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Optimally controlled quantum molecular dynamics: The efFect of nonlinearities on the magnitude
and multiplicity of control-field solutions
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This paper addresses the nature and multiplicity of an optimally designed electric field for controlling
quantum-dynamical processes. A rather general cost functional is considered, with only mild conditions
called for amongst the various operators involved. An explicit upper bound on the magnitude of the
controlling electric field is attained in terms of the norms of various operators entering into the control
cost functional. An earlier work employing first-order perturbation theory arguments showed that, un-
der rather mild assumptions, a denumerably infinite number of control-field solutions exists for the op-
timal control problem. In the present work, it is shown that through a bound on the remainder of the
nonlinear terms in the expansion, this same conclusion concerning the control-field multiplicity contin-
ues to hold.

PACS number(s): 03.65.Cie, 02.90.+p, 33.90.+h

I. INTRODUCTION AND FORMULATION
OF THE FIELD DESIGN PROBLEM

Increasing attention is being addressed toward the
external control of quantum-mechanical systems [1—3].
Problems where the external control is an electromagnet-
ic field are receiving the most attention [4—17], although
other applications may also arise. In general, it is a fun-
damental issue to understand the degree of possible con-
trol and the practical ability to achieve such controls in
the microscale world, where the laws of quantum
mechanics are operative. Analogous issues are tradition-
al areas of active pursuit in macroscale engineering, but
only recently have such matters begun to be explored in
the microworld. A host of topics are open for study, and
the present work primarily considers the issue of a possi-
ble multiplicity of solutions to the optimal control prob-
lem in any given system. The fact that multiple solutions
may exist is suggested from the observation that, typical-
ly, the control problems are specified by giving an initial
condition and a desired target state, with only mild in-
tegral costs on the interior evolution of the system from
the initial to final state. Thus many quantum-dynamical
paths, each corresponding to a distinct (control-field)
Hamiltonian, could possibly exist. In a recent paper [18],
this issue was explored by the authors, taking a first-order
perturbation-theory perspective, where it was found that
a denumerably infinite number of solutions exist. Howev-
er, the question remained open as to whether the higher-
order terms in the field intensity could alter this con-
clusion. The present work examines this matter by plac-
ing a bound on the possible contributions of these
higher-order terms. As a result, it will be shown that the
detailed nature of the control solution does depend on the
higher-order field nonlinearities, but the multiplicity of
solutions still remains. Furthermore, in proceeding
through the analysis to this conclusion, an explicit upper
bound on the control-field magnitude will be obtained, in
terms of the various physical variables entering the con-
trol problem.

H =Ho+@@(t)

=&+@X)(t),
(l. la)

(1.1b)

where Ho is the reference Hamiltonian for the system un-
perturbed by the control field 6(t). Here, this latter field
is taken as coupled to the quantum-mechanical system
through the dipole operator p. The dipole and field will
be treated as scalars, but their vector analogs may be just
as well considered. In Eq. (l. lb), a new reference Hamil-
tonian

(1.2)

has been defined in terms of a nominal background field
D. Correspondingly, the new effective field is shifted:

2)(t)=8(t)—Z . (1.3)

The nominal field 8 may be time dependent or time in-
dependent, and is only introduced here for convenience,
since the true field 6'(t) is the one that would be generat-
ed in the laboratory. A perturbation expansion for the
control problem will be written in terms of the strength
of X)(t), and altering 6' may improve the convergence
properties of the solution. Since this introduction of 6 is
only for this purpose, we hereafter will assume it is a con-
stant reference field. The corresponding system
Schrodinger equation will then become

i A = [&+vs)( t ) ]g(t ),. a(t)
dt

(1.4)

where v is introduced as an ordering parameter, to be uti-
lized later. The optimal control problem is stated in
terms of finding Xl(t), or equivalently D(t), such that

Consideration of the role of field nonlinearities in the
quantum control process will explicitly build on the prior
linear formulation [18]. Thus this formulation will now
be summarized, along with a precise definition of the con-
trol problem being addressed. First, the Hamiltonian of
the system is defined by
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some particular objectives are reached and penalties
avoided. This perspective may be expressed as minimiza-
tion of the cost functional Y,

1 if 40 is employed

0 if 8, i, is employed . (1.8g)

where

(1.6a)

W (t ) & 0, Te [0, T] (1.6b)

(1.6c)

(1.6d)

(1.6e)

In these equations, T is the target time, 0 is the Hermi-
tian objective operator, 0 is the target value, 0' is a Her-
mitian penalty operator whose expectation value over the
control interval is to be minimized, and the weights 8'
and 8 & are chosen to adjust the significance of the penal-
ty and fiuence terms 4"' and cF~ ', respectively. Note
that the first and last terms in Eq. (1.5), Po and 8, o,
would not both be present in a given problem. The first
of these terms represents a quadratic cost for reaching
the objective, while the latter term corresponds to a con-
straining demand that the objective be exactly achieved.
In the latter case, the Lagrange parameter g assures that
this is the case, and similarly, the Lagrange function A, (t)
assures that Schrodinger's equation is satisfied. A full
discussion of the meaning and significance of these terms
can be found elsewhere [7—16]. The control equations
are obtained by demanding that the first variation of 8 be
stationary,

In Eq. (1.8e) Re denotes the real part. Here we have in-
troduced the ordering parameter v as explicitly entering
the wave function P(v, t) and the Lagrange multiplier
function A, (v, t ). It is understood that the value v= 1 cor-
responds to the physical case of interest. The variational
equations naturally include Schrodinger s equation (1.8a),
but most importantly, the overall set of equations (1.8)
contains a third-order nonlinearity explicitly evident in
Eq. (1.8c), and additionally, through the substitution of
Eq. (1.8e) into Eqs. (1.8a) and (1.8c). Furthermore, for
the case a= 1 in Eq. (1.8f), the final condition for A, (v, T)
in Eq. (1.8d) is also third-order nonlinear in terms of the
wave function. Schrodinger's equation is linear from the
traditional forward perspective of attaining a solution
once a Hamiltonian is given, while in an optimal control
framework, quantum mechanics reduces to solving a
highly nonlinear problem. The origin of this nonlinearity
is in the inverse nature of the control problem. The equa-
tions (1.8) that need to be solved are interestingly of a
traditional nonlinear Schrodinger type [19]. The parame-
ter g plays a very important role in establishing the mul-
tiplicity of solutions to control equations. In the case of
a= 1, it is evident from Eq. (1.8f) that i) provides the de-
gree of error in reaching the control objective O. In con-
trast, when a =0, then g is a Lagrange parameter, but its
magnitude has a bearing on the difficulty of achieving the
target 0 in Eq (1.6e).

The issue of multiplicities to a quantum control prob-
lem consists of whether there are different solutions
g(v, t) and k(v, t) to Eqs. (1.8), and thus distinct values
for the control field 8(t)=2)(t)+6. In the previous
work as well as here, this matter will be addressed consid-
ering the infinite-order expansions

(1.9a)

58=0 .

The resultant variational equations are

i fi ' = [&+vpS( r ) ]P(v, t ),. a (vi)
ar

iR ' =[&+vga(t)]A(v, t). a~(v t)
Bt

A, ( v, T ) =—gO P( v, T),

2)( t ) = Re[ ( k( v, r ) ~ p ~ p( v, t ) ) ]—8,
W@(t)

( t/i( v, T )
~
0

~ g( v, T ) ) =0 +ay,
where

(1.7)

(1.8a)

(1.8b)

(1.8c)

(1.8d)

(1.8e)

(1.8f)

(1.9b)

Substitution of these expansions into Eqs. (1.8) and equat-
ing like powers of v will lead to a recursive set of
differential equations for the expansion functions g (t)
and A,z(t ), j=0, 1,2, . . . (their dependence on other coor-
dinates, depending on the choice of representation, is im-
plicitly understood). These equations, and their formal
solution, were discussed in the earlier work on this topic
[18]. For our purposes here, the only point that needs
emphasis is that proper convergence behavior of Eqs.
(1.9) calls for the operators p, 0, and 0' to be bounded.
In addition, the operators 0 and 0' are assumed to be
definite (either positive or negative) in order to assure cer-
tain spectral properties to achieve the ultimate control
field. Appropriate modifications can be made to guaran-
tee that these criteria are satisfied; hereafter we will as-
sume that p, 0, and 0' are properly chosen.

Addressing the issue of multiplicity of solutions
reduces to consideration of Eqs. (1.8e) and (1.8f). In
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keeping with notation utilized previously, we define the
following functions: Q(T) =exp —T& 0 exp ——T& (1.18)

@(v, t ) = Re[ ( A ( v, t )
~ p ~ f(v, t ) ) ]

—6,
Q(v, t)=(P(v, t)~O~Q(v, t)) .

The sought-after field may be identified as

(1.10a)

(1.10b)

2)(t)=N(l, t)= Re[(A(l, t)~p~g(l, t))]—6

and the auxiliary function Q(1, T) may be identified as

Q(1, T)=0+ay . (1.12)

(1.13a)

Q(v, t)= g vJQ, (t) .
j=o

Thus we have that

(1.13b)

2)(t) =C,(t)+C, (t )+R~(t ),
where

(l.14a)

(1.14b)

and similarly

Qo( T ) +Q, ( T ) +R n ( T ) =0 +ail,
where

(1.15a)

(1.15b)

Substituting the expansions in Eqs. (1.9a) and (1.9b) into
Eqs. (1.10a) and (1.10b) will produce the following expan-
sions:

Thus the field in Eq. (1.16) depends on the free parameter
il, which is determined from solving Eq. (1.17) for this
parameter. A simple analysis showed that Eq. (1.17) has
a denumer ably infinite number of solutions
l = 1,2, . . . . These roots, in turn, specify a denumerably
infinite number of control fields in Eq. (1.16). The
significance of this result is that many of these solutions
may have physically acceptable qualities.

The purpose of the present paper is to investigate the
simultaneous solutions of Eqs. (1.14a) and (1.15a), retain-
ing the remainder terms R+ and Rz. These latter terms
functionally depend on the unknown sought-after field
2)( t ) to second and all higher orders. Thus the
identification of the solution multiplicity of these equa-
tions appears to be an extremely difficult task. However,
we will show in the subsequent sections that an explicit
upper bound may be placed on the magnitude of the
remainder terms in these equations, and from the behav-
ior of these upper bounds we may once again draw simple
conclusions concerning the multiplicity of optimal con-
trol solutions. In the process of obtaining these bounds
and the final multiplicity results, an interesting expres-
sion will be obtained for an upper bound to the sought-
after field.

The remainder of this paper is organized as follows. In
Sec. II, various intermediary bounding expressions will be
derived; in addition, this section will also present the
bound for the control field. In Sec. III, an explicit bound
will be obtained for Rz, and Rz, and from these bounds,
arguments will be presented on the multiplicity of solu-
tions to the control equations. Finally, Sec. IV will
present some summarizing comments.

II. INEQUALITIES AND UPPER BOUNDS
ON THE CONTROL FIELD AND OBJECTIVES

In earlier work [18],Eqs. (1.14a) and (1.15a) were referred
to as the field and spectral equations, respectively. In the
latter work, the remainder terms R+ and Rz were ig-
nored, and the resultant truncated equations are linear
with respect to the unknown field. In particular, the field
2)L (t) arising from truncation of Eq. (1.14a) was shown
to be expressible in terms of an expansion in a special set
of time-independent eigenfunctions ek(t ),

(1.16)

and the reader is referred to the prior reference for a pre-
cise definition of the inner product (ek, ui) and the pa-
rameters (eigenvalues) ilk entering into Eq. (1.16). Simi-
larly, the truncated form of Eq. (1.15a), without the
remainder term R & was shown to become

Following the analysis in the previous paper [18], it
may be readily seen that Eqs. (1.14a) and (1.15a) are non-
linear (to infinite order) integral equations in terms of the
control field 2)(t). Our purpose here is not to explicitly
solve these equations, but rather to explore some proper-
ties of their solutions. The approach taken here is to
identify upper bounds on a variety of intermediate expec-
tation values and inner products necessary to prove the
multiplicity results in Sec. III. In the process, an explicit
upper bound will be obtained for the field strength itself.

& y(v, t) ~q(v, t) ) =1 (2.1)

A. Upper bound on the optimal control field

If we now denote the absolute value bound for the
molecular dipole function by pz, then together with the
normalization condition

where

(e„,u, )'
=a+ [O —

& i)'IQ(T)lit ) ]—,
1k '9

(1.17)

we have

[(@(v,t)~p ~@(v,t)) ) (pii, k ~ 1 . (2.2)

We desire to find an upper bound 2)ti(t) for the deviation
in the field amplitude 2)(t) from its nominal value 6. To
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this end, all we have to do is find a bound for the norm of
the Lagrange multiplier A, (v, t) (or costate function) that
satisfies the backward evolutionary equations (1.8c) and
(1.8d). By employing these equations and their complex
conjugated analogs, together with the self-adjointness of
the operators involved, we can conclude that

at

X Im [ ( A ( v, t ) I

0'
I t/r( v, t ) ) ],

(2.3)

2

(k(v, T)l~(»T)~= ~, (P(v, T) 0 Ig(v, T)) .

(2.4)

Here Im denotes the imaginary part. The integration of
Eq. (2.3) over the interval [t, T] and use of the bounded-
ness of the operators appearing here, together with the
unit normalization of f(v, t), enables us to arrive at the
following conclusion after repeated use of the Cauchy-
Schwartz inequality for the inner products:

(k(v, t)IA(v, t)) &, + f d~ W, (r)
g'I lo I

'
fi fi 0

1/2 T 1/2f d~(A(v, r)IA(v, r))
0

(2.5)

The integration of this equation with respect to t from 0
to T produces the following inequality:

I

upper bound for the control field by using the inequalities
that are already derived in this section,

AX'+XX+ C &0,
2TIIO'll'

(2.6a)

(2.6b)

l~(t)
I &n, = "' 2' llo I

I' +4TI I0'I I'
AW@(t)

1/2

~'I
I
0

I

I' T

T 1/2X'=— f dr( A(v, r) I A(v, r) )
0

(2.6c)

The solution of the inequality in Eq. (2.6a) shows that X'
is bounded from below by 0 and bounded above by the
largest root of the trinomial given in Eqs. (2.6),

X'= f dt(A(v, t)IA(v, t)]
0

f dt W2(t)
0

1/2

1/2
2

+—' lo I

~ 'dt w (t)+ & I 0II
0 ~ T (2.7)

This result can be put into a more amenable form by
making use of the following inequality, which holds for
all positive values of 3 and B:

(A+B)'"&V A +
2&A '

where the quantities A and B are identified as

A =IIO'll f dt w (t), B=

(2.8)

(2.9)

The inequality in Eq. (2.8) enables us to expand the
second term on the right-hand side of Eq. (2.7). The re-
sult may then be substituted into the right-hand side of
Eq. (2.5) to obtain the bound.

(~(,)l~(, )) 2g'lloll'+ 4TIIO'll' f Td, w2(, )
0 5'

(2.10)

Considering Eq. (1.8e) makes it possible to derive an

X f dt W,'(t)
0

+f~l .

B. Inequalities, expectation values, and inner products

The norm in Eq. (2.11), along with several other ine-
qualities associated with the first- and second-order par-
tial derivatives of hatt(v, t) and A,(v, t), with respect to v,
will be needed in the next section to explore the multipli-

(2.11)
It is interesting to examine the dependence of this bound
upon the physical variables involved. The inverse depen-
dence on the weight W@(t) is reasonable, as a lowering of
its value would allow for more effective control, through
an increase of the field intensity. Recognizing that g is a
deviation from the target state (or a measure of how
difficult it is to achieve the target exactly in the con-
strained case), it is reasonable to expect that the field
bound should grow with this variable. Similarly, an in-
crease in the norm of the target operator

I I
0

I I
will natu-

rally call for an increase in the control-field intensity.
Similar arguments apply to an increase in the penalty
operator norm

I

O'I
I

and its associated weight W~(t). It
is also interesting that, in the latter case, there is growth
to the control field with T, due to the accumulated in-
tegral nature of the penalty term in the cost functional.
There is also a hidden dependence on T in g, as g, being
the target error term, is expected to decrease to an
asymptotic value as T increases. Finally, the propor-
tionality of the result to the dipole moment norm pz may
seem surprising, but it arises since the fluence term in the
cost functional is just with respect to the field intensity
and not the dipole interaction energy. The conservative
nature of the bound in Eq. (2.11) is not known, but it pro-
vides interesting insight into the factors controlling the
field intensity.
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city of solutions for the optimal control equations. Let
P (v, t) and g (v, t) denote the first- and second-order
partial derivatives of g(v, t) with respect to v. Then,
g (v, t ) satisfies the following evolution equation:

The integration of this inequality over [0, T] on t reveals
the upper bound for the integral of the norm of f (v, r),
and utilization of this result in Eq. (2.13) enables us to
conclude

Bg (v, t)i' =Pf+vP2)(t)]g (v, t)+PI)(t)1t(v, t),at
4Tpg T

&g.(v, t)IQ.(v, t) & &, f d~2)~(7-)f2 p
(2.15)

(2.12a)
and therefore

g,(v, O)=0 . (2.12b)

By using this equation and its complex conjugate, we can
obtain a differential equation for the norm of P (v, t ). Its
integration over time from 0 to t gives the following equa-
tion:

&y.(,t)I1i„(,t) &

dw w Im v, w p v, w
0

(2.13)

By using the Cauchy-Schwartz inequality for the kernel
of the integral on the right-hand side, we can obtain the
following inequality:

2pg t 2
1/2

&P„(v,t)IQ.(v, t) & & f dry)~~(r)
0

T 1/2
X d7 ~ V~7 p V, 7 . 2 14

0

4Tp~
&g ( vt)lp"lg (v, t) & & f dry) (r), k ~1 .

g2 p

(2.16)

After a similar analysis, we can write the following re-
sults for g (v, t):

64T'p',
&g..(v, t)IQ„,(v, t) & &, f d~Xl~(r), (2.17)

g4 0

64T pg T
&q..(,t)I "Iq..(,t)&&, f d 2)'( ),

A4

(2.18)

Similar steps can be followed to obtain the norms of the
first- and second-order partial derivatives of A.(v, t ), with
respect to v. We only report the results here:

q'I
I
O

I
I'+»T

I I
O'I l' f « II,"(r)

&X.(v, t)lz.(v, t)& & ",' f 'dry,'(r) g' IOII'+18TI O'II'f d~II,"(r)
@4 B

0

128T pB T
&a„,(v, t)Ia..(v, t)& &, f dry) (7)

(2.19)

(2.20)

These various inequalities will now be utilized in the next
section.

III. BOUNDS FOR THE NONLINEAR TERMS
IN THE FIELD AND THE SPECTRAL EQUATIONS

AND OPTIMAL CONTROL MULTIPLICITY

Now we are sufficiently equipped to investigate the
effects of the nonlinear terms in field and spectral equa-
tions (1.13a) and (1.13b) upon the multiplicity of control-
field solutions. In these latter equations, 4~(t ) and Q~( T)
are jth-degree homogeneous functionals of 2)(t) Hence, .
there is well ordering in terms of the deviation in the field
amplitude from its nominal value.

As we did in the earlier paper [18] and summarized in
Sec. I, the field equation (1.14a) and the spectral equation
(1.15a) can be linearized by omitting 4&J(t) and QJ(t)
when the index j is greater than 1. This linearization led
us to obtain a weighted eigenvalue problem involving in-
tegral operators for the field equation, and a multibranch
algebraic equation with an infinite number of vertical
asymptotes for the spectral equation. The issue is now
the determination of the effects of the nonlinear terms
upon the structure and solution of these linearized equa-
tions. Let us consider the well-known Taylor identity for

I

a twice-differentiable function on a closed interval as fol-
lows:

f(x)=f(0)+xf'(0)+ f dy(x —y)f"(y) .
0

If the interval on x is [0,1] then we can further write

f(1)=f(0)+f '(0)+ f dy (1—y )f"(y),
0

(3.1)

(3.2)

which enables us to obtain the following analogs for
C&(v, t ) and Q(v, t ):

N( 1, t ) =@(0,t )+@„(0,t )+f d v(1 v)@, (v, t ), (3.3)—
0

Q(l, t)=Q(O, t)+0 (O, t)+ f dv(l v)A (v, t), (3.4)—
0

where the subscripts v and vv mean the first- and
second-order partial differentiation with respect to v, re-
spectively. From a comparison of Eqs. (3.3) and (3.4)
with Eqs. (1.13a) and (1.13b), we see that @o(t ) =4&(0, t),
@,(t)=@ (O, t), Q (T)o=Q(O, T), and Q, (T)=Q,(O, T).

These equations are linear in 2)(t) except the right-
hand side integrals, which may be identified from Eqs.
(1.14b) and (1.15b) as
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Rq, (t)= f dv(1 —v)@ „(v,t),
0

Rti(t)= f dv(1 —v)Q (v, t) .
0

(3.5)

(3.6)

Hence all nonlinear contributions to the field and to the
spectral equations are gathered in these integrals. Once
we find appropriate bounds for them, we can analyze the
effects of the nonlinearities on the solutions of the linear-
ized field and spectral equations.

Now we can write the following inequality for the ker-
nel of the integral in Eq. (3.5) from the definition in Eq.
(1.10a):

I&~..(v, t)lpl@(v, t) &I
2

W@ t

+ I&a.(v, t)lpl1(.(v, t)) I

Wq t

+
I &&(v, t)lyly. „(v,t)) I . (3.7)

W@ t

By using the boundedness of p and the Cauchy-Schwartz
inequality for inner products, we can obtain the following
result, after some intermediate algebra:

40 2Tpti 4 T 2
1/2 T

g'IIOI '+72TIIO'll'f «W,'( )r f «&~&(r) .
A W@(t) 0 0

(3.8)

Since the right-hand side of this equation does not depend on v, we can write

1 20 2 TpIi 4 Tf dv(1 —v)e.„(v,t) &, q'IIOII'+72TIIO'll'f dr W~(r)
0 R W@(t) 0

1/2 Tf dr23~(r) .
0

(3.9)

Combining Eq. (3.9) with the bound X)z(t) in Eq. (2.11)
provides an explicit bound for the remainder term R~(t)
in Eq. (1.14a). Since all nonlinearities in the field equa-
tion are represented by a single bounded functional of the
physical variables, we can simply conclude that there is
no irregularity or drastic changes in the mathematical
structure of the field equation when the nonlinear terms
are included.

Now, we can proceed in a similar way for the spectral
equation and obtain the following result:

24Tp'
l I

O
I I

f)...(v, t)l &, f dry)ii(r),
g2 0

which means that

(3.10)

»Tps I I
&

I I

0 g2 0

(3.1 1)

IV. CONCLUDING REMARKS

This paper presented a general proof that there will be
a denumerably infinite number of solutions to a
quantum-mechanical optimal control problem. Further-
more, an explicit upper bound was obtained on the op-
timal control field in terms of the system physical vari-

This result, when combined with the bound for 2)z(t) in
Eq. (2.11), produces an explicit bound for R n( T) entering
into Eq. (1.15a). Since Rti(T) is bounded, there is no
effect on the structure of the eigenvalue problem associat-
ed with the linearized equations, except for a change in
the values of r) satisfying Eq. (1.15a). Thus, although the
particular nature of each field solution to the optimal
control problem may change due to system nonlinearities,
the basic conclusion of there being a denumerably infinite
number of solutions still remains.

I

ables. These conclusions were made under some rather
mild assumptions. First, the operators p, 0, and 0' were
assumed to be bounded, and second, the operators 0 and
0' were assumed to be definite. A violation of these con-
ditions can bring into question the convergence proper-
ties of the wave function and Lagrange multiplier func-
tion explicitly utilized in the proof. Perhaps more impor-
tantly, these results are based on the chosen form of the
cost functional in Eqs. (1.5) and (1.6). Although this
latter form is quite general, other cost functionals, includ-
ing simpler ones, might also be considered. It would be
valuable to explore this matter further to see whether
different conclusions might be reached, concerning op-
timal field multiplicity.

The presence of optimal field multiplicity is potentially
quite significant for quantum-mechanical control. First,
the solutions with smaller values of the error index g ob-
tained from solving Eq. (1.5a) correspond to results where
the objective expectation value is closer to its target value
in Eq. (1.8f) (or is more easily achieved in the case of con-
strained target value). However, in practice, many other
solutions corresponding to different g values may be quite
acceptable, as, in fact, it was the minimization of the total
cost functional T which was defined as the truly interest-
ing objective in the quantum-mechanical control prob-
lem. The possibility of there being many multiple mini-
ma of acceptable quality merely opens up the prospect of
adding further auxiliary criteria, or costs, to the optimiz-
ing functional, in order to obtain solutions meeting fur-
ther physical demands. One cautionary point is that the
presence of multiple solutions under certain cir-
cumstances may cause numerical diKculties in searching
through the control function space for solutions. This is
an algorithmic matter, which deserves close attention.

Finally, although this paper and its earlier companion
[18] aimed at a general analysis of the quantum-
mechanical optimal control problem, numerical methods
based on perturbation theory may nonetheless also be of
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practical significance. Clearly, the place to start in this
regard is the lowest order of perturbation theory in the
earlier paper. In this case, the multiplicity of solutions
may be explored without resorting to complicated itera-
tive optimization —only a one-dimensional root search
for the characteristic error parameter g needs to be per-
formed. Even if the results are only qualitatively correct
in the lowest-order perturbation formulation, they should

nonetheless be interesting for their physical content on
the type and variety of solutions.
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