can be
constructed in terms of the projector, d, which projects
onto states supported in D.

g(x), x HD= '

0, otherwise

d =Hi, (x ),

where 0&(x ) is the characteristic function of interval D.
Next, consider the probability that a particle, initially

in state (a density matrix) p, can be observed in D at time

C(t) =Tr[dp, ] =Tr[d,p],

where p, = exp( iHt /irt)—p exp(iHt /A') is the time-evolved
state of the system and the second form follows from cy-
clic invariance of the trace. Integrating C(t) over all
time determines the mean time, ~, spent in D by a particle
which passes through the state p at some point in its his-
tory [12]. Specifically,

dtC t =Tr~p

where

r=—w j dtd (5)

is the "transit-time operator. " The notation for the
infinite time integral in (5) draws attention to the fact that
it is defined as a "weak" operator limit, i.e., ~ is defined
by (5) only in the sense that its inner product with arbi-
trary state, p, is defined by (4).

The transit-time operator is best understood by ex-
pressing d, in terms of the energy representation of
scattering states. To this end we choose the basis states

~

El+ ), where E & 0 is the energy, 1 = 1 and 2 denotes the
channels at x = —~ and + ~, respectively, and + or-
signs which accompany the l index are included to distin-
guish between the "incoming specific" and "outgoing
specific" energy eigenstates. For example,

~
El + )

represents the stationary scattering state seeded with an
incoming plane wave in the 1th channel, and

(x ~EI+ )—
2~lip (E )

/P(E)x/fi+ g (E )
—iP(E(x/R

X '
Z.(E),'~(~~x « (6)

is normalized such that (El+ ~(E'l'+ ) =5(E E')o((. —
coefficients and p (E)=&2mE .

Here R(E) and T(E) are the refiection and transmission
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In this representation the transit-time operator is given by

&Eili+I~IE, I, + &= f d« ' &Eili+ldIE, l, + &e

=2~trt&E, li+ldIE, I, + &&(E, E—,),

i.e., it is simply related to the energy representation of d.
Equation (7) demonstrates that r is diagonal in this basis
(with respect to energy), a consequence of the infinite
time integration of (4), which makes r invariant with
respect to time translation. This time-translation invari-
ance permits the decomposition of ~ into a set of energy-
specific 2 X 2 transit-time matrices, ~(E ), by expressing
the mean transit time, w, in the energy representation. In
particular,

r= f dETr~[r(E)p(E)],

where TrE denotes an ordinary finite matrix trace (i.e.,
the trace in the two-dimensional subspace corresponding
to energy E). The (1, +, l2+ ) elements of the 2X2 ma-
trices r(E) and p(E) are given by

r, +, +(E)=2~&&EI,+IdIEl, +&

=2vrhf dx&xIEt, + &*&xIE&2+ &

a

p (E)=&El +IplEl +&,

respectively.
The energy-specific transit-time matrix, r(E),

represents transit time associated with the two-
dimensional Hilbert space of energy equal to E specific
states. A corresponding normalized state in this Hilbert
space would be provided by p(E)/Trz[p(E)]. In this
context Trz [p(E ) ] is viewed as the energy-dependent
weight of the system state.

Our goal is to find the transit time specific to a particle
tunneling through the barrier from left to right. The first
step towards such a transit time is the restriction of the
initial state, p, to the l = 1 incoming channel; i.e., we con-
sider only particles incoming from the left (see Fig. 1). In
this case, p(E)/TrE[p(E)] projects onto the first of the
two-channel basis functions; that is, the basis chosen
above. Only the (1+,1+) element is nonzero, and as a
result ~ is the average of only one of the energy-specific
transit-time matrix elements, ri+, +(E), the mean
energy-specific transit time for a particle incoming from
the left. In the semiclassical limit, this mean transit time
takes the form

.,+,+(E)=2f "dxl&xlEI+ &I'
a
xl(E)

a

dx e 2 Im[s(x, E)]/A
+

&2[E—V(x)]/m "i' ' &2IE —V(x)l/m

where

s(x, E)=f dxi/2m[E —V(x)]
a

(12)

E

FIG. 1. Schematic representation of a generic tunneling pro-
cess for wave-packet scattering. The packet is incoming from
the left with momentum p )0, and with mean energy E below
the height of the barrier, as depicted by the dashed line which
also shows the classical turning points. We consider the dwell
time in the interval [a,b), where in most of the following we
take a (b) far to the left (right) of the barrier, where "far" means
at a point where the derivative of the potential is essentially
zero.

is the classical action at x measured from the initial point
a. The first term of the second line of (11) is just the total
time spent in (a, b) by a classical particle of energy E
which refiects on reaching the left-turning point, x, (E ).

The second term in (11) merits some discussion. It
represents an exponentially damped accumulation of the
time spent by a fictitious classical particle traveling under
and beyond the barrier with velocity v'2

I
E—V(x )

I
/m .

A strict determination of the asymptotic form in (11)
would omit the second term, which has significant
asymptotic contribution only in the neighborhood of
x, (E). Moreover, that contribution is O(A'~~), i.e., the
same order as the reAected and incoming wave interfer-
ence term [which was omitted in the derivation of (11)].
Nonetheless, we include the second term here to demon-
strate how one might decompose the mean transit time
into refiected and transmitted (or tunneled) contributions.
In general, xi+ i+(E) is the mean of transit times for both
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reflected and transmitted components of the initial wave
packet. We seek a transit time specific to the tunneling
component of the energy eigenstate. Because of the
asymptotically small character of the transmitted com-
ponent in the expansion of r, +,+(E), the second line of
(11)does not achieve this goal.

An exact quantum-mechanical attempt to extract a
tunneling transit time is provided by the representation of
r, +,+(F. ) in terms of the outgoing channel specific basis,
lEl —). The outgoing basis functions are specific to the
reAection and transmission channels and thus should pro-
vide the desired decomposition of the mean transit time.
The change of representation is accomplished by stan-
dard means in terms of the appropriate unitary transfor-
mation matrix, which for the case at hand is just the en-
ergy equal to E scattering matrix. Thus, in terms of the
incoming channel basis,

(13)

where g is an arbitrary state in the two-dimensional
energy-specific Hilbert space. The corresponding trans-
formation of the transit-time matrix yields the following
decomposition,

+2Re[&&*ri 2 ]+l&l'r2 2

(14)

which expresses the mean transit time entirely in terms of
"outgoing specific" quantities. [Note the suppression of
the E dependence in Eqs. (13) and (14).]

Expression (14) illustrates the general problem encoun-
tered in attempting to extract a tunneling-specific transit
time. The first and third terms are transit times weighted
by the reAection and transmission probabilities at energy
E, and are the sort of terms that we hoped to find in the
decomposition of ~&+,+. If they provided the only con-
tributions the transit times ~&, and ~2 2 could be in-
terpreted as the desired reAection and transrnission-
specific transit times. However, there is, in general, a
cross term. Moreover, z, &

and ~2 2 cannot have the
desired interpretation because they are not specific to an
initial state incoming from the left. Instead ~, , and
~2 2 are only specific to "outgoing to the left" and
"right, " respectively. They are not specific to either in-
coming channel.

Relation (14) fails to provide the desired decomposition
of the transit time due to the cross term [13],
2Re[RT*r, 2 ], which appears because r(E) is not, in
general, diagonal in either the incoming or outgoing
channel specific representation. As a consequence of this
fact the transit-time matrix does not commute with pro-
jectors onto left-going or right-going states. These pro-
jection operators represent observables which identify
reAection or transmission events, i.e., "reAection-" and
"tunneling-fiag" observables. Thus, the inability to pro-
vide the desired decomposition of the transit-time results
from a classic problem of incompatible observables,
specifically, the transit-time and tunneling-Gag observ-
ables.

III. THE FORWARD- TRANSIT- TIME OPERATOR

J= d,
dt

A

, x 5(x b)+5(x b)— ,x-
2m' 2m

'

[p5(x b) +5(x b)p—]-
2m

(17)

is termed the "fiux operator. " Equation (17) makes use of
the von Neuman equation for operator time evolution,
the analog of Eq. (2) for d ', and

The development of the forward-transit-time operator
parallels that of the transit-time operator as presented in
Sec. II; however, straightforward modifications allow a
separation of the transmitted and rejected contributions
to transit time. Instead of treating a finite region around
the barrier, we consider the dwell time in an infinite
domain, D'=( —~,b]. In addition, only positive time
integration is used in the expression corresponding to (4).
With these adjustments the forward transit time of a
reAected particle is infinity. The use of positive time in-
tegration prevents transmitted particles from also having
infinite forward transit time. Otherwise, transmitted par-
ticles have infinite "total" transit time in D' due to con-
tributions from the remote past [i.e., t E( —oo, O)] where
the particle is incoming from x = —ao.

In addition to letting the boundary of D' be one sided,
we locate the right boundary, b, far to the right of the
barrier, permitting the use of the x ~~ asymptotic form
of the energy eigenstates in the neighborhood of the right
boundary.

As in Sec. II, we are actually interested in transit
across a finite interval, (a, b ). In order to treat the finite
transit of interest, it is necessary to localize the initial
particle state, p, to the neighborhood of a. (To make this
choice of particle state precise we will, in some of the
succeeding developments, let p be a coherent state cen-
tered about x =a, with momentum distribution centered
about p, where p & 0 and a is chosen far to the left of the
barrier. ) Also, the initial state must project almost en-
tirely (that is, but for an exponentially small contribution)
onto the space of left incoming energy eigenstates, the
property required of the more general initial state con-
sidered in Sec. II.

We now proceed with the definition of forward transit
time in the same manner used to define ~ in Sec. II.
Thus, we define the "survival probability" as

C(t)=Tr[d 'p, ]=Tr[d',p],
which is the probability that the particle is in D at time
t, subsequent to preparation in state p at time 0; d ' pro-
jects onto D' just as d projects onto D. Associated with
C(t) is the "tunneled fiux, "

dc(t)P(t) = — =Tr[jp, ],dt

where
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d OL, (x) = —5(x b—) .
dx

It is shown below that P(t) can be viewed as the transit-
time probability distribution for the interval (a, b)

An expression for the mean "residence time" in D'
can, in principle, be obtained by integrating the survival
probability, C(t), over all positive t. However, C(t) as
defined in Eq. (15) does not decay to zero as t ~ oo and
the integral does not converge. The asymptotic value,
C( ~ ), represents the total refiection probability since the
reAected part of the evolving state stays in D' indefinitely
[14]. The divergence of the mean residence time there-
fore should be identified as arising from the contribution
of an infinite residence time associated with the reAected
part of the wave packet. %'ith this in mind, we identify
the integral of the "subtracted" survival probability,
C(t) C(~ ), a—s the contribution associated with the
transmitted part of the wave packet. For example,
T =C(0)—C( ~ ) is the probability that a particle
prepared in state p is initially in D' but eventually leaves,
never to return; i.e., the "tunneling probability. " From
this perspective, [C(r) C( oo—)]/T can be viewed as the
"tunneling-specific" survival probability; i.e., the proba-
bility that a tunneling particle is still in D' at t. Note this
latter interpretation is appropriate only if
C(t) —C( oo ) ~0 for all time. As is shown below, this
condition is satisfied in the limit of b —+ ao if p is specific
to the channel "incoming from the left, " precisely the
case of interest.

Integration of the tunneling-specific survival probabili-
ty determines a tunneling time

the tunneled Aux. The substitution in question gives

dttTr j—tpT 0

(23)

where the definition of P(t) has been used. If P(t) is a
positive function of time, then it can be viewed as a com-
ponent of the probability density for forward transit time
associated with state p. The piece missing from P(t),
which prevents it from being the full probability density,
is a contribution at t = ~ which has integrated weight
equal to the reAection probability. Incorporation of this
contribution into P(t) would make the integral of Eq. (23)
diverge. This corresponds to the inclusion of the infinite
transit time of refiected particles. Since P(t) excludes
this contribution, it is viewed as the tunneling-specific
component of the forward-transit-time distribution. In
this context, j, represents the projector onto the
forward-transit-time eigenspace associated with eigenval-
ue t, and we define a normalized tunneling-transit-time
distribution, 11(t), via

P(r)
T

(24)

If II(t) is everywhere positive then it must indeed have
the desired interpretation. This requirement is demon-
strated below, both numerically and within a semiclassi-
cal limit framework. Note that had we been interested in
refiection times we would have instead taken D'= [c, oo ),
with c far to the left of a. In this case P(t) would be a
distribution of reflection times —all tunneling contribu-
tions would be concentrated at t = ~.

r+ =—f dt[d (
—d" „]p

0

1=—Tr(r +p),T
where

(19)

which is the mean residence time in D' of a tunneling
particle with initial position and momentum in the neigh-
borhood of a and p, respectively. This tunneling time is
related to the expectation of the "forward-transit-time
operator. " Using the definition of C(t), we have

IV. SEMICLASSICAL LIMIT OF THE TUNNELED FLUX

The derivation of the forward-transit-time operator,
and hence of the tunneling-time distribution, required an
initial state localized in both position and momentum.
The expression for P(t) simplifies considerably in the case
that p is taken to be a pure state, e.g. , a localized wave
packet. Setting

r =w f dt[d, —d ]. and using (17) for the flux operator yields
(20)

From the definition of the fiux operator, in Eq. (17),

d, =d +w f dt'j,

Substituting this expression into Eq. (20) yields

7 =wf drf dt'j,

=m dt' dt j,.
=m dt't' j,

(21)

This form of the forward-transit-time operator can be
used in Eq. (19) to provide the desired interpretation of

(25)

which provides a completely straightforward expression
for the tunneling-time distribution in terms of the time-
evolved initial wave packet. Note that this relation for
the tunneling-time distribution is quantum mechanically
exact (within our asymptotic scattering approximation)
for any pure, localized, initial state.

A well known and extremely convenient example of
such a localized wave packet is the coherent state, i.e., a
minimum uncertainty Gaussian wave packet. The wave
function of a coherent state localized in phase space at
(q,p ) is given (up to a choice of phase) by
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P(x;q, p ) =
1/4

exp — + —p(x —
q )

(x —q) i

20.2

1/4
(x —a) .p(x —a)

exp — +i
2'(x

where the parameter o. has units of length and is, in gen-
eral, arbitrary. However, in the following we wish to
consider the semiclassical limit, %~0, and want the
coherent-state wave packet to correspond, in that limit,
to a particle in a classical phase space. To this end we
impart the "natural" —in the sense that the coherent
state of a harmonic oscillator of frequency co has
o =kiri/mao —dependence of o on i' and take o =&A'a.
With this choice, the position space "width" of the
coherent state is &A'a and as A'~0 the Gaussian wave
packet becomes increasingly localized in position. Simi-
larly, the momentum space width, easily shown to be
given by &A'/a, also approaches zero in the semiclassical
limit. The (arbitrary) parameter, a, controls the asym-
metry of the state in phase space.

With all A dependence thus accounted for, the initial
wave packet in our prototypical tunneling process is
given by

which is localized, as desired, about point a, far to the left
of the barrier, and with momentum p )0 (see Fig. 1).

Equation (25) expresses the reactive flux simply in
terms of the time-evolved coherent state at x =b. This
time-evolved state is simplified using incoming specific
energy representation [15]

g, (x)= f dE e ' ' "(E1+
l g) gz&+(x ) . (27)

Here, gE, +(x):—(x lE1+ ) is the energy eigenstate in po-
sition representation. Use has been made of the fact that
lg) projects only onto states incoming from the left (i.e.,
I = 1).

Recall that P, o(x) is localized in the neighborhood of
x =a, a point far to the left of the barrier. As a result,
the matrix element (El+ lP), which determines i)'j, (x), is
evaluated to desired accuracy (simply make

l
a

sufficiently large) in terms of the x~ —oo asymptotic
form of 1(z, +(x). Specifically,

p(E)

1/2

[(p(E) l P, =o) +& *(E)(—p(E) I &, =o) ] (28)

m 0.'

irhp (E)

1/4
a'[p —p(E)]' .p(E)~ +&, E a'lp+p«) j'+ p(E)

exp
2A' fi 2'1 +8* E exp +l

(29)

a'[p —p(E)]' + .p(E)(b —~ )

2A

CX

g, (b)=m
4~ A

f dE e
—iEt Ifi

o p(E)
(30)

Note the use of momentum eigenstates, (x l+p(E) ) =exp[+ip(E)x/iii]/i/2irfi, in Eq. (28). The final expression utilizes
the simplicity of the coherent-state momentum representation.

In the semiclassical limit the second term in the square brackets of Eq. (29) is exponentially small compared with the
first term, and it results in an 0[exp( —a p /2')] contribution to the integral of Eq. (27). [Note that p(E) extends from
0 to ~.j We therefore neglect this "reflection term" in favor of the "incoming wave term. "

Since b is a point far to the right of the barrier, the x —w oo asymptotic form of PEi+(x) can be used to evaluate

g, (x =b ) with Eq. (27). Equation (27) now takes the form
1/4

The semiclassical transmission coeflicient [16]

T(E)-exp —[s(E)—p(E)(b —a )] (31)

can be used to evaluate the integral of (30). Here s(E) is
the classical action associated with passage from x =a to
x =b, including the underbarrier (imaginary) contribu-
tion [17]

b
s(E) = f dxv'2m [E—V(x)] . (32)

a

After substituting the semiclassical tunneling formula
(31) into (30), the energy integral can be evaluated using
the method of steepest descent. The integrand has the
form exp[F(E, t ) /fi] /p(E), where

F(E,t)= — [P P j + [ (E) Et]—
2

(33)

Using the definition of the energy at the saddle point this
equation takes the form,

p p(E) . i.(E) t- —
+& =0,

p(E) To
(34)

and the contour of integration is deformed to pass
through the "stationary point" of F(E, t), i.e., the solu-
tion to the nonlinear equation

+'[ (E) Etj =0. —
2
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where

r(E)= = J dx&m l2[E —V(x)]Bs(E ) b

BE a
(35)

is the classical time for passage from a to b at energy E,
and ~o=me is a characteristic unit of time. Note that
r(E) has an imaginary contribution associated with pas-
sage under the barrier.

Equation (34) introduces ra=ma which, since a+A' is
the width of the initial wave packet in configuration
space, has the following fanciful interpretation: ma A' is
an effective moment of inertia, and ~o corresponds to the
rotation period of the initial wave packet undergoing vir-
tual rotation about its center with angular momentum2'.

The formula for the semiclassical limit reactive Aux is
now easily obtained. First, solve (34) for the "saddle-
point" energy E at which the phase is stationary. To

make the notation somewhat clearer, we denote all quan-
tities evaluated at the saddle point with a superscript
dagger. Then employ the standard steepest-descent for-
mula for the asymptotic form of g, (x) to get

1/4 1/2
CX

P, (b)-m
4~ A

exp[F(E, t )/fi i 8l—2]
p(E )

where 8 is the phase of r) F(E,t)/dE . Once obtained,
this expression is substituted into Eq. (25). Note that the
semiclassical asymptotic form is given by neglecting the
term involving the derivative, with respect to b, of the
preexponential factor. The other term, which we include,
is larger by O(1/fi). The result is

1/2
a

4~ A

2+Am

d~F(Et, t )

BE

d t e px[2Re[F(E, t)]/A']
(37)

1/2
(X

~R
m Rep(E )

Q~F(Et, t )

BE

exp [2 Re[F(E, t ) ]/A'[

p(E )I'

Equation (38) relies on Bs(E)/Bb =~(E), which deter-
mines the b dependence of F(E,t ). In principle,
F(E,t ) also depends on b implicitly via E . However,
this dependence on b drops out because of the stationari-
ty of F(E, t ) with respect to E at the saddle point. To get
the semiclassical tunneling-time probability distribution
[see Eq. (24)], P(t) is divided by the total probability T,
which is just the integral of P(t) over all time. The
tunneling-time probability distribution is therefore the
normalized tunneled flux.

The semiclassical tunneled Aux as defined in (38) is
clearly positive. Thus, at this level of approximation, it is
legitimate to interpret II(t)=P(t)/T as the tunneling-
time probability distribution. Note that in addition to
the explicit time dependence of this quantity there is an
implicit time dependence carried by the saddle-point en-
ergy E . It is this latter time dependence which produces
the richness of behavior described below.

V. NUMERICAL STUDIES

Equation (38) determines an A'~0 asymptotic
tunneling-transit-time distribution. As a semiclassical ex-
pression it rejects characteristics of tunneling manifest at
the "almost classical" level of approximation. Neverthe-
less, because tunneling is an intrinsically quantal
phenomenon, (38) also contains a great deal of quantum
mechanics. This section closely examines both the semi-
classical and the exact quantal tunneling Aux, and ex-

tracts a number of useful insights regarding the quantal
tunneling transit time.

Much of the insight extracted here results from exam-
ination of relation (34) which determines the saddle-point
energy. For example, note that if t=r = r(E ), then-
p =p(E )=p, and the saddle-point energy is just p /2m,
the "central energy" of the incoming coherent state. In
the case of classically allowed motion, this time is real
and is the time at which the tunneled Aux is a maximum
(see below). In the presence of a barrier, p =p deter-
mines a complex time, the imaginary part of which is as-
sociated with the underbarrier portion of the classical
trajectory directly connecting a and b. Since our tunnel-
ing study utilized the time domain, where only real times
are of interest, we never encounter p =p in the case of
tunneling.

A. Most probable tunneling transit time

We begin our examination of the semiclassical tunneled
Aux by extracting the "most probable tunneling transit
time, " i.e., the time of maximum flux, found by setting
the derivative of P(t) to zero. Note that in the semiclas-
sical limit the derivative of P(t) is determined strictly in
terms of the derivative of the exponent, Re[F(E,t)].
That is,

P(t)=0
dt

implies
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Re[F(E, t ) ]dt

"dF(E, t ) dE dF(E, t )

BE g dt Bt
(39)

Since

BF(E,t )

aE

by de6nition of E, and

aF(E', r ) = —rE
at

(39) simplifies to

Im[E ]=0 . (40)

Thus, the most probable tunneling time occurs when the
saddle-point energy is real. Since E =(p ) /2m, p must
also be real. Referring to (34), we find that the most
probable tunneling time, t, satisfies

i (r—t )=ro-p —p'
(41)

p

with both p and p real.
The important feature of (41) is that its right side is

real. Therefore, t must exactly cancel the real part of ~ .
As already discussed, in the case of classical allowed
motion this corresponds to p =p and semiclassical
mechanics reduces essentially to classical mechanics.
However, in the case of tunneling ~ has an imaginary
part and (41) is a nontrivial equation for p . In particu-
lar, the most probable tunneling transit time t =Re(~ ),
and p satisfies the real equation

p =im (42)p' To

approaches 1 from below p approaches a value less than
1. There exists, therefore, a range of p without any corre-
sponding value of p~. For these p values the method of
steepest descent fails. This is a consequence of the
discontinuity in Im[r(E)] at E =1, which in turn results
from the singularity in the primitive semiclassical
transmission coe%cient employed above [we specifically
refer to the branch points in the action integral —see Eq.
(32)]. This problem can be avoided through the use of
uniform semiclassical eigenstates in the vicinity of E =1,
which would result in a rapid but smooth connection be-
tween the curves in Fig. 2(a) and the p =p straight lines
that are appropriate when p) 1. This approach is not
considered in the present article, however. Rather, we
simply assume p small enough for the solution, p, to ex-
ist in the sense described above [i.e., as a solution to Eq.
(43)]. This restriction can be viewed as a restriction to
cases of "true tunneling" (at least from a semiclassical
standpoint). In cases where p = 1, the transmission
probability is dominated by the momentum space tail of
the initial wave packet with energy above the top of the
potential barrier. From our current standpoint such
transmission is not true tunneling.

Note that the restriction to cases of true tunneling con-
strains a as well as p. Specifically, cx is restricted to
sufficiently large values, for 0&p & 1, since there are no
solutions to Eq. (43) when a is small ( -2 or less). More-
over, the range of tunneling p values is very limited unless
n is fairly large. These ranges are demonstrated in Fig. 2.

0.6
0.4
O. P

or
0.2 0.4 O. B

p=@ [I+1m(r /ro)] . (43) 100

Equation (43) provides a simple expression for p in terms
of p~. The inverse of this relation determines the saddle-
point momentum, p, in terms of p, that is, in terms of
the coherent-state central momentum. This inverse func-
tion is easily obtained graphically and examples are
presented in Fig. 2(a) for the case the potential is a
Gaussian barrier of unit height and width; i.e.,

80

l 60

~40
20

0.2 0.4 0.6 O.B.

V(x)=exp( —x ) . (44)

Also, m =—,
' is chosen so that p = 1 corresponds to the top

of the barrier.
The essential features of the inverse of (43) are de-

scribed as follows.
(1) Since Im(r ) (0 for real p (1, p is consistently

smaller than p . The degree to which p is greater than p
is determined by the relative sizes of Im(r ) and
~o=ma . Thus, for example, large o. produces p close
to p, whereas small a corresponds to a big difference.

(2) For p" ~ 1, Im(r )=0 and p=p . However, as p

FIG. 2. Solutions to the nonlinear equation for the saddle-
point momentum. Panel (a) shows saddle-point-momentum
values, p, as functions of p, for four diFerent values of the
asymmetry parameter, +=2, 4, 6, and 8. Note that there is an
upper bound on p for which "true tunneling" (i.e., with p & 1)
occurs. This bound decreases markedly as o; decreases below 4.
The corresponding most probable tunneling times, t =Re(~ ),
are shown in panel (b) as functions of p. The dashed lines in the
two figures are for the case of a= ~, wherein p =p. In particu-
lar, in panel (b) the dashed line gives the time for simple classi-
cal motion from a to b at momentum p, assuming instantaneous
crossing between turning points. Note that the latter is almost
always larger than the actual most probable tunneling time.
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(3) The solution to Eq. (43), p, is generally not close to
p. Thus, the barrier generally cannot be viewed as a
small perturbation on the energy of the particle. Since
there is no ii1'dependence in Eq. (43), even in the semiclas-
sical limit, particle energy is strongly perturbed when the
particle is "forced" to tunnel through the barrier (or go
over it, as in cases of large p and/or small a). An impor-
tant consequence of this observation is that the energy
representation picture of tunneling time has little
relevance to the time domain tunneling studied here. In
the energy representation one considers the transit-time
observable (or time delay) as described in Sec. II. The
connection between energy and time representations is
usually made in the limit of a narrow energy distribution
where the "interaction process" (i.e., scatterer) causes
only a small perturbation to the particle energy [18].
This permits the expression of the time delay in terms of
energy derivatives of stationary (i.e., energy-specific)
quantities. In contrast to other formulations of tunneling
time [9(c)] where a narrow range of energies associated
with the initial wave packet is sufficient to obtain energy-
specific results, the current presentation requires a highly
skewed phase space asymmetry (a~ ~ ) in order for 1 to
be specific to energy E (i.e., the case of p ~p). Thus, in
the semiclassical limit, even though the absolute energy
range [O(iit/u )] is small, p may be far from p due to a
not-too-large a value. In this case t is not energy specific
and our tunneling-time distribution is not related to a
corresponding energy domain point of view.

We interpret p as the "effective initial momentum"
with which the bulk of the particle probability tunnels
through the barrier. Thus, our results show that the par-
ticle tunnels with larger than its initial central momen-
tum value, p. Effectively, the particle "attempts" to go
over the barrier, and as a result it travels "faster" and the
most probable tunneling transit time, t =Re[r(E )], is
generally smaller than the time Re[r(E)] required along
a simple "classical" path associated with the initial parti-
cle energy —on this path tunneling is treated as an in-
stantaneous jump between turning points which occurs
when the classical particle reaches the leftmost point.
Most probable tunneling times are presented in Fig. 2(b).
Note that for each value of a there is a restriction on the
range ofp as described above.

The range of p we consider consists of those momenta
insufficiently large for the particle to surmount the bar-
rier. As o. approaches infinity the shift from p to p de-
creases, and this range increases to the full interval (0, 1).
The case of a= ~ corresponds to the dotted lines shown
in Fig. 2. The circumstance of large a, which keeps p
close to p, corresponds to an initial wave packet which is
very narrow in momentum space. In this case, the parti-
cle momentum distribution falls off rapidly away from its
central value p. The effective momentum p is drawn
from the positive tail of the momentum distribution.
Shrinking this tail by increasing cx forces p to approach
p, as observed.

If reAection had been the process of interest, a semi-
classical reflection coefficient would replace T(E) in (30)
(other simple changes would also be necessary). In this
case ~ would always be real and the most probable

reAection time would reduce to the simple classical value
at energy E.

B. Tunneling-time distribution

The semiclassical data were determined by solving Eq.
(34) for p(E )=p, and then substituting into Eq. (38).
The "exact" quantum-mechanics results were obtained
using a converged fast-Fourier-transform algorithm [19]
to compute g, (x), and Eq. (25). The principle con-
clusions of this and other comparisons are as follows:
even when A is quite large the semiclassical formula pro-
vides a close approximation to the quantal results—
qualitative characteristics are essentially reproduced.
Thus, any insight into the tunneled Aux which we draw
from the semiclassical analysis is also insight into exact
quantal tunneling. A specific feature of this comparison
is the relatively rapid convergence, as Pi~0, of the most
probable tunneling time. The amplitude of the tunneled
Aux converges more slowly, and generally converges from
below. Note that although both the Gaussian and
Lorentzian potentials are of unit "width, " the Lorentzian
is wider at p =0.2. Thus, the Lorentzian tunneled cruxes
are narrower and of lower amplitude for a given value of

The quantum-speed-up effect is illustrated in Figs. 3

0.004

0.003

0.002

0.001

I

20 40 60 80 100 120

~-56x10 I I I

[
I I I

]
I I I

(
I I I

[
I I I

]
I

4x10

2x10 '—

0
0 20 40 60 80 100 120

6x10

4x10 '

2x 10-5

2x10 ts

1.5x 10

10-19

5x10

I I I

[
I i I

I
I I I

]
I I I

[
I I

I i

0 20 40 60 80 100 120
0

0 20 40 60 80 100 120

FIG. 3. Tunneled cruxes, or unnormalized tunneling-time dis-
tributions, for a Gaussian barrier potential. %=1.8, 0.6, 0.3,
and 0.1, for panels (a), (b), (c), and (d), respectively. Otherwise,
p=0. 2 and a=4. Dashed lines give semiclassical data, while
solid lines are for exact quantum mechanics. Downward arrows
indicate times for simple classical motion, Re[r(E)]. Note that
the integral over all time of these curves determine the total
tunneling probability at the p and a values in question.

To emphasize the relevance of the semiclassical com-
putations presented in this section we first consider a
comparison of the semiclassical tunneled flux with that
computed using essentially exact quantum mechanics.
Figure 3 shows such a comparison for a sequence of A'

values. Here, p=0. 2 and a=4. Figure 4 shows similar
results for the case of a Lorentzian potential (rather than
a Gaussian one), also of unit height and width,

V(x) = 1

1+x
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FIG. 4. As in Fig. 2 except that a Lorentzian barrier poten-
tial was used.

and 4 by the inclusion of arrows labeling the time,
Re[r(E) ], which is associated with simple classical
motion from a to b at the initial particle momentum, p.
In this idealized motion, the particle traverses the classi-
cally forbidden (underbarrier) portion of the interval in-
stantaneously.

Figure 5 shows a set of semiclassical and exact quantal
tunneled Auxes with different p and n values, all for the
case of a Gaussian potential. Here we see broader distri-
butions and enhanced quantum speed-up for smaller p
values. The smaller a value is also associated with a
greater relative difference between Re[~(E)] and
Re[r(E )], but it produces narrower distributions, as one
might expect.

Apparent in Figs. 5(c), 5(e), 4(a), and 4(b), are discon-

tinuities in the semiclassical tunneled Aux at small and/or
large times. These appear to associated with peculiarities
of Eq. (34) at times well away from t. For example, long
times typically correspond to E with a small real part.
In this case, the associated turning points can approach
or extend beyond a and b (particularly if the potential is
Lorentzian). The semiclassical approximation is not val-
id under such circumstances and spurious results appear.
(In fact, it was necessary to cut the Lorentzian potential
data off at not too large times since unphysical exponen-
tially large terms were seen. ) Short times are associated
with Re(E ) approaching unity. In this case, the primi-
tive semiclassical transmission coefficient becomes invalid
(as discussed above), and the data can therefore be unreli-
able at short times as well.

Aside from the "faster than classical" most probable
tunneling times, the most notable feature of these data is
the dependence of the spread of P(t) on the phase space
asymmetry of the initial wave packet, as measured by a.
The spread in P (t) scales roughly in proportion to
7 0 m a which determines a qualitative measure of the
tunneling-time-distribution time scale. This interpreta-
tion of ro can be seen analytically via Eq. (34), which can
be rewritten in the form

[]+i (t —~t)/ro]
(46)

From this expression we get ImE, which determines the
logarithmic derivative of P(t) in the semiclassical limit
[see Eqs. (38) and (40)]:

I+i(t —r )/ro

In terms of the saddle point energy, Et=(p )2/2m, this
expression takes the form
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This demonstrates an extremely simple relationship be-
tween the tunneling-time distribution and the saddle-
point energy.

It proves instructive to note that the tunneling-time
distribution can be represented, through use of (46), in
the form
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is a scaled and shifted time variable and

(49)

FICx. 5. As in Fig. 2 except that 4=1, while p and a are
varied. Panels (a) and (b) are for p =0.2, panels (c) and (d) are
for p =0.5, and panels (e) and (f) are for p =0.7, a=2 in panels
(a), (c},and (e), while o.=4 in panels (b), (d), and (f).

A, = 1+Im
70

(50)

is an effective width parameter as suggested by Eq. (48).
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If we assume that r is linear in time [20] then Eq. (48)
can be integrated to determine a model tunneling-time
distribution. In the resulting model InP(t ) is Lorentzian
with width essentially given by A,

—= I+1m[7 /ro] (this
translates to a width of ro+Im[r ] in terms of unscaled
time, t), where r is the saddle-point classical time at
t =t. This model is easy to derive in the case of constant
A, ; however, it is also valid in the more general case in
which A, depends linearly on t. Skewing of the model
Lorentzian, consistent with observed tunneling-time dis-
tributions, is obtained if an appropriate linear time
dependence of A, is incorporated.

A few general conclusions can be drawn from the mod-
el of the semiclassical tunneling-time distribution con-
structed here. First, we see that the width of the distribu-
tion is characterized by (ro+Im[r ])liii. The A' depen-
dence results when we account for the overall 1/A scaling
of the model Lorentzian. Since Im[r ] is negative, its
contribution reduces the width of P(t) which otherwise
scales via ~0 as the square of the relative coordinate space
spread of the initial wave packet.

The skewing of P(t) towards longer times is related to
the variation of Im[r ] as a function of time (through its
energy dependence). Typically, as time increases, Im[r ]
increases making the effective width, A, , larger at long
times. This time dependence of Im[r ] may be under-
stood by reexamining Eq. (34). Specifically, Eq. (43) leads
to

P +0
Im~ =~0 Re

&

= —
&

Rep
dt dt p E dt

Thus, Im[r ] increases with t since Re[p ] decreases.
The behavior of Re[p ] is understood physically. Smaller
saddle-point momenta determine the arrival of the parti-
cle at b at longer times. These longer-time contributions
naturally correspond to slower components of the evolv-
ing wave packet.

The expression of P(t) as the exponential of a Lorentzi-
an is nonphysical at sufficiently long times. This follows
because the model tunneled Aux is not integrable, and, in
fact, does not even decay to zero as t —+ ~. The true tun-

neled Aux decays to zero at long times and integrates to
give the finite total tunneling probability, T. Thus, either
one or both of the models determined here, or the semi-
classical approximation as presented above, must break
down at sufficiently long times. (Note our earlier discus-
sion in this regard. )

C. Husimi-transform evolution

To illustrate the quantum-speed-up effect pictorially,
we have computed Husimi transforms of time-evolving
wave packets [21]. The Husimi transform is accom-
plished by projecting the wave function at any given time
onto a basis of reference coherent states

h (z) =1&z liIj, & I',
where lz ) = l(x /ah+i ajp )l&iii) is the general coherent
state associated with phase space asymmetry, aI, (which
need not be the same as the asymmetry of the original
wave packet). The Husimi transforms provide informa-
tion about the phase space distribution of a wave packet
as it evolves, tunneling through and rejecting off the po-
tential barrier. Figure 6 shows contour plots for a time
sequence of h, (z) with p =0.2, a=4, and iii=0. 3. Note
that a logarithmic scale for the contour values was
chosen. The solid horizontal lines specify the initial par-
ticle momentum and its rejected value, —p. The dashed
line denotes the saddle-point momentum, p, associated
with the most probable tunneling time. The "tunneled-
wave-packet lobe" (clearest in the bottom row) exhibits
skewing typical of free particle motion and appears to be
centered at p . The latter result emphasizes the
significance of Eq. (43) which produces this higher
momentum. The reAected particle is not as clear in these
plots, as it generally interferes with the incoming particle.
Nevertheless, we see that the reAected particle, at least
initially, appears to travel to the left faster than the in-
coming particle travels to the right. At long time, we ex-
pect —p to give the reffected particle momenta (and the
last panel is consistent with this expectation). The other
noteworthy feature of these calculations is the very broad
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FIG. 6. Contour plots of Husimi-transform
time evolution. The upper left panel gives the
Husimi transform of the initial coherent state
wave packet. Note that a logarithmic scale is
used for contour values, which are 10, 10
10, 10 ', 1, 10, 10, and 10 (contours with
value ~1 are heavier for clarity). Time in-
creases from left to right, and then from top to
bottom. Time values shown are from 0 to 64,
in increments of 8. The horizontal solid lines
denote initial wave-packet momentum, p =0.2,
and its rejected value. The dashed lines
denote saddle-point-momentum values,

p =0.35, associated with the most probable
tunneling time. The phase-space symmetry pa-
rameter associated with the Husimi transforms
shown here is czq =4.
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range of momenta exhibited "under" the barrier. It is in-
teresting to observe that these large momentum com-
ponents do not venture outside of the barrier region as
time evolves.

VI. SUMMARY AND DISCUSSION

Localized wave-packet tunneling through a one-
dimensional barrier has been investigated with regard to
tunneling-time distribution. We have shown that, strictly
speaking, a tunneling-time probability distribution does
not exist. Nevertheless, in terms of the time evolution of
an initially localized wave packet, we have constructed a
quantity —the tunneled Aux —with the essential proper-
ties of a tunneling-time distribution. This quantity was
investigated numerically as well as analytically via a
semiclassical steepest-descent calculation. The semiclas-
sical calculation provides a good approximation to nu-
merical tunneled cruxes. It also afforded means of ex-
tracting qualitative characteristics of tunneled flux (and
hence the semiclassical tunneling-time distribution). The
principal features of tunneling-time distribution thereby
extracted are summarized as follows.

(1) The most probable tunneling time is determined by
the classical motion associated with a certain "saddle-
point" momentum given by the solution of a simple non-
linear equation.

(2) Tunneling is faster than simple classical motion
from one side of the barrier to the other, even assuming
instantaneous transit between the turning points.
Effectively, the barrier acts as a filter for the large-
momentum components of the initial wave packet. This
effect was illustrated pictorially in phase space by numer-
ical computations of the Husimi-transformed time-
evolving wave packet.

(3) The semiclassical tunneling-time distribution has
been modeled, in agreement with observation, as the ex-
ponential of a skewed Lorentzian function. The width of
the distribution scales as 1/A and is otherwise determined
by two opposing terms. The first of these terms scales as
the square of the relative coordinate space width of the
initial wave packet; while the second term is just the
imaginary time associated with the forbidden classical
motion between the turning points at the saddle-point
momentum.

The role of the imaginary part of the time in determin-
ing characteristics of the tunneling-time distribution
represents one of the most interesting and controversial
issues regarding the question of tunneling transit time. A
number of previous studies in this area have emphasized
this quantity [1(a),4, 10]. Within our approach, the imagi-
nary time is found to have a peripheral, but not
insignificant, role. Specifically, the imaginary time con-
trols the magnitude of a positive shift in the energy of the

classical particle motion which determines the most prob-
able tunneling transit time. That is, a relatively large
imaginary time effectively "deAects" the real classical
motion to higher velocities. This generally has the effect
of reducing the tunneling transit time. In terms of exact
quantum mechanics, the barrier can be viewed as a filter
which selects out the large momentum components of the
wave packet, and the imaginary time contributes to the
degree of filtering. In addition, the imaginary time (in
combination with the phase-space asymmetry of the ini-
tial wave packet) affects the spread of the tunneling-time
distribution. Increasing the imaginary time decreases the
spread of the transit-time distribution which would oth-
erwise be determined by the width of the initial wave
packet alone. A more subtle effect, resulting from the
time dependence of the saddle-point imaginary time, is
responsible for the skewing of observed distributions to
longer times.

Although we have presented our results within the
framework of simple one-dimensional scattering, many of
the developments generalize straightforwardly to more
complicated cases. For example, future investigations
will consider the multidimensional scattering generaliza-
tion of tunneling time, as well as the nature of tunneling
time in cases other than "deep tunneling, " i.e., when the
classical turning points are near the top of the barrier
[22]. Additionally, we believe it will soon be possible to
compare our predictions with experimental results [23].

Tunneling from a metastable state is more problematic
since it is not generally possible to take the initial
wavepacket to be "far" from the barrier, making the va-
lidity of various asymptotic approximations questionable.
Our hope is that by expressing the tunneling-time distri-
bution in a more general language —specifically, the
path-integral formulation of quantum mechanics —we
will be able to unravel the complexities of tunneling from
a metastable state. A future contribution will make the
connection between the current semiclassical analysis and
the stationary-phase approximation of the coherent-state
path-integral representation of the tunneled flux [24].
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