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Variational method for the free-energy approximation of generalized anharmonic oscillators
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A variational method that uses the frequency and the energy shift as variational parameters is present-
ed. The quantum-mechanical partition function is approximated by a formally simple expression, for a
generalized anharmonic oscillator in one and many dimensions. The numerical calculations for a single

quartic and two coupled quartic oscillators lead to nearly exact values for the free energy, the ground
state, and the diA'erence between the ground state and the first excited state.

PACS number(s): 03.65.—w

I. INTRODUCTION

Problems in quantum field theory, solid-state physics,
and molecular vibrational motions theory have led to the
investigation of the thermodynamic properties of various
nonlinear systems [1—3]. Also anharmonic oscillators
(AHO) have been used as testing examples for new
methods in the above theories [4,5]. The present investi-
gation is mainly concerned with the determination of the
partition function (PF).

Apart from the calculation of energy eigenvalues,
which presents a lot of difhculties, especially in the mul-
tidimensional case, several other methods have been
developed for the approximation of the partition function
of AHO's.

The thermodynamic perturbation method, which is
based on perturbation treatment of the canonical density
matrix [6], is easily applied up to second-order terms with
respect to the anharmonic coupling and with some
dilficulty up to fourth-order terms [7,8]. The disadvan-
tage here is that the results are only valid for quite small
coupling. This disadvantage can be overcome by the use
of variational methods.

Witschel and Bohmann [3] modified the Hamiltonian
of the quartic AHO so that the frequency can be used as
a variational parameter. Thus they succeeded in improv-
ing the lower and upper bounds of the PF in comparison
to those obtained from Gibbs-Bogoliubov and Golden-
Thompson inequalities [10].

Some time ago, Feynman and Kleinert [11] presented
another method where, by the use of path-integral formu-
lation, the PF can be approximated from below by an
effective classical PF. This method was applied to the
quartic and the double-well AHO's with nearly exact re-
sults. However, its extension to many-particle systems
seems to be somewhat complicated.

For this reason Biittner and Flytzanis [12] suggested
another method which includes both frequency and dis-
placement as variational parameters. Its application for
the above potentials is easier to use but leads to less exact
results than the Feynman-Kleinert results. Nevertheless,
in the zero-temperature limit both methods give the same
value for the ground state.

Recently Kleinert, as well as Haugerud and Ravndal
[13], proved that the finite-temperature Gaussian

effective potential [14] is an upper limit to the free energy
for a scalar quantum field theory. The application of this
method to the field theory in zero spatial dimensions
gives results similar to those in Ref. [12].

In this work we generalize the Gibbs-Bogoliubov varia-
tional principle [10] by introducing an energy shift varia-
tional parameter (Sec. II). In Sec. III we also use the fre-
quency as variational parameter and using the results of
Ref. [8] we find an approximation, in a simple form, for
the PF of a generalized one-dimensional AHO. The ap-
plication to quartic AHO's gives good results for the free
energy, the ground state, and the difference between
ground and first excited states (Sec. IV). Finally, in Sec.
V, we extend this formalism to a multi-dimensional sys-
tem with application to two coupled AHO's. In all these
applications we have used natural units where fi=c=1
and therefore energy, mass, inverse length, and inverse
time have the same dimensions.

II. GENERALIZATION
OF THE GIBBS-BOGOLIUBOV

VARIATIONAL PRINCIPLE

To achieve an approximation of the PF where the ener-

gy shift is included as a variational parameter, we ap-
propriately generalize the procedure which leads to the
proof [10]of the Gibbs-Bogoliubov variational principle.

We define the function
—P( H

&
+ o.I+ e{H2 —o.I ) jZ e =Tre (2.1)

U K dK v+ j. d u+1
Z(e)= g — Z(0)+ Z(e'),

—p&' de (v+1)! de'+' (2.3)

where 0 e' e. The (v+1) derivative can be deter-
mined according to the relation [15]

where e and o. are real parameters, I is the unit operator,
P is the inverse temperature, and H& and H2 are Hermi-
tian operators, the sum of which gives the Hamiltonian of
the system, i.e.,

H Hi+H2 (2.2)

so the PF is taken from Eq. (2.1) with the substitution
e= l.

The Taylor expansion (with remainder) of the Z(e)
function about e=O is written
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d V+1
A+eB 1

v+1 1 1 U
Z(e)=v! t' 'dt . dt Tr Be"+' g e

i=1

where we have set

t. ( A+eB) t&Be ' t. ( A+eB)
(2.4)

/3(H—, +crI ) and B = —P(H2 —oI ) . (2.5)

The elimination of the remainder term and the substitution e= 1 in Eq. (2.3) lead to the determination of an approxi-
mate expression of the PF, i.e.,

K

Z„(1)=Tre "+Tr I Be "I + g Tr f t, 'dt, f dt„Be"g e
K+1 0 0

t. A
Be ' t. A

(2.6)

with p=1,2, . . . .
The most proper value for the o. parameter is found

from the solution of the equation

which is the well-known Gibbs-Bogoliubov lower bound
of the partition function.

III. ONE-DIMENSIONAL AHO
Z„(1)=0 (2.7)

which is the necessary condition for the maximization or
for the minimization of the Z (1) function.

In Appendix A we prove that the above condition is
equivalent to the equation

Following the idea of using frequency as a variational
parameter I16,17] we can drastically improve the results
of the preceding section.

Consider Eq. (2.6), up to fourth-order terms (@=2),
with the following Hamiltonian:

1 1 —t, ~ ~ t. A
Tr t", 'dt, . dt Be" Q e

0 0

XBe ' ' =0. (2.8)

2 2
H= + x +V(x) .

2 2

In this case we have

(3.1)

This result is obtained by noting that on setting the last
term of the sum in Eq. (2.6) equal to zero, condition (2.7)
is automatically satisfied.

The above method can be regarded as a generalization
of the Gibbs-Bogoliubov variational principle. In fact, if
we keep the first two terms in the second part of Eq. (2.6)
then the o parameter, which is obtained from Eq. (2.7),
has the form

Q2
2 = —P(H0+o) and B=—P x + V(x) —o.

where

~o2II=~ + x'
2

(3.2)

(3.3)

Tr IH~exp( —PH, ) J

TrIexp( PH, )I— (2.9) Q2 — 2 2—
CO C00 . (3.4)

and therefore Eq. (2.6) gives
—PH

1

—Po.
(2.10)

Keeping up to fourth-order terms (p=2) in the expan-
sion of (2.6) we obtain the following expression of the PF
for @=1:

Z2=e ~ Tre —PTr
—pHO

2 —PH0

2
x +V(x) —o e

2

+ Trf dt,
2 0

Q2

2
x +V(x) —o e

Q2
0 1 0 2+V( )

2

—Pt H
1 0

p3
Tr f t, dt, f dt2

0 0

2
PHO Pt

&
Ho

2

2
x +V(x) —o e e x +V(x) cr—

2

r

pt) Ho pt& t2HO
2

Xe ' 'e '' ' x +V(x) —o. e
2

Pt ) t~HO (3.5)
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PHp Pt&Hp ~ PtlHpTr(xPe 'e ' 'x e ' ')=ZoXP (t„'P,coo),This expression depends on two variational parameters,
namely, the energy shift o. and the frequency cop. The op-
timum values of o. and cop are determined from the solu-
tion of the system

(3.7)

PHp Pt& Hp & Pt& (1—
E2 )Hp ~&

1 t2HpTrjxl'e e xe x e )

=ZoX "(t, , t2;P, coo), (3.8)
aZ, az,=0, =0 .
BO 0CO0

(3.6) where

1Zp—
2 sinh(Peso/2 )

(3.9)

is the PF which corresponds to the Hamiltonian Hp and

In order to proceed, we put the expressions of Eq. (3.5)
in a more convenient form. To this end we make use of
the following relations [8]:

(p+x)/2
1 P~oX 'P(t;P, co )=I~! coth

267 2670

1 P~o
&p"(t„&2,p, ~o)=~!r! coth

2')p

A,
! r ) (p+~ —2s —1)!!
, =o 2's!(~—2s )!

(p+ ~+ ~)/2

A'A
1 2

1 —A1

A 1

(3.10)

[~/2] l~/2]
X

s2=0s& =0 I& =0

[p+~+r 2(s, +—sz )
—2/, —1]!!

2 ' 's, !s2!/,!(~—2sz —l, )!(r—2s& —/, )!

A1 A1A2
(3.11)

with r —2s, —I, ~ 0 [a] the integral part of the real num-
ber a and

I

mally simple expression

cosh[(phoo/2)(1 —2t& ) ]A1=
cosh(phoo/2)

cosh[(Phoo/2)(1 —2t
& t2 ) ]A2=

cosh(Phoo/2)

cosh[(phoo/2)(1 —2t
&
+2t, t2 ) ]

A12=
cosh(phoo/2)

We complete the above with the definitions

(3.12)

2 j
Zq =e Zo 1 —pg(o. , coo)+ dt, Q (o, coo)

2 0

/33 1f t&dt& f dt2Q (o, coo) ',
0 0

where

Q2
Q(o, coo)= X + V(X)—oX

(3.17)

(3.18)

0

a./2
1 P~oX (P, coo) =(~—1)!! coth

2cop 2

(3.13)

Some useful properties of the above-defined X func-
tions are

+P+K —+PK

+PK+ T —+PKT' (3.19)

and the Q and Q functions are calculated with the un-
derstanding that the multiplication of X is done with the
following rules:

f dt)Xp (t),'p, coo)= f dt)X p(t, ;p, coo), (3.14)

which is a result of the trace cyclic property. Also the
quantity

f r, dt, f dt2Xp'(t, , t, ;p, coo) (3.15)
0 0

is invariant with respect to permutations of p, a, r (see
Appendix B).

If the potential V(x) admits the expansion

2

ln 1 —pg+ f dt Q~~o 2 o

p3 f r]dt, f dt~g

Finally Eqs. (3.6) take the form
1 1f t, dt) f dt2Q (cr, coo)=0,

0 0

p phoo—coth
2 2

(3.20)

(3.21)

V(x) = g c,x" (3.16)

then using the properties in Eqs. (3.14) and (3.15) and the
traces (3.7) and (3.8) appearing in Eq. (3.5), we can
present the approximation of the PF in the following for-

and the solution of this system gives the optimum pair of
(o., coo) for each value of P.

We apply the above method to a quartic AHO, with
Hamiltonian H=p /2+x /2+A, x, for relatively small
(A, = 1) and large (A, =10) anharmonic coupling and we
find that the resulting PF is a lower bound of the exact
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FIG. l. Inverse temperature (p) dependence of the approximate free energies F„Fz, and Fua, for the AHO with Hamiltonian
H=p2/2+x'/2+ Ax in the cases (a) A, = 1 and (b) A, = 10 and the exact free energy F,„(Ref. [18]).

one [18]. The corresponding free-energy upper bound
FUB= —(1/P)ln(Z2) is drawn in Figs. 1(a) and 1(b), for
the above values of X, respectively, and is compared with
the exact [18] free energy F,„, the Feynman-Kleinert F„
and the free energy F2 resulting from Refs. [9,12,13].
The values of the approximate free energy F2 can be ob-
tained from the above method, if we keep the first two
terms in the sum of Eq. (3.5) (first approximation).

We observe that except to very large temperatures, the
FUB function approaches much better the exact curve
than the F& function, while F2 lies far above both of
them. We notice also that the difference between FUz
and F„ is small in the case of A, =1 and becomes larger
when X=10.

U= (PF),= d (4.1)

which, taking into account the conditions

Z„(1)=0, Z„(1)=0,
Bo. BCOQ

(4.2)

can be written in the form

or of the internal energy U. We consider the Hamiltoni-
an of the preceding section and the expression (2.6) for
the PF. We can obtain the ground-state energy from the
ZTL of the following relation:

IV. GROUND-STATE ENERGY

It is well known that the ground-state energy is given
by the zero-temperature limit (ZTL) of the free energy F

d F--1' '
dP Zo BP

Here

1 azI
z, ap

(4.3)

eZQ—
2 sinh(Peso/2 )

(4 4)

Tr[ W(x)e ']

p p~+ I

) ]@+1

1 pHO pt )
' ' t ~ Ho —pt)Tr ti 'dti . . dt, W(x)e Q e ' ' W(x)e

0 0 j=1
—pHO

t.Ko

(4.5)

and

Q2
W(x) = x + V(x) —o .

2
(4.6)

(C3) that
BZJ

lim =0.
p Zt t)P

(4.7)

It is straightforward to show directly from Eqs. (Cl) and Therefore the ZTL of the internal energy gives
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p . COp

E~ = lim U=
P~ oo

(4.8)

where the optimum pair (o,coo) is defined by the relations

Q2 1
K/2

tT= + pc (I~—1)!!
4cop K COp

Q2
' K/2

+ g c (a —1)!!— =0
4cop 2 2' p

which follow from the ZTL f E . (4.2. y,
combining Eqs. (4.8) and (4.9) we obtain

(4.10)

~p
E, = + +pc (a —1)!!

2 4cop

K/2

(4.1 1)

1

2cop

' K/2

(4.13)

Accordingly the ZTL of E . (4.12) '1q. . east y leads to Eq.

The approximation E, to the ground-state ener as it
is given b E . (4.11y q. . ) can also be obtained from the

-s a e energy as it

An identical result for E
&

can be reached by taking the
ZTL of the free energy

F= ——lnZp ——lnZ
1

/3 /3
(4.12)

In fact, assuming that the limit appearing in Eq. (Cl) can

(4.5 w
be applied separately to each term f tho e series in Eq.

) we may write the following equality:

Q2
~~ c,(a —1)!!lim ZI= lim exp —

/3 + ~~c, — !!
COp

E =FUB(/3o) (4.14)

gives a better estimate of the ground state than the E,

47

~ ~

mtntmal expectation value of the operator (3.1) with h
condition 3.16 i

r . , wit t e

(coo/~)' ex ( —co 2 .
.16, in a Gaussian wave packet of th fe o e orm

exp —coox /2). The condition for co to m'

mize
cop o mini-

(4.10). The a
t is expectation value is found to b 'do e i entical to Eq.

e above wave packet has been used b F
man and Kleinan einert [11]. In the case of quartic AHO, the

use y eyn-

(} parameter of Ref. [11] corresponds to the coo of the
present work since both parameters satisfy the same
equation, namely, Eq. (4.10) with Ir=4.

To o be ondg y d the P~ ~ approximation described
above, we consider Fig. 1 from which it is eviden'c i is evi ent that

o e UB free energy of the quartic AHO
nearly coincides with the exact value of the fre ree energy in

y wi e range of intermediate temperatures. It will
be shown that we canan much better approximate the
ground state by exploiting this fact.
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TABLE I. Comparison of E =Fza(13o) with the exact ground-state value E,„(in parentheses) and
also of the diff'erence from the first excited state [18]E,'„E—,„(in parentheses) with o +coo evaluated at

0.5
1.0

10.0
1000.0

EO

0.696 62
0.804 62
1.508 15
6.712 17

(E,'„)

(0.696 18)
(0.803 77)
(1.504 97)
(6.694 22)

1.618 33
1.921 74
3.790 87

17.147 41

{E Eo )

(1.628 23)
{1.934 12)
{3.816 94)

(17.278 00)

6.0
4.8
2.2
0.5

Noting that at the limit P~ ~ the cop parameter gives
the difference between the ground and the first excited
state [11), we have a substantial improvement of the
difference if we add to the co0 the o. parameter as evalu-
ated at P=Pp. Energy values obtained in this way are
listed in Table I and are compared with the correspond-
ing exact energies in a wide range of anharmonic cou-
pling values.

We observe that the accuracy for the ground state and
the difference between the ground and first excited states
is quite satisfactory for small coupling and remains
reasonable for large coupling.

V. MULTIDIMENSIONAL AHO

Z2 =Zp ' 1 PQ(cr coo1q. . . q copD )

p2+ dt1Q (O', coot, . . . , copD )
2 0

p3 1

r1dr1 dr2Q (cr~cop1~. . . r cooD )
3 0 0

where

e
—PD o.

Z0
2 sinh(Pcopt /2) . sinh(13copD /2)

(5.5)

(5.6)

The formalism of the third section can be explained to
multidimensional systems which have the Hamiltonian +2

Q(~~~01~ ' ~ ~OD ) X +1 +i +D
2

D
H = g Ho; + V(x1,x2, . . . , xD ), (5.1) + V(X„.. . , XD) crDX, —. XD .

(5.7)

where

CO

H =P+ 'x'
Of (5.2)

and V(x1,x2, . . . , xD ) is a function which admits the ex-
pansion

Here we have to clarify the symbolism. The subscript of
the function X is a particle index. The product of such
functions is defined according to the rule (3.19) when they
are associated with a single particle, while for different
particles the product is the usual one. Finally, the system
which determines the values of the variational parame-
ters now has the form

K) Kp Kg)X C~~ ~ X1X2 'XD
1 2 D

Kl, . . . , KL)

(5.3)
2

1

ln 1 /3Q+ f dt—, Q
o 2 o

f 1 1

ttdr1 dt2Q (crqcoo1q. . . q copD ) =0
0 0

13 ~carpi—coth
2 2

(5.8)

with c„.. . constant coefticients.
1 2 D

Here we introduce the energy shift o. and D frequency
variational parameters co01, . . . , m0D, one for each parti-
cle.

Following the steps of Sec. III we define

f 'r, dr, f 'dr, Q3

withi =1,2, . . . , D.
We apply this method in two coupled AHO's with

Hamiltonian

D
A = —P g (Ho, +cr), 2 2 2 2

P1 P2 X1 X2 2 2 4H = + + + +gX 1 +g12X 1X 2 +gX 2
2 2 2 2

(5.9)
. (5.4)

for several values of g and g12. The resulting curves for
free and internal energy for these systems are similar to
the ones in Figs. 1 and 2. The ground state E, as ob-
tained by full application of the above method and the
ground state Eb, as obtained by the first approximation,

where 6, =~, —co0, and after analogous manipulation we
find that

Q2
& = —P g x; +@V(x„x2,. . . , xD) Dcr—

1
2



K. VLACHOS 47

TABLE II. Comparison of E, and Eb with E,„and also of the difference from the first excited state
[18]E,'„E,—„(in parentheses) with o + coo evaluated at Po.

1

1

100

0.4
2.0

120

EO

1.6496
1.7401
6.7778

EO

1.6362
1.7305
6.7101

Eo

1.6332
1.7242
6.6741

1.9169
1.9985
8.2114

(E,'„—E,„)
(1.9741)
(2.1062)
(8.6409)

5.1

4.8
1.1

are presented in Table II. These values as well as the
di6'erence between the ground state and the first excited
state (o +coo) are compared with the exact results [18]
and one can observe that the results here are less accurate
than in the one-dimensional case, especially for large
values of g and g12.
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APPENDIX A

We will here prove, by induction, that

Z (1)=— Tr f t~~ 'dt, f dt Be" + e
r)cr " @+1 o

' '
o j=1

with p=1,2, 3, . . . . For p= 1 Eq. (2.6) is written

t. A t1 ~ t. AJ Be 1 J (A 1)

8 p g p I g
—E(A t)A p 1 ~

—t)g
Z& = — Tr[Be —]+—Tr dt&e e ' Be ' ——Tr f dt~Be e ' Be '

Bo 2 2 0
' 2 0

which due to the relations

(A2)

Tr . e A+'Ba
BE

finally gives

e=O

1 A
—

t~ A t& A

=Tr[Be "I =Tr dt, e "e ' Be ' (A3)

8 1 A
—tlA t)AZ&= ——Tr dt, Be e ' Be '

Bo 2 0
(A4)

so Eq. (A 1) is valid for p = l.
We suppose now that Eq. (Al) is valid and we shall prove its validity for p+ 1. It follows from Eq. (2.6) that

0 = a 1 1 1

Z„+,= Z„+ Tr t",dt, dt„+, Be" g e ' ' Be '
Bo- " Bo- " p+ 2 0 0 " Bo. g=1

(A5)

and therefore by carrying out the o. derivative we end up with

a p @+1
Z„+,= — Trf t",dt, f dt +,Be" g e

Bo p+2 0 0

t. A t& t. A
Be '

1 1 A t) '''t A+1
+PTrf t dt&. . . f dt +&e" Qe ' ' Be '

j=1

Trf t", 'dt, . f dt„Be" & ep+I o
' '

o

t. A t, -t. A
Be ' (A6)

On the other hand, the substitution of the derivatives
(2.4) in the following obvious relation:

leads to the cancellation of the last two terms in Eq. (A6).
Thus Eq. (Al) is also valid for p, + 1.

@+1
A +eB

aE~+' e=O

()P=Tr-B eA+'B-
BE e=O

(A7)

APPENDIX B
The property (3.15) is proved as follows. Let A, B, ,

B2, and B3 be Hermitian operators. Using the transfor-
mations
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t1= T1, t2 =1—T2,

T1 T2& t1 t2 = T1 T1 T2

t1=1 T1T2& t1t2=1 T1

t1=1—T1 + T1T2, t1t2 =1—T1,
= 1 —T1+T1 T2, 1t2

(81)

is invariant for all permutations of the operators
(1 t& )3 (t& f1 t2)A t&t2

7

as well as for cyclic permutations of the B1,B2,B3.
It will be proven that, in the case where

2 2

A =P + x =PH
and the trace cyclic property, we can easily prove that
the integral

B1=x)', B2=x, B3 =x (83)

1 1 —(1—ti )2
t1dt1 dt2 Tr B1e ' B2

0 0

1 12 ~ e 12 ~ (82)

the resulting integral (82) is also invariant for all permu-
tations of x~, x, and x . In fact, using the coordinate
representation the integrand of (82) takes the form

P( 1 t) )H11 tt P(t) 11 t2 )H11 t, Pt) t2H11Tr x~e X e x'e
= f dx dx)dxz[x Pp(x, x»P(1 —t())x)Pp(x), xz, P(t) —t, tz))xzPp(xz, x;Pt(tz)], (84)

where p0 is the well-known density matrix which corresponds to Hamiltonian H0. Since the p0 function is symmetric
with respect to the coordinate variables, we can rewrite the above relation as

J dx(dx dx2[x (p()(x),x;p( 1 l1 ))x pp(x, x2', /3t) t2 ))x 2pp(x2, x(',pt) ( 1 t2))]
—p(1 —t

) )Ho pt
1 t2HO— pt )(1—t2 )Hp—

which proves the invariance with respect to permutation of x~, x, and x'.
(85)

APPENDIX C

We will prove the relation

n

j=1
—PHp

' K/2 n+1
1g d„(tt.—1)!! 2' (C 1)

where ~ is an even integer,
2 2

Ho= + x, and W(x)= gd x',
K

(C2)

with d„constant coefficients.
Expanding the W(x) functions according to Eq. (C2), we can write the first term of Eq. (Cl) as follows [8,19]:

CO
limp- ~ 2r coth()33p2/2 )

1/2

$d d
n

Kp K

sinhPp2$( sinhPo2$„

[Kn /2]
Kp —co tanh(P~/2)x

S
s„=o 2 "s„!(tt„—2s„)!

K 2$2' +a,x1+ d

1 N

S)
K1fa[K) /2]x.

st ——o 2 's, !(tt,—2s, )!

d
2%X +a1x1+

dX1

K —2$
1 1

dx, (C3)
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co sinh [Pro( 1 —
g, ) ]X= a;=

2 sinh(Pro)
' ' sinh(Pro)sinh(Peag; )

(ao —1 )!! ]c)!gd, gd
Jtl/2

(C4)

and the symbol N denotes the normal ordering of opera-
tors [19]. Because the integral in expression (C3) is uni-
formly convergent (being a sum of I functions), we can
take the limit of each factor in the integrand.

Thus the expression (C3) tends to the following limit:

~!
X gd,

2M

a.„/2

(C5)

when ~o, K&, . . . , ~, are even integers and zero when any
of the a's is an odd integer. It is now obvious that (C5) is
identical to the second term of Eq. (Cl).
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